

UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

ESCUELA DE POSGRADO

MAESTRÍA EN PRODUCCIÓN ANIMAL

TESIS

"DETERMINACIÓN DE LA HUELLA HÍDRICA PARA LA PRODUCCIÓN LECHERA EN FINCAS GANADERAS EN EL DISTRITO DE FLORIDA, AMAZONAS"

PARA OPTAR EL GRADO ACADÉMICO DE MAESTRO EN PRODUCCIÓN ANIMAL

Presentado por: Juan Yalta Vela

Asesor: M.Sc. Héctor Vladimir Vásquez Pérez

Co-asesor: M.Sc. José Ney Ríos Ramírez

Registro:

CHACHAPOYAS-PERÚ

2018

Dedicatoria

A Dios por ser mi guía y fortaleza, a mis padres, abuelos y hermanos por su permanente apoyo, comprensión, orientación, y por ayudarme a cumplir mi sueño; a mi esposa e hijo por su cariño y oportunas voces de aliento y a todos mis amigos por su incondicional compañía.

Juan Yalta Vela

AGRADECIMIENTOS

Al M.Sc. Héctor Vladimir Vásquez Pérez, por su orientación, y valiosa colaboración en el desarrollo de la ejecución de la presente tesis.

A mis padres, abuelos y hermanos, por su ayuda incondicional, porque siempre me han respaldado y animado los desafíos que me he propuesto, a vosotros os debo todo lo que soy.

A mi esposa e hijo, porque siempre están ahí para apoyarme y escucharme, por tu paciencia y por tu cariño, por quererme tanto y por comprenderme, gracias por todo.

A mis compañeros de estudio con quienes he compartido proyectos e ilusiones durante estos años, además de risas y comidas quiero agradecer esa amistad y compañía.

A todo el personal docente y técnicos de los diferentes laboratorios de la UNTRM, por su apoyo y paciencia, durante la parte experimental y análisis realizados en la presente investigación.

A la escuela de posgrado de la maestría en producción animal por entregarnos durante estos dos años los conocimientos y herramientas necesarias para el desarrollo de nuestra formación de grado.

Y a todas aquellas personas que de una o de otra manera me brindaron su colaboración durante este proyecto de vida.

A todos ustedes mis sinceros agradecimientos, Juan Yalta Vela.

Nuestra recompensa se encuentra en el esfuerzo y no en el resultado. Un esfuerzo total es una victoria completa (Mahatma Gandhi)

AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

Dr. Policarpio Chauca Valqui RECTOR

Dr. Miguel Ángel Barrena Gurbillón VICERECTOR ACADÉMICO

Dra. Flor Teresa García Huamán VICERECTOR DE INVETIGACIÓN

Dr. Oscar Andrés Gamarra Torres
DIRECTOR DE LA ESCUELA DE POSGRADO

VISTO BUENO DEL ASESOR DE TESIS

El Docente de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas que suscribe, hace constar que ha asesorado la realización de la tesis titulada "Determinación de la huella hídrica para la producción lechera en fincas ganaderas en el distrito de florida, amazonas; del tesista de grado de maestro de la maestría en producción animal de la escuela de posgrado de esta casa superior de estudios:

- JUAN YALTA VELA

El suscrito da el visto bueno al informe de la mencionada tesis, dándole pase para que sea sometida a la revisión por el jurado evaluador, comprometiéndose a supervisar el levantamiento de las observaciones dadas por el jurado evaluador, para su posterior sustentación.

Chachapoyas, 31 de enero del 2018

M.Sc. HÉCTOR VLADIMIR VÁSQUEZ PÉREZ

Docente auxiliar FIZAB

JURADO EVALUADOR

M.Sc. Segundo Manuel Oliva Cruz **PRESIDENTE** Mg. Santos Triunfo Leiva Espinoza **SECRETARIO**

Mg. Polito Michael Huayama Sopla

VOCAL

ÍNDICE GENERAL

De	edicatoria.		ii
Αį	gradecimie	entos	iii
Ín	dice		vii
Re	esumen		xiv
Αl	ostract		XV
I.	Introduc	ción	1
II.	. Material	les y métodos	9
	2.1.	Ubicación	9
	2.2.	Identificación de las fincas ganaderas	9
	2.2.1.	Población	9
	2.2.2.	Tamaño de muestra	10
	2.2.3	Caracterización de las fincas ganaderas	10
	2.2.4.	Selección de las fincas ganaderas	11
	2.3.	Ubicación del sitio de estudio	11
	2.4.	Parámetros de evaluación de las fincas ganaderas	13
	2.4.1.	Rendimiento de forraje por metro cuadrado (g/m²)	13
	2.4.2.	Porcentaje de materia seca (%MS)	13
	2.4.3.	Consumo de materia seca (CMS)	14
	2.4.4	Producción de leche	14
	2.4.5.	Peso de los animales	14
	2.4.6.	Consumo de agua utilizado para la producción de forraje (l/kg)	14
	2.4.7.	Consumo de agua directo e indirecto	15
	2.4.7.1.	Huella hídrica azul	15
	2.4.7.2.	Huella hídrica verde	15
	2.4.8.	Uso de agua para el manejo ganadero	16
	2.4.8.1.	Huella hídrica gris	16

	2.5.	Cálculo de los colores de la huella hídrica	16
	2.5.1.	Calculo de la huella hídrica de la leche	16
	2.6.	Análisis de datos	17
II	I. Resulta	dos	18
	3.1.	Caracterización de las fincas ganaderas ubicadas en el distrito de florida, amazonas, Perú	18
	3.2.	Caracterización de las tipologías de las fincas ganaderas	20
	3.2.1.	Uso principal de la finca	20
	3.2.2.	Razas que presentan las fincas ganaderas	20
	3.2.3.	Hectáreas de terreno por finca	21
	3.2.4.	Extensiones de pastos de las fincas ganaderas	22
	3.2.5.	Número de animales por finca	22
	3.2.6.	Número de vacas en producción de leche	23
	3.2.7.	Producción diaria de leche por hato	24
	3.2.8.	Tipo de ordeño por finca	24
	3.2.9.	Tipo de pasto por finca	24
	3.2.10.	Principal especie forrajera	25
	3.2.11.	Sistema de pastoreo	26
	3.2.12.	Recurso hídrico	26
	3.2.13.	Usos del recurso hídrico	27
	3.2.14.	Manejo del ganado	28
	3.3.	Selección de las fincas ganaderas	29
	3.4.	Rendimiento de pasto	30
	3.5.	Rendimiento de materia seca (MS)	31
	3.6.	Peso de las vacas en producción	32
	3.7.	Consumo de materia seca (CMS)	33
	3.8.	Producción de leche	35

	3.9.	Cálculo de la huella hídrica azul (HH _A)	36
	3.10.	Huella hídrica verde (HH _V)	38
	3.11.	Huella hídrica gris (HH _G)	39
	3.12.	Huella hídrica de la leche	40
IV	IV. Discusión		43
V. Conclusiones		46	
VI. Recomendaciones		47	
V]	VII. Referencias bibliográficas		48
\mathbf{V}	VIII. Anexos		

ÍNDICE DE FIGURAS

Figura 1.	Mapa de ubicación del sitio de estudio de las fincas ganaderas	11
Figura 2.	Dendrograma de clasificación por área de las fincas ganaderas	19
Figura 3.	Uso principal de las fincas ganaderas	20
Figura 4.	Razas de ganado que predominan en el distrito de Florida	21
Figura 5.	Extensión de fincas ganaderas del distrito de Florida	21
Figura 6.	Extensión de pastos por fincas ganaderas del distrito de Florida	22
Figura 7.	Número de animales por finca ganadera	23
Figura 8.	Vacas en producción de leche por finca ganadero	23
Figura 9.	Producción de leche por finca ganadero	24
Figura 10.	Porcentaje del tipo de pastos que utilizan las fincas ganaderas	24
Figura 11.	Principales especies forrajeras por finca ganadera	25
Figura 12.	Sistema de manejo de las fincas ganaderas	26
Figura 13.	Recurso hídrico en las fincas ganaderas	27
Figura 14.	Uso del recurso hídrico.	27
Figura 15.	Instalaciones de manejo y lavado de ubres en las fincas ganaderas	28
Figura 16.	Evaluación del rendimiento de pasto en forraje verde (FV)	31
Figura 17.	Evaluación del rendimiento de materia seca (MS) por hectárea	32
Figura 18.	Evaluación promedio del peso vivo de las vacas en producción	33
Figura 19.	Evaluación del consumo total de materia seca por día	34
Figura 20.	Evaluación de la producción promedio de leche por hato y por vaca	36
Figura 21.	Evaluación del consumo de agua directo en época de verano e invierno	38
Figura 22.	Calculo de la huella hídrica verde por estrato	39
Figura 23.	Evaluación del nivel de uso de agua por estrato	40
Figura 24.	Evaluación de la huella hídrica para producir un litro de leche en época de verano e invierno	41
Figura 25.	Evaluación de la huella hídrica promedio de un litro de leche	42

ÍNDICE DE TABLAS

Tabla 1.	Variables de selección para la estratificación de fincas ganaderas	29
Tabla 2.	Selección de los estratos de las fincas ganaderas del distrito de Florida	30
Tabla 3.	Evaluación de la variable rendimiento de pasto en forraje verde (FV)	31
Tabla 4.	Evaluación de la variable rendimiento de materia seca	32
Tabla 5.	Evaluación de la variable peso de las vacas en producción	33
Tabla 6.	Evaluación de la variable consumo de MS por hato y por vaca	34
Tabla 7.	Evaluación de la variable producción le leche por hato y por vaca	35
Tabla 8.	Evaluación de la variable consumo directo de agua en época de verano, invierno y el promedio identificado como huella hídrica azul	36
Tabla 9.	Evaluación de la variable consumo indirecto de agua identificado como huella hídrica verde	38
Tabla 10.	Uso del agua identificado como huella hídrica gris expresado en litros	39
Tabla 11.	Evaluación de la huella hídrica por litro de leche en verano e invierno	40
Tabla 12.	Evaluación de la variable huella hídrica por litro de leche promedio	42

ÍNDICE DE ANEXOS

ANEXO 1.	Formato de la encuesta para tipificar fincas ganaderas	55
ANEXO 2.	Recolección de datos	57
Tabla 13.	Encuesta de las 73 unidades agropecuarias muéstrales	57
Tabla 14.	Ubicación con GPS de las fincas agropecuarias	58
Tabla 15.	Cálculo de las unidades agropecuarias representativas del distrito de Florida para la representación población encuestada	58
Tabla 16.	Cálculo del porcentaje de uso de las fincas agropecuarias por grupo	59
Tabla 17.	Representación porcentual de razas que presentan los hatos ganaderos	59
Tabla 18.	Representación de la extensión de terreno que presentan los hatos ganaderos por grupo de conglomerado	59
Tabla 19.	Representación de la extensión de pasto que presentan las fincas ganaderas por grupo de conglomerado	59
Tabla 20.	Representación numérica de animales por hato que presentan las fincas ganaderas por grupo de conglomerado	60
Tabla 21.	Representación numérica de vacas en producción por hato que presentan las fincas ganaderas por grupo de conglomerado	60
Tabla 22.	Representación numérica de la producción diaria de leche por hato que presentan las fincas ganaderas por grupo de conglomerado	60
Tabla 23.	Representación porcentual del tipo de ordeño que presentan las fincas ganaderas por conglomerado de grupos	60
Tabla 24.	Representación porcentual del tipo de pasto que presentan las fincas ganaderas por conglomerado de grupos	60
Tabla 25.	Representación porcentual de la principal especie forrajera que presentan las fincas ganaderas por conglomerado de grupos	61
Tabla 26.	Representación porcentual del sistema de pastoreo que presentan las fincas ganaderas por conglomerado de grupos	61
Tabla 27.	Representación porcentual del recurso hídrico por grupos	61
Tabla 28.	Representación porcentual de la conservación y forma de acceso de agua de bebida por grupo de conglomerado	62
Tabla 29.	Representación porcentual del manejo de los hatos ganaderos por grupos de conglomerado	62

Tabla 30.	Variables de selección de tres sub grupos muéstrales	62
Tabla 31.	Cuadro de resumen de la medición de variables	63
Tabla 32.	Cálculo de la huella hídrica azul por estrato	64
Tabla 33.	Cálculo de la huella hídrica verde por estrato	64
Tabla 34.	Cálculo de la huella hídrica gris por estrato	65
Tabla 35.	Cálculo del requeridito de agua de cultivo por sistema de pastoreo	65
Tabla 36.	Cálculo de la huella hídrica por litro de leche por estrato	66
ANEXO 3.	Análisis de varianza.	66
Tabla 37.	Análisis de varianza del rendimiento de pasto FV/m2 (g)	66
Tabla 38.	Análisis de varianza rendimiento de MS (kg)/ha	67
Tabla 39.	Análisis de varianza del peso promedio de las vacas (kg)	67
Tabla 40.	Análisis de varianza del consumo total de MS (kg)/hato/día	68
Tabla 41.	Análisis de varianza del consumo total de MS (kg)/vaca/día	68
Tabla 42.	Análisis de varianza de la producción de leche (L)/hato/día (Verano)	69
Tabla 43.	Análisis de varianza de la producción de leche (L)/hato/día (Invierno)	69
Tabla 44:	Análisis de varianza de la producción promedio de leche (L)/hato	70
Tabla 45.	Análisis de varianza de la producción promedio de leche (L)/vaca	70
Tabla 46.	Análisis de varianza de la huella hídrica azul (verano)/hato	71
Tabla 47.	Análisis de varianza de la huella hídrica azul (invierno)/hato	71
Tabla 48:	Análisis de varianza de la huella hídrica azul promedio/hato	72
Tabla 49.	Análisis de varianza de la huella hídrica verde promedio/hato	72
Tabla 50.	Análisis de varianza de la huella hídrica Gris promedio/hato	73
Tabla 51.	Análisis de varianza de la huella hídrica /litro de leche época de verano	73
Tabla 52.	Análisis de varianza de la huella hídrica /litro de leche época de invierno	74
Tabla 53.	Análisis de varianza de la huella hídrica promedio/litro de leche	74
ANEXO 5.	Paneles Fotográficos	75

RESUMEN

A la ganadería se le atribuye ser responsable al uso del 30% de la superficie terrestre y el

8% del consumo mundial del agua y responsable de la contaminación ambiental. La Huella

hídrica es considerada como un indicador de uso de agua. El objetivo del estudio fue

determinar la huella hídrica, cantidad de agua usada para producir un litro de leche, en las

fincas ganaderas del distrito de Florida, Amazonas, Perú. Previa caracterización y

tipificación, 30 fincas lecheras fueron seleccionadas en base a área de finca, sistema de

pastoreo, numero de vacas en producción y producción de leche, 10 fincas para cada estrato

de estudio. En dichas fincas identificadas por estratos se determinó el consumo de agua,

directo e indirecto expresados en huella hídrica azul y verde, uso del agua expresado en

huella hídrica gris con base a la descripción y cuantificación de las diferentes actividades en

la fase de producción de leche y la huella hídrica para producir un litro de leche. Para el

análisis de datos se empleó el análisis estadístico básico, de conglomerados y multivariados

utilizando el software Infostat. En el resultado se tiene que la huella hídrica para la

producción de un litro de leche fue de 1559.5 litros de agua en el estrato I, 823.1 litros en el

estrato II y 646. 1 litros en el estrato III.

Palabras claves: Huella hídrica, consumo de agua, estrato, tipología

xiv

ABSTRACT

Livestock is responsible for the use of 30% of the land surface and 8% of the world's water consumption and responsible for environmental pollution. The water footprint is considered as an indicator of water use. The objective of the study was to determine the water footprint, amount of water used to produce a liter of milk, in the livestock farms of the district of Florida, Amazonas, Peru. After characterization and typification, 30 dairy farms were selected based on farm area, grazing system, number of cows in production and milk production, 10 farms for each stratum of study. In these farms identified by strata the water consumption, direct and indirect, expressed in blue and green water footprint, water use expressed in gray water footprint was determined based on the description and quantification of the different activities in the milk production phase and the water footprint to produce a liter of milk. For the analysis of data, the basic statistical analysis of conglomerates and multivariate was used using the Infostat software. The result is that the water footprint for the production of one liter of milk was 1559.5 liters of water in stratum I, 823.1 liters in stratum II and 646. 1 liters in stratum III.

Kelwords: Water foot print, water consumption, stratum, typology

I. INTRODUCCIÓN

El incremento de la población mundial que por el año 2011 fue de 7 mil millones (UNESCO, 2012), se proyecta que para el 2050 será 9,6 mil millones, lo cual generará una mayor presión al planeta en relación a la producción de alimentos, energía y, por tanto, una gran demanda por el recurso hídrico; situación que afectará a poblaciones en más de 70 países a nivel mundial (INEI, 2013). El sector pecuario es uno de los responsables del 8% en el incremento del uso del agua a nivel mundial y probablemente el mayor contaminante, (Steinfeld *et al.* 2009). Además, las evidencias indican que hay falta de conocimiento e información sobre el uso de los recursos hídricos para la ganadería y su impacto que generara la deficiencia de dicho recurso (LEAD, 2005).

Bajo este contexto, se evidencian situaciones de escasez de agua en muchos países y regiones. La escasez de agua, la decreciente biodiversidad y el cambio climático resultan de ese exceso que ponen en creciente riesgo el bienestar y desarrollo de todo el mundo (Water Food Print, 2008). Además, la ONU (2007), menciona que la disponibilidad de agua dulce del planeta es mucho menor a lo que se piensa, más aún cuando ésta se ve amenazada por diferentes factores que disminuyen la cantidad de agua utilizable.

El informe de la FAO (2006a), explica que la ganadería utiliza hoy en día el 30% de la superficie terrestre del planeta, que en su mayor parte son pastizales, pero que ocupa también un 33 por ciento de toda la superficie cultivable, destinada a producir forraje. La tala de bosques para crear pastos es una de las principales causas de la deforestación, en especial en Latinoamérica, donde por ejemplo el 70% de los bosques que han desaparecido en la Amazonia se han dedicado a pastizales.

Se dice también que la ganadería representa el 40% del Producto Interno Bruto (PIB) agrícola a nivel mundial, genera empleo para mil trescientos millones de personas y suministran un tercio del consumo mundial de proteínas (Steinfeld *et al.* 2009). Durante los últimos años gran parte del área boscosa fue deforestada para promover la

ganadería extensiva; en Latinoamérica el área en pasturas representa un 46% del total (18.4 millones de ha), siendo el más importante uso de la tierra (Murgueitio e Ibrahim, 2000).

Además, se estima que la ganadería, es considerada como un motor de deforestación, (Tobar e Ibrahim, 2008), es una de las actividades con mayores requerimientos hídricos (Herrero, 2002). Algunos trabajos han estimado que se emplean alrededor de 1000 litros para producir un litro de leche (Water Food Print, 2010).

Como señal de prosperidad, cada año la humanidad consume más carne y productos lácteos. Está previsto que la producción mundial de carne se duplique desde los 229 millones de toneladas en 1999-2001 a 465 millones de toneladas en 2050, al tiempo que la producción lechera se incrementará en ese período de 580 a 1 043 millones de toneladas aumentando así el consumo de agua (FAO, 2006b).

Si bien es cierto, el sector pecuario es una de las actividades humanas que han presionado los ecosistemas y los recursos naturales: suelo, agua, bosque y biodiversidad. También es un sector fundamental para la seguridad alimentaria de las familias rurales y urbanas (FAO, 2009). En este sentido, vale la pena destacar que existen algunos sistemas sostenibles de producción ganadera como los sistemas silvopastoriles que contribuyen con la generación de servicios ecosistémicos tales como protección de fuentes de agua, protección del suelo, conservación de biodiversidad y secuestro de carbono (Villanueva et al., 2010).

Según Chapagain y Hoekstra (2008), el 67% del comercio de agua virtual está relacionado con el comercio internacional de cultivos, el 23% con el comercio de ganado y productos cárnicos y el 10% con el comercio de productos industriales. Puesto que a nivel global la agricultura es el primer sector económico en cuanto al uso de agua, después continuando por la ganadería. El comercio de agua virtual ha aumentado regularmente durante los últimos cuarenta años: aproximadamente el 15%

del agua utilizada en el mundo se destina a la exportación en forma de agua virtual. Tal como lo señala (Pengue, 2006).

En el Perú la disponibilidad de agua es muy alta, aproximadamente 70 000,0 m³/hab/año, cerca de doce veces el promedio mundial. Esto nos coloca en el puesto 17 dentro de 180 naciones. Es cierto, sin embargo, que esta gran cantidad de agua, que representa casi el 5% (2 000 km³ por año) de la escorrentía mundial, se encuentra muy desigualmente distribuida en el tiempo y en el espacio en el territorio nacional. El aumento de la demanda y la desigual distribución espacial y temporal del agua han ocasionado situaciones de escasez, la que debe ser apreciada debidamente para comprender la necesidad de soluciones alternativas a las tradicionalmente utilizadas (Rocha, 2011).

Según el MINAM (2015), en los últimos 25 años se ha perdido el 22% de la superficie de nuestros glaciares que equivale al consumo de agua de la ciudad de Lima en 10 años. Asimismo, a nivel nacional, el sector sur del país experimento un mayor calentamiento, así como reducción de lluvias del orden del 20% en promedio, lo cual es grave para la actividad agropecuaria que es el principal sustento de vida para la población rural.

En Perú, los departamentos que presentaron mayor pérdida de bosques entre los años 2010 y 2011, fueron: San Martín con 24 mil 809 Has, Ucayali con 24 mil 90 Has, Loreto con 21 mil 454 Has y Amazonas ubicándose en el noveno lugar con 3165 Has (INEI, 2015).

El Instituto de Investigaciones de la Amazonia Peruana (2015), menciona que la deforestación en Amazonas fue de 640 472,53 Has, siendo la provincia de Condorcanqui con mayor deforestación de 129 042.38 Has y la cuarta provincia Bongará con 81 049,58 Has. Según INRENA (2005), en ese año se ha identificado un incremento considerable, especialmente en la Provincia de Condorcanqui, con 156

069,0 Has. El efecto de la deforestación es una fuerte pérdida de la diversidad de flora y fauna en la región.

Según Reátegui y Martínez (2007), en el estudio forestal realizado en el marco de la propuesta de zonificación ecológica económica, señala que la Región Amazonas posee aproximadamente 3'414,666 Has (86,1%) del total de su territorio dentro de la zona de selva, compuesto por bosques húmedos y bosques secos por aspectos climáticos, ubicados en su mayor extensión en la zona norte de la región, presentando ecosistemas propios de Selva baja, Selva alta y Ceja de selva con aproximadamente el 0,60%, 61,20% y 24,27% respectivamente. El resto representa la zona de Sierra con 552 840,0 Has (13,93%), generalmente ubicada en la zona sur de la región.

Sin embargo, gran parte de los bosques naturales se encuentran fuertemente deforestadas por acción del hombre por las diferentes actividades que en ella se desarrollan, especialmente en las zonas facilitadas por su acceso de carreteras cubriendo una superficie de 1 120 782,0 has que representa el 28,3% del área de la región y el 32,8% de la superficie del bosque original. La deforestación se nota con una mayor intensidad en la zona sur tanto en los bosques secos como en los bosques húmedos, quedando aun los bosques de la zona norte por efecto de estar protegida por las comunidades de los pueblos originarios Awajún o Aguarunas y Wampís o Huambisas (Reátegui y Martínez, 2007).

Por su parte el Gobierno Regional Amazonas (2007), en la propuesta de zonificación ecológica económica, señalan que existen conflictos ambientales cuando se desarrollan actividades en zonas no acordes con su aptitud natural. En la región Amazonas se han identificado los siguientes conflictos: actividades agropecuarias en tierras de protección, actividades agropecuarias en tierras de vocación forestal, actividades agropecuarias en áreas naturales protegidas y actividades agropecuarias en asociaciones de tierras de protección y forestal.

Además se ha encontrado que existe una superficie de 753 189,0 ha de tierras en conflicto de uso la cual representa aproximadamente el 19% del área total estudiada y la ocupación desordenada de estas tierras genera la aparición de enormes áreas degradadas que requieren de urgentes medidas de tratamiento especial para su recuperación, considerando que estas tierras tienen vocación forestal y/o de protección y su recuperación debe estar basada en programas de reforestación o manejo de regeneración natural (Reátegui y Martínez, 2007).

Otro problema que enfrentan las fincas ganaderas en Centroamérica es la falta de agua para el ganado lo que ocasiona pérdidas en la producción (Palma *et al.* 2011).

Por otra parte, se han desarrollado indicadores que permiten medir los usos de agua en actividades agropecuarias. La huella hídrica es un indicador que permite cuantificar las cantidades de agua utilizadas para producir un bien o un producto (Hoekstra *et al.* 2011). Este indicador puede contribuir al ámbito público y privado a determinar y proponer modos de producción más eficientes en cuanto al uso del agua (Chapagain y Orr 2009). De lo cual para iniciar con el proceso de reducción de consumo y contaminación del agua es necesario estimarlas. Es ahí donde surge el concepto de huella hídrica y agua virtual, que permite construir un panorama general sobre la utilización de este recurso (Mercado, 2012).

Según Ríos, *et al.* (2008), indica la huella hídrica para producir un litro de leche calculada coincide con otras investigaciones realizadas y respalda la hipótesis de que son necesarios alrededor de 1000 litros de agua para producir un litro de leche. Cálculos realizados por Water Footprint indica que son necesarios entre 1100 a 2000 litros de agua por litro de leche producida, rango que varía de acuerdo a las características de la leche (grasa y solido) y el sistema productivo.

Ríos, *et al.* (2008), Tomando en cuenta diferentes parámetros (Peso promedio, producción de leche, consumo directo e indirecto de agua, uso de agua en manejo ganadero), determinó que para producir un litro de leche en fincas ganaderas ubicadas

en Matiguás se emplean alrededor de 950 litros de agua; mientras que las fincas ubicadas en Jinotega aproximadamente 1500 litros de agua. Estos resultados coinciden con datos calculados por Llamas (2005), Water Food Print (2010) y la FAO (2010) quienes indican que en sistemas extensivos similares se requieren entre 800 a 1800 litros agua por litro de leche.

Hoekstra *et al.*, (2011), hace mención que la huella hídrica permite considerar el uso del agua oculta a lo largo de la cadena de producción de bienes o de servicios de consumo, dando información de los efectos sobre el agua asociados a los hábitos de vida de las personas, poblaciones o de la producción de gremios o empresas. Este indicador multidimensional muestra los consumos de agua según su origen, y aporta información sobre la capacidad de asimilación de la contaminación generada.

Como señala Water Food Print (2010), la huella hídrica de la producción es una medida del agua utilizada en diferentes países, así como un indicador de la demanda humana de los recursos hídricos (Chapagain y Hoekstra, 2011). Está compuesta por el volumen de aguas verdes (lluvia) y azules (extraída) consumido para producir bienes agrícolas de los cultivos y ganado, el mayor uso del agua, así como las aguas grises (contaminadas) que genera la agricultura y los usos domésticos e industriales del agua.

La huella hídrica es un indicador de la utilización de agua por parte de un consumidor. Por lo tanto, podemos definir la huella hídrica como la cantidad del volumen total de agua dulce que se utiliza para producir los bienes y servicios de un individuo, de una finca ganadera u industrias (Sevilla, 2015).

La huella hídrica total de un país tiene dos componentes. La huella hídrica interna es el volumen de agua necesario para cultivar y proporcionar los bienes y servicios que se producen y consumen dentro de ese país. La huella hídrica externa es la resultante del consumo de bienes importados o, en otras palabras, el agua que se utiliza para la producción de bienes en el país exportador (Brito 2011).

La Huella hídrica de la producción es una medida del agua utilizada en diferentes países, así como un indicador de la demanda humana de los recursos hídricos Brito (2011). Por otro lado, la huella hidrológica de una persona, colectivo o país se define como el total de agua usada para producir los bienes y servicios consumidos por esa persona, colectivo o país Rodríguez *et al.*, (2008) y Grajales *et al.*, (2008). También es conceptualizada como el indicador para medir el uso de agua directo e indirecto (Ertug y Hoekstra, 2012).

La huella de un país es la suma de todas las tierras agrícolas, de pastoreo y de bosques, al igual que las zonas de pesca requeridas para producir los alimentos, fibras y maderas que ese país consume, para absorber los desechos emitidos por la generación de la energía que utiliza y para proporcionar espacio para su infraestructura. Puesto que las personas consumen recursos y servicios ecológicos provenientes de todo el mundo, su huella es la suma de estas áreas, independientemente de donde estén ubicadas en el planeta (Sevilla, 2015).

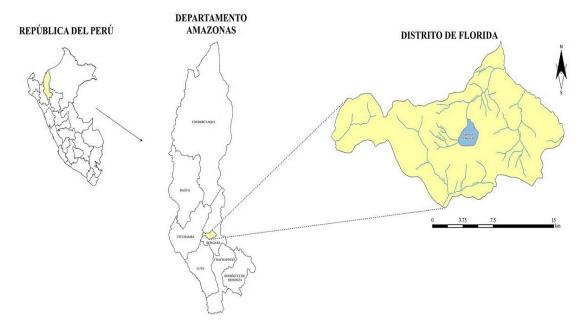
Ríos et al., (2012), menciona que el cálculo de la huella hídrica nos aporta información para conocer en qué puntos de nuestra producción podemos reducir el consumo de agua, de forma que apliquemos los principios del desarrollo sostenible. Adicionalmente, a través de este cálculo se puede llegar a relacionar el consumo diario de agua y los problemas de contaminación y distribución de agua en lugares donde se producen los bienes y, por tanto, cuantificar los efectos del consumo y comercio en el uso de los recursos hídricos.

Para calcular la huella hídrica la metodología básica está basada en la huella hídrica azul, verde y gris (Hoekstra *et al.* 2011). La huella hídrica azul se refiere al consumo de los recursos hídricos procedentes de agua dulce superficial y subterránea ,donde Huella hídrica azul: Es el volumen de agua dulce consumida de las aguas superficiales (ríos, lagos y embalses) y subterráneas (acuíferos), Huella hídrica verde: Corresponde a la sección de las precipitaciones que no escurren, que recargan las aguas subterráneas o que temporalmente permanecen encima del suelo o vegetación y huella hídrica gris: Es

el volumen de agua contaminada que se relaciona con la producción de bienes y servicios. Este volumen se suele estimar como la cantidad de agua que es necesaria para diluir los contaminantes de forma que se mantengan o superen los niveles de calidad del agua, de acuerdo a los requisitos legales vigentes. El valor final de la huella hídrica se calcula de diversas maneras dependiendo de la metodología que se emplee, puede ser la suma de los tres tipos de agua (azul, verde o gris), o la suma de la huella hídrica directa más la huella hídrica indirecta.

Con el cálculo de la huella hídrica se podrá establecer una relación directa entre los sistemas hídricos y el consumo humano, esta vinculación podrá determinar factores como la escases o contaminación del agua, pero también permitirá plantear mejoras en la gestión de los recursos del agua en los sectores agropecuarios de Pomacochas.

Además la microcuenca Ganadera de Pomacochas, distrito de Florida, lugar donde se desarrolló el proyecto, presenta un gran potencial para la producción de ganado lechero, teniendo un total de 7 742 cabezas de ganado vacuno y 15000 ha cubiertas de pasturas naturales y cultivadas, cuyos suelos tienen características edafológicas muy buenas para la instalación de pasturas; además el 30% de las áreas disponible de agua para riego, con condiciones climáticas que favorecen la adaptabilidad de nuevas pasturas y de ganado mejorado (INEI, 2012), pero que en la actualidad no son explotados adecuadamente.


Sin embargo, en la actualidad. Los pobladores de dicha zona, a pesar de las problemáticas presentadas se ha dado cuenta de la importancia económica que representa para el desarrollo del distrito la producción del ganado vacuno lechero; así mismo, esta orientación se debe a la oportunidad de mercado, representada en un mayor consumo, local y extra regional.

Bajo este contexto, la presente investigación tuvo como objetivo calcular la huella hídrica para la producir un litro de leche en tres estratos diferentes en el distrito la Florida, Amazonas, estratificadas en función a la tipificación de las fincas ganaderas.

II. MATERIALES Y MÉTODO

2.1. Ubicación

El estudio se realizó en el distrito de Florida de la provincia de Bongará, localizado en la coordenada 5°50′00″S, 77°55′00″O a 84 km al norte de la ciudad de Chachapoyas en el departamento de Amazonas (aproximadamente a 3 horas en auto). Distrito que abarca una superficie de 203,22 km²; situado a 2150 m.s.n.m.; con temperatura anual promedio de 15C°, precipitación de 1964.8mm y una humedad relativa 89.1%.

El distrito de Florida presenta una población de 8,257 habitantes que conforman 1,657 familias rurales, quienes representan al ámbito principal de la microcuenca ganadera de Pomacochas. (INEI-Proyección de Población y Vivienda 2000 - 2015).

2.2. Identificación de las fincas ganaderas

2.2.1. Población

La población ganadera está conformada por 791 unidades agropecuarias, que manejan ganado vacuno en el distrito de Florida (IV CENAGRO 2012), (INEI, 2012)

2.2.2. Tamaño de muestra

De acuerdo al tamaño de población se tuvo 73 fincas identificadas y las cuales fueron encuestados como muestra representativa del distrito de Florida. Calculada según la siguiente formula.

$$n = \frac{N * Z^2 p * q}{d^2 * (N-1) + Z^2 p * q}$$

Dónde:

• N: Total de población

• Z: 1.96 al cuadrado (si la seguridad es del 95%)

• p: Proporción esperada (en este caso 5%=0.05)

• q: 1-p (en este caso 1-0.05=0.95)

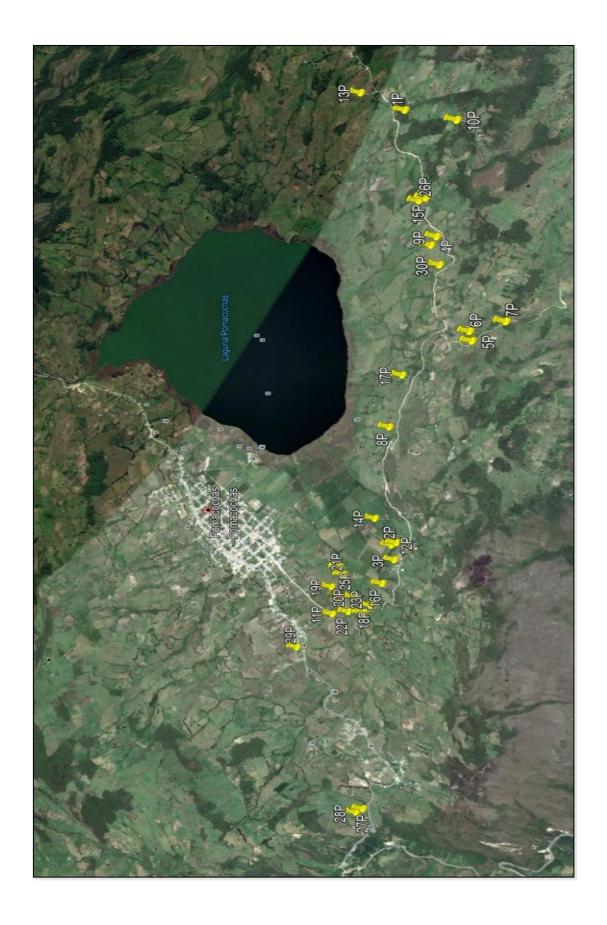
• d: Precisión (5%)

2.2.3. Caracterización de las fincas ganaderas

Se determinó la tipología de fincas con base a una caracterización basada en el levantamiento de la información primaria vía la aplicación de una encuesta que consideraba preguntas abiertas y cerradas a 73 productores ganaderos, lo que permitió caracterizar y clasificar las fincas ganaderas, de lo cual se levantó la información básica que incluyo: i) Características generales: Áreas, uso del suelo e infraestructura, ii) Características del hato ganadero: tamaño del hato, tamaño del hato con pasturas, razas, categorías, producción diaria de leche, tipo de ordeño, número de vacas en producción; iii) Manejo de pasturas: tipo, especie, sistema de pastoreo y sistema de manejo; iv) Uso y manejo de agua: fuentes de agua infraestructura, adecuada, suficiente e insuficiente (Cobertizos) para la producción, tipo de acceso, protección de fuentes, uso de agua en manejo animal.

Caracterizadas las unidades agropecuarias se realizó un análisis de conglomerados para la agrupación de las fincas ganaderas de acuerdo a sus características similares (tipología), de las cuales realizo un conglomerado por área de extensión de las fincas que fueron clasificados en tres grupos, mediante un software estadístico Infostat versión 2017.

2.2.4. Selección de las fincas ganaderas


Realizado el análisis de conglomerados y agrupación de las fincas ganaderas, se seleccionó un estrato de 10 fincas para cada grupo, lo cual sumaron una clasificación total de 30 fincas y los criterios considerados en la determinación de los estratos fueron:

- Extensiones de las fincas ganaderas en el estrato I (8 Has a más), estrato II (1 a 4 Has) y en el estrato III (5 a 7 Has)
- Sistema de pastoreo en el estrato I (extensivo), estrato II (estaca) y en el estrato III (controlado con cerco eléctrico)
- Numero de vacas en producción en el estrato I (9 vacas a más), estrato II (2 a 4 vacas) y en el estrato III (5 a 8 vacas)
- Producción de leche por hato en el estrato I (56 litros a más), estrato II (1 a 35 litros) y en el estrato III (36 a 55 litros)

2.3. Ubicación del sitio de estudio

Se realizó la identificación de las 30 fincas ganaderas seleccionadas en el distrito de Florida de la provincia de Bongará, región Amazonas localizado en la coordenada 5°50′00″S, 77°55′00″O.

Figura 1: Mapa de ubicación del sitio de estudio de las fincas ganaderas.

2.4. Parámetros de evaluación de las fincas ganaderas

Se consideraron las siguientes variables: Rendimiento de forraje, porcentaje de materia seca (%MS), consumo de materia seca de los animales (CMS), producción de leche (PL), peso de los animales, litros de agua utilizados para producir un kilogramo de forraje seco (lt/kg/MS), consumo directo de agua (CDA), consumo indirecto de agua (CAI), Uso de agua (UdA) y litros de agua utilizados para producir un litro de leche (HHL)

El monitoreo de variables para el cálculo de huella hídrica (HH) y consumos de agua, se realizó durante 10 días en cada hato ganadero; 5 días en época de verano y 5 días en época de invierno con el fin de comparar si existía un comportamiento distinto en las variables según la época del año. El planteamiento del factor época, se debió al supuesto que la estacionalidad climática seca y lluviosa influye en el tipo de manejo al ganado, lo cual también podría afectar los consumos de agua en las fincas (Gutiérrez 1996, Medina *et al.* 2009, Hassán 2011).

2.4.1. Rendimiento de forraje por metro cuadrado (g/m²)

Se ha recorrido las 30 fincas ganaderas seleccionadas, donde se realizó la recolección del forraje ofrecido al ganado, la muestra extraído se recolectaron de 3 puntos distintos al azar de cada finca con el fin de homogenizar las muestras y la recolección se hizo por metro cuadrado, luego con la ayuda de una balanza analítica se pesó el pasto extraído para saber el rendimiento promedio por metro cuadrado.

2.4.2. Porcentaje de materia seca (%MS)

Se extrajeron 3 muestras de pasto al azar de distintos puntos, posteriormente se homogenizaron y solo se extrajo una muestra de 100 gramos y se secaron en un horno a 105 °C durante 24 horas, luego se calculó el % de MS con la siguiente fórmula:

$$MS = \frac{Peso\ final}{Peso\ inicial} \times 100$$

2.4.3. Consumo de materia seca (CMS)

El consumo de materia seca se estimó a partir de información secundaria; se utilizó un CMS de 3% del peso vivo del animal (PV) (Gutiérrez 1996, Hassán 2011). El CMS total de los animales se estimó mediante la sumatoria del CMS de cada animal de acuerdo al peso vivo.

2.4.4. Producción de leche

Previa categorización del hato ganadero en la finca, se visitó para evaluar el ordeño midiéndose la producción de leche; durante tres días en época de verano y tres días en época lluviosa, por lo cual se utilizó un balde graduado con capacidad de 10 litros.

2.4.5. Peso de los animales

El peso de los animales se realizó a las vacas que se encontraba en producción de leche, para lo cual se utilizó una cinta bovinométrica para ganado de doble propósito, la evaluación se realizó al inicio del primer día de la medida del consumo directo de agua.

2.4.6. Consumo de agua utilizado para la producción de forraje (L/kg)

Para calcular el requerimiento de agua de cultivo (RAC) en L/kg para los forrajes rye gras (*Lolium multiflorum*), kikuyo (*Pennisetum clandestinum*) y trébol (*Trifolium repens*), se utilizó el programa CROPWAT-FAO (http://cropwat.software.informer.com/8.0/), programa recomendado por la FAO para calcular los requerimientos de agua de los cultivos a partir de datos climáticos y del cultivo.

A partir de revisiones de estudios realizados por Sánchez (2011), Broussain (2011) y Ríos *et al.* (2012), se ha calculado la cantidad de agua necesaria requerida para producir un kilogramo de forraje en materia seca (L/kg MS), a partir del requerimiento de agua del forraje el cual se expresa en lámina de agua (mm), y la producción de forraje en kilogramos de MS por hectárea.

Los datos climáticos utilizados para el programa CROPWART 8.0 de la FAO, fue extraído de la estación meteorológica de la Universidad Nacional Toribio Rodríguez de Mendoza de la estación experimental del distrito de Florida de Pomacochas.

2.4.7. Consumo de agua directo e indirecto

Para tal fin se cuantifico el consumo de agua en huella hídrica azul y huella hídrica verde para cada finca ganadero.

2.4.7.1. Huella hídrica azul

Se midió el consumo directo total de agua/día en cada finca ganadera, las vacas que están en producción de leche fueron aisladas y se les suministro agua mediante el uso de recipientes de agua con volumen conocido. Al final del día se midió el agua residual y por diferencia se calculó el agua consumida por el hato. Este proceso se desarrolló por 10 días, para al final tener un promedio del consumo directo del agua por finca.

2.4.7.2. Huella hídrica verde

Se ha medido el consumo indirecto de agua teniendo en consideración la cantidad de agua empleada para la producción de MS por parte del forraje dominante y el consumo de MS de los animales, se determinó el agua consumida vía la ingesta de alimento.

Para la zona de estudio y bajo el sistema productivo que se desarrolló se consideró un consumo de materia seca CMS de 3% del peso vivo del animal (PV) (Gutiérrez 1996, Hassán 2011). Luego se empleó el programa CROPWART 8.0 para calcular el agua necesaria utilizada para producir un kilogramo de forraje en base seca. Finalmente se aplica la siguiente fórmula (Ríos, 2012):

Consumo indirecto =
$$\frac{AC \times A}{H}$$

Dónde:

• AC: Alimento consumido por el hato (Kg/MS)

• A: Litros de agua utilizados para producir 1 kg de materia seca

• H: Número de animales de la finca (Solo se consideran vacas en producción)

De la cual se dice que: Huella hídrica verde (HHv) = Consumo indirecto

2.4.8. Uso de agua para el manejo ganadero

Para tal fin se cuantifico el uso del agua en huella hídrica gris para cada finca ganadero.

2.4.8.1. Huella hídrica gris

Mediante observación, calculo e información de los productores se realizó una descripción del uso de agua relacionadas en la producción de la leche, los cuales fueron consumos de agua referente al lavado de ubres, lavado de paños, lavado de porongos, lavado de baldes, lavado de bebederos y baños de los animales.

2.5. Cálculo de los colores de la huella hídrica

Se consideran el color azul, verde y gris para la cuantificación del uso y consumo de agua que permitirán el cálculo de la huella hídrica. El volumen de agua en cada componente (color) será expresado en litros.

2.5.1. Calculo de la huella hídrica de la leche

Para el cálculo de la huella hídrica para la producción de un litro de leche se emplea la siguiente fórmula (Ríos, 2012).

$$HH_1 = \frac{CAA + UdA}{PLH}$$

Dónde:

• HH₁: Huella hídrica leche (cantidad de agua necesaria para producir un litro de leche).

• CAA: Consumo de agua por parte del animal. Dada por la suma de Consumo

directo de agua + consumo indirecto de agua.

• UdA: Uso de agua.

• PLH: Producción de litros de leche del hato.

2.6. Análisis de datos

La metodología que se empleó para la tipificación de las fincas ganaderas fue

mediante la aplicación de una encuesta de la cual se hizo un análisis de conglomerado

en el software Infostat versión 2008.

Los estratos definidos a partir de las características de la fincas fueron sometidos a

una prueba de comparaciones con respecto al consumo de agua en litros por litro

leche, para ello se utilizó una prueba F para detectar la existencia o no de diferencias

significativas entre los grupos y al encontrarse diferencias se aplicó una prueba de

comparaciones múltiples, específicamente la prueba de tukey para determinar el o los

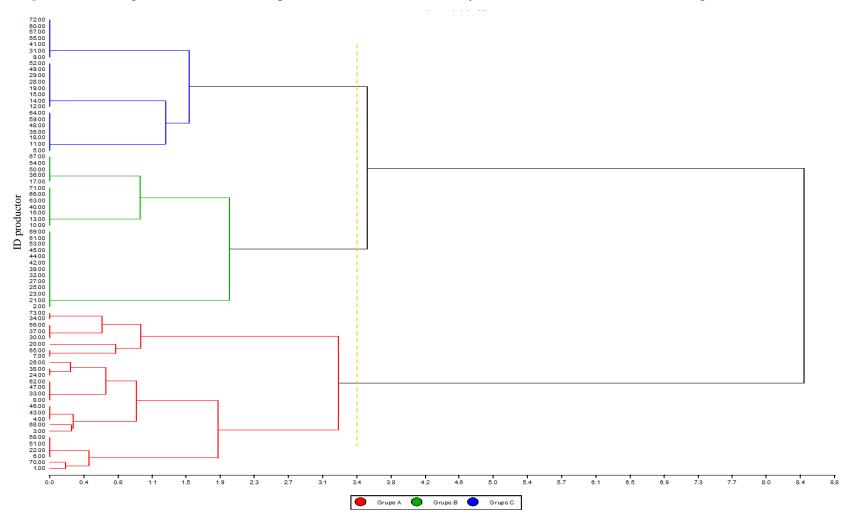
estratos(s) con mayores valores de consumo agua en litros/litro de leche producida.

La base de datos se analizó con el software Infostat versión 2017.

17

III. RESULTADOS

3.1. Caracterización de las fincas ganaderas ubicadas en el distrito de florida, amazonas, Perú.


El análisis de conglomerados se realizó con el software estadístico Infostat versión 2017, del cual en la ventana de apertura se copiaron los resultados de la encuesta y se seleccionó: Estadísticas, análisis multivariado y análisis de conglomerados. En la ventana Análisis de conglomerados se especificó como variable a la extencion de fincas ganaderas y como Criterios de clasificación al ID de productor. En la solapa Jerárquicos se eligió el método de agrupamiento Ward y la distancia Gower. En número de conglomerados se puso 3 y para resumir las observaciones se utilizó la opción seleccionada por defecto en la solapa medidas resumen la media.

En el análisis, se fijó un criterio de corte arbitrario en la distancia 3,4; en la cual se utilizó al trazar la línea de referencia a una distancia igual a 40% de la distancia máxima (en este caso la distancia máxima es cercana a 8.5, por lo que el punto de corte se trazó en 3.4), obteniendo del análisis como resultado:

- Grupo A: Identificado con 26 productores ganaderos.
- Grupo B: Identificado con 25 productores ganaderos.
- Grupo C: Identificado con 22 productores ganaderos.

En la figura 2, se observa detalladamente la agrupación del conglomerado por área de las fincas ganaderas del distrito de Florida.

Figura 2. Dendrograma de clasificación por área con el método Ward y una distancia Gower de las fincas ganaderas.

3.2. Caracterización de las tipologías de las fincas ganaderas

3.2.1. Uso principal de la finca

El uso principal que tienen las fincas del distrito de Florida viene a ser la ganadería, esto se puede observar en la figura 3, donde el grupo A mostrando el porcentaje más alto con un 73,1% de las fincas son utilizadas solamente para la ganadería y el 26,9% son utilizadas tanto para ganadería y la agricultura.

Demostrando el presente grafico que más del 64% de los ganaderos del distrito de florida utilizan sus fincas para la explotación de la ganadería para la producción de leche y lo restante lo utilizan para desarrollar otras actividades que ayudan a complementar los ingresos de la finca.

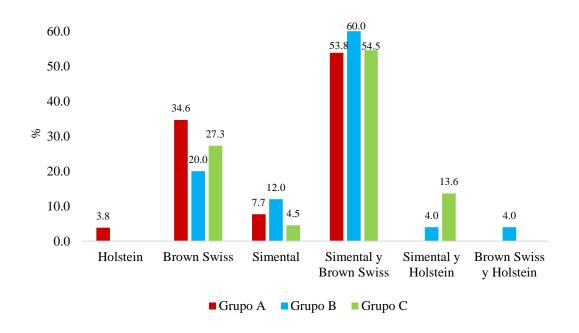
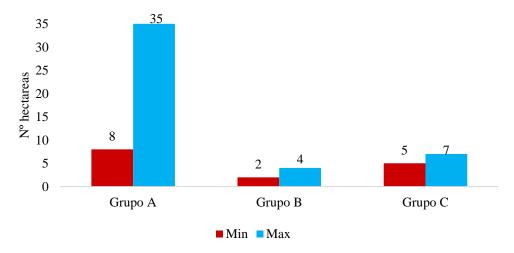

80.0 73.1 72.7 70.0 64.0 60.0 50.0 36.0 **%** 40.0 26.9 27.3 30.0 20.0 10.0 0.0 Grupo A Grupo B Grupo C Agricultura y ganaderia ■ Ganaderia

Figura 3. Uso principal de las fincas ganaderas

3.2.2. Razas que presentan las fincas ganaderas

Según la figura 4, podemos observar que las razas que mayor predominan en las fincas ganaderas del distrito de Florida son de la raza Brown Swiss y la raza Simental, conformando entre 53,8% y 60% para los tres grupos.


Figura 4. Razas de ganado que predominan en las fincas ganaderas del distrito de Florida

3.2.3. Hectáreas de terreno por finca

En la figura 5, se puede observar que el grupo A tiene una extensión de finca que va desde los 8 a 35 Has, demostrando que este grupo es el que tiene mayor Has y condiciones para la crianza del ganado vacuno.

Figura 5. Extensión de fincas ganaderas del distrito de Florida

3.2.4. Extensiones de pastos de las fincas ganaderas

Según los resultados de las encuestas realizadas podemos observar según la figura 6, que el grupo A tienen una extensión de pasto que va desde 8 a 30 Has, por lo tanto, se relaciona con la figura anterior, demostrando a una mayor extensión de terreno mayor cantidad de pasto para la alimentación del ganado lechero.

Figura 6. Extensión de pastos por fincas ganaderas del distrito de Florida

3.2.5. Número de animales por finca

Según la figura 7 se observa que las fincas pertenecientes al conglomerado del grupo A tienen mayor cantidad de animales siendo el máximo de 68 ganados bovinos por finca, esto debido a que esta ganadería es manejada en sistema de pastoreo extensivo, mientras que el conglomerado del grupo B son los que presentan menor cantidad de animales por finca siendo el máximo de 12 ganados bovinos por finca, ya que esta ganadería se encuentra bajo un sistema de pastoreo a estaca y el conglomerado del grupo C tienen una cantidad máxima de ganado bovino por finca de 28 animales, bajo un sistema de pastoreo controlado a cerco eléctrico.

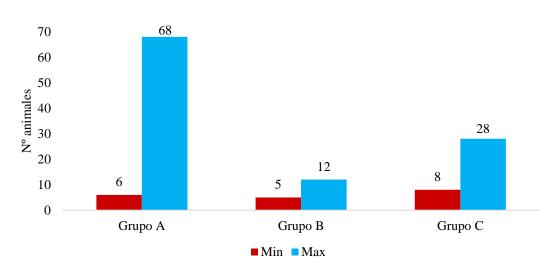


Figura 7. Número de animales por finca ganadera

3.2.6. Número de vacas en producción de leche

Podemos notar los tres grupos de conglomerados en la figura 8, de la cual el grupo A resalta con la mayor cantidad de 15 vacas en producción por finca ganadera, esto debido a que se encuentra en sistema extensivo, mientras que en el grupo B se nota que el número máximo de vacas en producción por finca ganadera es de 6 vacas y en el grupo C tiene un máximo de 8 vacas en producción de leche, estos últimos están relacionado con el sistema de manejo.

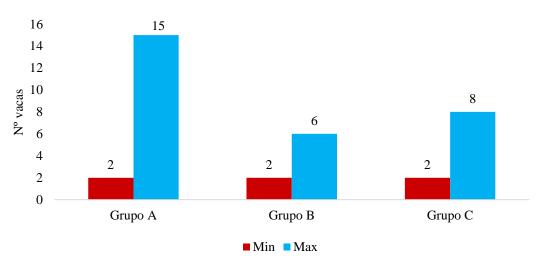


Figura 8. Vacas en producción de leche por finca ganadera

3.2.7. Producción diaria de leche por hato

En la figura 9 podemos observar que la mayor cantidad en producción de leche tiene el Grupo A con una producción diaria de 100 litros por finca, mientras que el grupo B tiene la producción más baja de 40 litros por finca y el grupo C tiene una de 55 litros por finca ganadera.

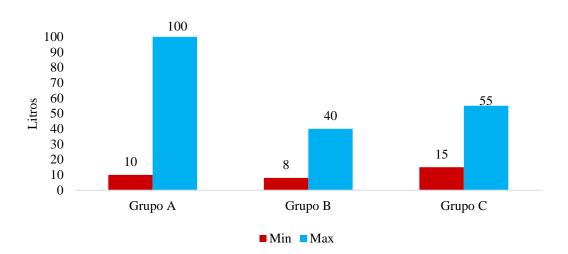
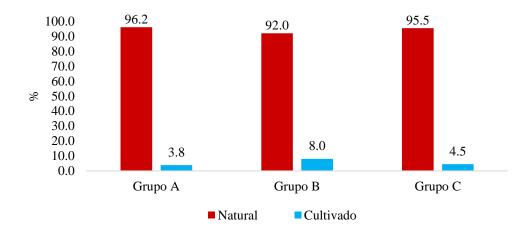


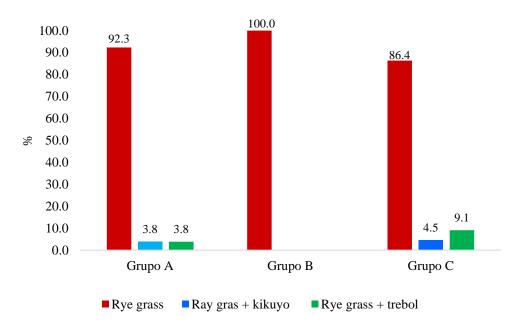
Figura 9. Producción de leche por finca ganadera.


3.2.8. Tipo de ordeño por finca

El tipo de ordeño que realizan los productores es un ordeño racional representando el 100% en todas las fincas ganaderas del distrito de Florida.

3.2.9. Tipo de pasto por finca

En la figura 10, se puede observar que todos los grupos cuentan con más del 92% de pastos naturales y solo el 8% presentan pastos cultivados, esto indica que en el distrito de Florida hay más la existencia de pastos naturales que cultivados.


Figura 10. Medición del porcentaje del tipo de pastos que utilizan las fincas ganaderas.

3.2.10. Principales especies forrajeras

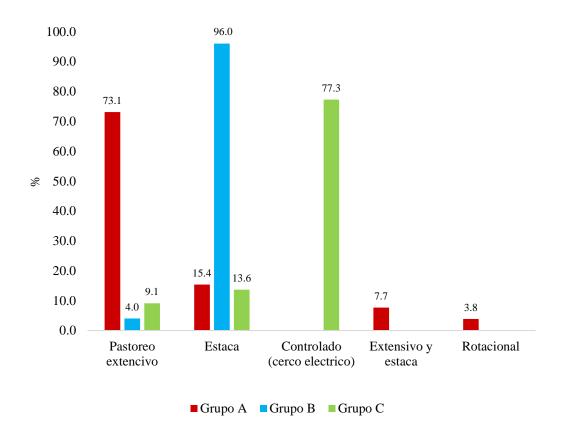

De acuerdo a la figura 11 se puede observar que la principal especie forrajera en las fincas ganaderas del distrito de Florida es el rye grass, que va de 86,4 al 100% en todos los grupos. Además, según la figura se puede observar que existen en proporciones mínimas del pasto kikuyo y trébol.

Figura 11. Medición de principales especies forrajeras por finca ganadera

3.2.11. Sistema de pastoreo

En la figura 12, se puede notar en el grupo A el 73,1% tienen una ganadería bajo un sistema de pastoreo extensivo, mientras que en el grupo B el 96% de la ganadería lo tienen bajo un sistema de pastoreo a estaca y en el grupo C el 77,3% bajo un sistema controlado con cerco eléctrico.

Figura 12. Sistemas de manejo de las fincas ganaderas del distrito de Florida.

3.2.12. Recurso hídrico

Según la figura 13, se puede observar que en los tres grupos de las fincas en evaluación existen fuentes de agua para el manejo del hato ganadero, provenientes de fuentes como quebradas y nacientes, que en el presente disponen prácticamente de agua disponible para el manejo y riego de las fincas.

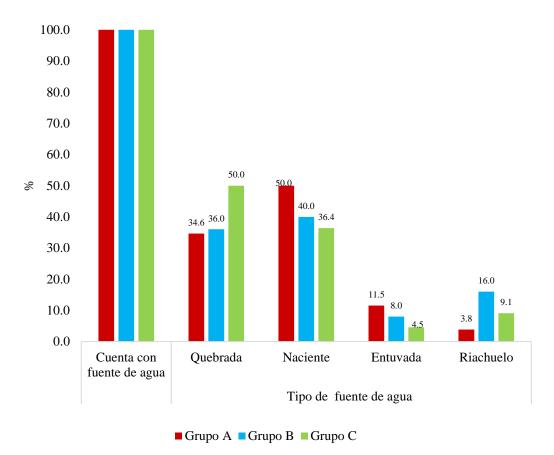
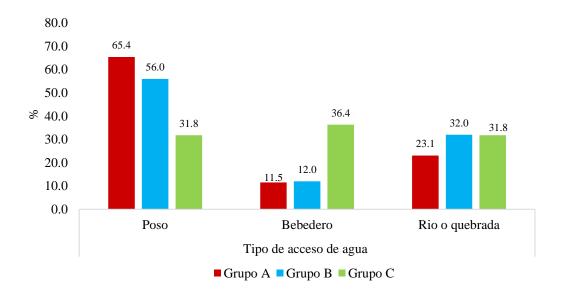
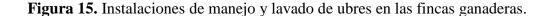
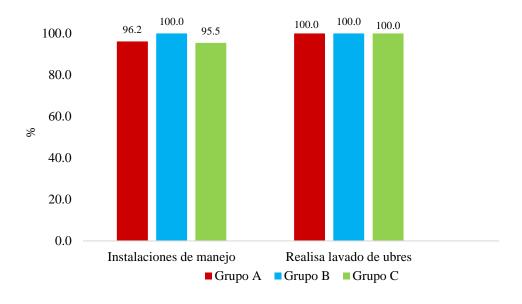



Figura 13. Recurso hídrico en las fincas ganaderas

3.2.13. Usos del recurso hídrico


De la figura 14 se puede observar que todos los grupos conservan el agua como fuente principal por el alto grado representativo del 80%, teniendo como acceso de agua para la bebida de los animales donde la mayor cantidad de productores utilizan como fuente procedente de posos, seguido de rio o quebrada y en menor porcentaje los productores utilizan bebederos


Figura 14. Uso del recurso hídrico

3.2.14. Manejo del ganado

En la figura 15 se puede notar que más del 95,5% de las fincas ganaderas no cuentan con cobertizos o establos para el manejo ganadero y solo un 5% de las fincas ganaderas cuentan con cobertizos, pero no tienen un uso eficiente. Además, se puede observar que el 100% de los ganaderos realizan lavado de ubres de sus vacas al momento del ordeño y ninguno de ellos utilizan ordeñadoras mecánicas.

3.3. Selección de las fincas ganaderas

La selección de las fincas ganaderas del distrito de Florida, se realizó en base a la consideración del resultado del análisis de conglomerados por área que agrupo a tres grupos, de la cual de cada grupo se seleccionó un estrato de 10 fincas ganaderas, haciendo un total de 30 fincas muéstrales, con las cuales se trabajó durante las evaluaciones para medir la huella hídrica de la leche.

Las consideraciones que se tuvieron en cuenta en la selección para la estratificación de las fincas ganaderas se pueden ver en la tabla 1.

Tabla 1. Variables de selección para la estratificación de fincas ganaderas

Estrato	Sistema pastoreo	Hectáreas de terreno	Vacas en producción	Producción de leche
I	Extensivo	$8 \ge \text{Has}$	$9 \ge Unid$	56 ≥ L
II	Estaca	1 a 4Has	1 a 4 Unid	1 a 35 L
III	Controlado a cerco eléctrico	5 a 7Has	5 a 8 Unid	36 a 55 L

Así mismo en la tabla 2 se observan las fincas ganaderas identificadas para la estratificación, seleccionadas de acuerdo a las variables mencionadas en la tabla anterior

Tabla 2. Selección de los estratos de las fincas ganaderas del distrito de Florida

Orden	ID Productor	Estrato	Área de finca (Has)	Vacas en producción (unid)	Producción de leche (L)	Sistema de pastoreo
1	3	I	11	11	60	Extensivo
2	68	I	13	12	60	Extensivo
3	46	I	12	14	65	Extensivo
4	65	I	25	15	65	Extensivo
5	34	I	22	13	60	Extensivo
6	73	I	22	11	60	Extensivo
7	30	I	20	12	58	Extensivo
8	58	I	15	13	65	Extensivo
9	51	I	15	14	60	Extensivo
10	4	I	12	11	60	Extensivo
11	39	II	4	4	35	Estaca
12	36	II	2	3	26	Estaca
13	67	II	2	4	35	Estaca
14	71	II	3	4	33	Estaca
15	69	II	4	4	35	Estaca
16	53	II	4	4	32	Estaca
17	54	II	2	4	34	Estaca
18	23	II	4	3	26	Estaca
19	63	II	3	4	32	Estaca
20	27	II	4	3	28	Estaca
21	72	III	7	7	30	Cerco eléctrico
22	41	III	7	8	48	Cerco eléctrico
23	55	III	7	6	55	Cerco eléctrico
44	31	III	7	8	48	Cerco eléctrico
55	15	III	6	7	42	Cerco eléctrico
26	48	III	5	5	38	Cerco eléctrico
77	11	III	5	5	39	Cerco eléctrico
28	59	III	5	5	48	Cerco eléctrico
29	12	III	6	6	45	Cerco eléctrico
30	64	III	5	5	46	Cerco eléctrico

3.4. Rendimiento de pasto

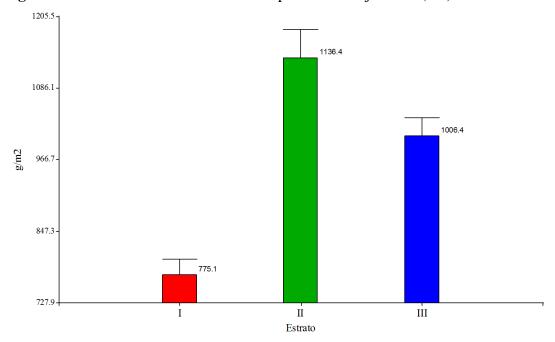

En la tabla 3, se puede observar que en la evaluación del rendimiento de FV existe una diferencia significativa entre los estratos.

Tabla 3. Evaluación de la variable rendimiento de pasto en forraje verde (FV)

Estrato	Rendimiento de pasto FV/m2 (g)		Nivel de significancia
II	1 136,44	a	
III	1 006,36	b	<0,0001
I	775,12	c	

Así mismo la figura 16, demuestra que las fincas del estrato II tienen mayor rendimiento de 1 136,44 g de FV/m², mientras que las fincas del estrato I presentan un menor rendimiento de 775,12 g de FV/m², según el análisis de varianza existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

Figura 16. Evaluación del rendimiento de pasto en forraje verde (FV).

3.5. Rendimiento de materia seca (MS)

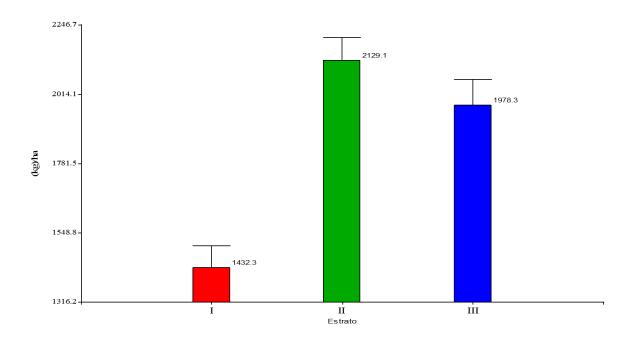

En la tabla 4, se puede observar que en la evaluación del rendimiento de MS el estrato II y III tienen rendimientos iguales, pero son significativamente diferentes al estrato I.

Tabla 4: Evaluación de la variable rendimiento de materia seca.

Estrato	Rendimiento de M	MS (kg)/ha	Nivel de significancia
II	2 129,05	a	
III	1 978,27	a	< 0,0001
I	1 432,25	b	

Las fincas del estrato II tienen un mayor rendimiento de materia seca con 2 129,05 kg/Ha, y en menor cantidad el estrato I con 1 432,25 kg/Ha, así mismo se observa una diferencia significativa entre los estratos I con respecto al estrato II y III.

Figura 17. Evaluación del rendimiento de materia seca (MS) por hectárea.

3.6. Peso de las vacas en producción

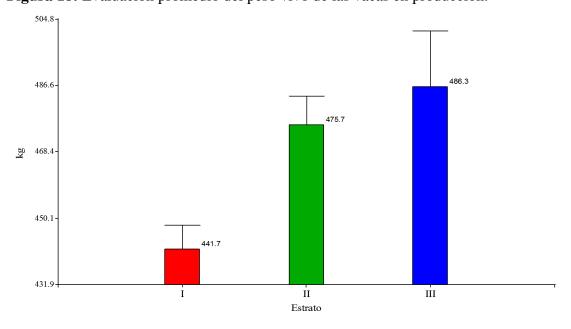

En la tabla 5, se puede observar que en la evaluación del peso de las vacas en producción el estrato II y III, II y I tienen medias significativamente iguales, pero las medias del estrato I y III son significativamente diferentes.

Tabla 5. Evaluación de la variable peso de las vacas en producción.

Estrato	Peso promedio de las	vacas (kg de PV)	Nivel de significancia
III	486,33	a	
II	475,74	ab	0,0158
I	441,70	b	

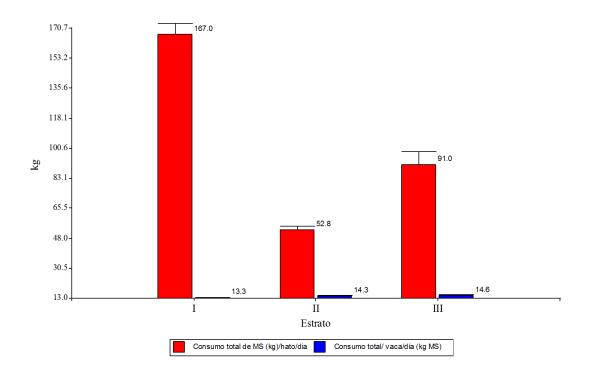
En la figura 18, se observa que las fincas ganaderas que están en el estrato II y III tienen vacas en producción con un mejor promedio de peso vivo de 475,74 kg y 486,33 kg siendo significativamente iguales y superiores con respecto al estrato I, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

Figura 18: Evaluación promedio del peso vivo de las vacas en producción.

3.7. Consumo de materia seca (CMS)

En la tabla 6, se observa que hay diferencias significativas entre los consumos de materia seca por hato ganadero de los tres estratos y también se observa que hay diferencias significativas entre los consumos de materia seca por vaca entre los estratos I y III.

Tabla 6. Evaluación de la variable consumo de MS por hato y por vaca


Estrato	Consumo total de MS (kg)/hato/día		Nivel de significancia
I	167,0	a	
III	91,0	b	<0,0001
II	52,8	c	
Estrato	Consumo total de MS	S (kg)/vaca/día	Nivel de significancia
III	14,57	a	
II	14,27	ab	0,0249
I	13,25	b	

Medias con una letra común no son significativamente diferentes (p > 0.05)

En la figura 19 se muestra que las fincas del estrato I consumen la mayor cantidad de forraje con 169,7 kg de MS por día esto debido a que en este sistema existen mayor número de vacas en producción de leche en comparación con los otros estratos que tienen menor número de vacas en producción, según el análisis de varianza, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

Además, se puede observar el CMS por vaca que se muestran en la figura 20 de 14,6, 14,3 y 13,3 kg del estrato III, II y I, según el análisis de varianza, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

Figura 19: Evaluación del consumo total de materia seca por día.

3.8. Producción de leche

En la tabla 7, se observa que hay diferencias significativas en la producción de leche por hato y producción de leche por vaca en los tres estratos evaluados.

Tabla 7. Evaluación de la variable producción le leche por hato y por vaca.

Estrato	Producción promedio de lech	Nivel de significancia	
I	61,3	a	
III	45,75	b	<0,0001
II	31,58	c	
Estrato	Producción promedio de leche (L)/vaca/hato/día	Nivel de significancia
Estrato II	Producción promedio de leche (8,56	L)/vaca/hato/día a	Nivel de significancia
	<u>, </u>	,	Nivel de significancia <0,0001

Medias con una letra común no son significativamente diferentes (p > 0.05)

La ganadería que se encuentra en el estrato I tiene mayor producción de leche por hato con 61.3 L, sin embargo en comparación con la producción de leche por vaca este

tiende tener la más baja producción con 4,9 L con respecto al estrato III que tiene 7,6 L de leche/vaca y al estrato II que tiene una producción de 8.6 L/vaca, siendo este sistema con menos vacas por hato ganadero pero con mayor producción de leche/día/vaca y por tanto el estrato II tiende a tener menos producción de leche/día con 31,6 L/día/hato ganadero, según el análisis de varianza, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

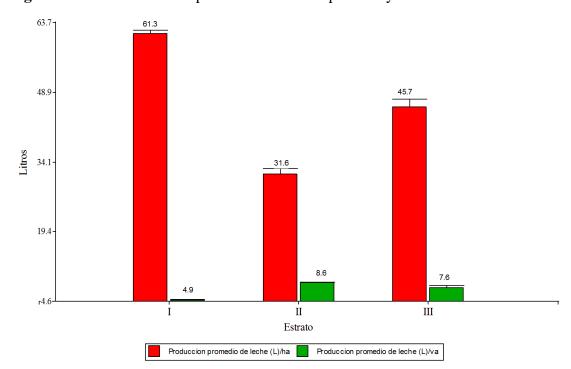


Figura 20: Evaluación de la producción de leche por hato y vaca.

3.9. Cálculo de la huella hídrica azul (HHA)

En la tabla 8, se observa que hay diferencias significativas en el consumo de agua directo en los tres estratos, tanto en la época de verano e invierno, siendo superior el consumo directo promedio de agua en el estrato I.

Tabla 8. Evaluación de la variable consumo directo de agua en época de verano, invierno y el promedio identificado como huella hídrica azul.

Estrato	HH Azul (verano)/hato	(L)	Nivel de significancia
I	512,28	a	
III	269,74	b	<0,0001
II	142,50	c	
Estrato	HH Azul (invierno)/hate	o (L)	Nivel de significancia
I	385,62	a	
III	201,14	b	<0,0001
II	106,80	c	
Estrato	HH Azul promedio/hato	o (L)	Nivel de significancia
I	448,95	a	
III	235,44	b	<0,0001
II	124,65	c	

Las comparaciones de consumo de agua directo que se realizan en dos estaciones del año, se puede percibir que el mayor consumo se da en el estrato I con 449 L esto debido a que en este estrato las vacas se encuentran libres al acceso de agua y al mismo tiempo existen mayor número de vacas en producción, después siguen las fincas que en el estrato III con 235,4 L y de menos consumo de agua directo las vacas que se encuentran en el estrato II, esto debido a que el número de vacas en producción por finca están entre 2 a 4 vacas, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

También se puede observar que en la época de verano las vacas tienden a consumir mayor cantidad de agua con respecto a la época de invierno, esto sucede en los tres estratos que fueron sometidos en la investigación, de la cual en la figura 20 nos muestra que en la época de verano el estrato I tuvo un consumo promedio por finca de 512,3 L de agua y en invierno de 385,6 L/finca, esto nos indica de que la época del año es influyente en el consumo de agua diario de la vacas en producción, según el análisis de varianza, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

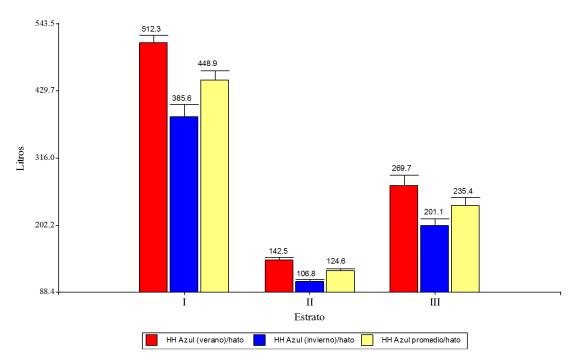


Figura 21: Evaluación del consumo de agua directo en la época de verano e invierno.

3.10. Huella hídrica verde (HHv)

En la tabla 9, se observa que hay diferencias significativas en el consumo de agua indirecto en los tres estratos, siendo superior el consumo en el estrato I.

Tabla 9. Evaluación de la variable consumo indirecto de agua identificado como huella hídrica verde.

Estrato	HH Verde promedio/hato (L)		Nivel de significancia
I	95 113,72	a	
III	37 519,73	b	<0,0001
II	20 232,99	c	

^{*}Medias con una letra común no son significativamente diferentes (p > 0.05)

Las vacas que se encuentran en el estrato I consumen mayor cantidad de agua indirecta con 95 113,72litros por finca, mientras tanto las vacas que se encuentran en el estrato III consumen menor cantidad de agua indirecta con respecto al estrato I pero mayor que el estrato II con 37 519,73litros por finca y un consumo de agua

indirecta de 6010.21 litros por vaca, siendo este consumo superior al estrato II que tiene el consumo más bajo de agua indirecta por hato con 20 232,99 litros de agua y un consumo por vaca de 5469,45 litros, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

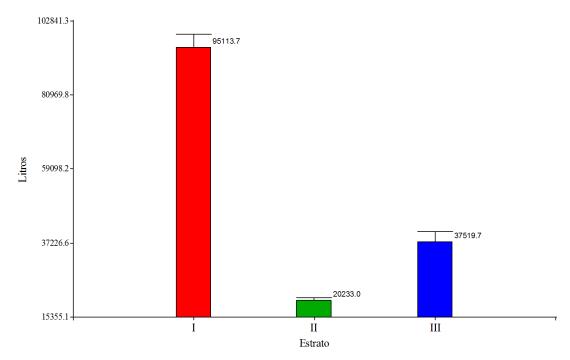


Figura 22. Cálculo de la huella hídrica verde por estrato.

3.11. Huella hídrica gris (HH_G)

En la tabla 10, se observa que hay diferencias significativas en el uso de en los tres estratos, siendo superior el uso del agua en el estrato I.

Tabla 10. Uso del agua identificado como huella hídrica gris expresado en litros.

Estrato	HH Gris promedio/ha	ato (L)	Nivel de significancia
I	89,0	a	
III	74,0	b	< 0,0001
II	47,4	c	

Medias con una letra común no son significativamente diferentes (p > 0.05)

El mayor uso de agua en lavado de utencillos de ordeno, lavado de ubre y lavado de porongos se da en los ganaderos que tienen sus vacas en el estrato I con un nivel de uso de agua de 89 L/día, siendo el nivel de uso del agua superior a los ganaderos que tienen su ganadería en el estrato III y estrato II, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

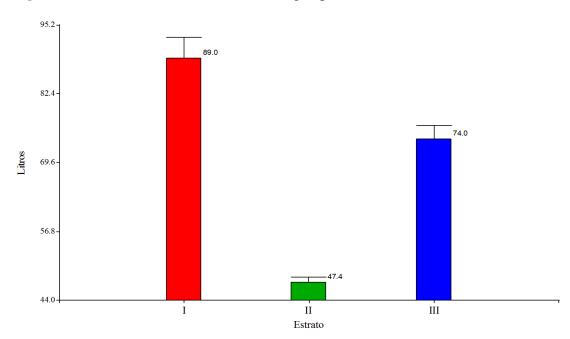
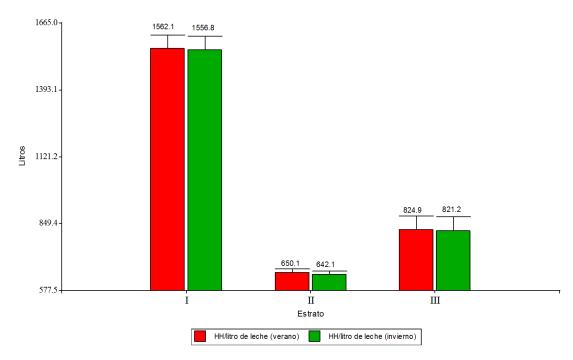


Figura 23. Evaluación del nivel de uso de agua por estrato.

3.12. Huella hídrica de la leche

En la tabla 11, se observa que hay diferencias significativas en la huella hídrica para producir un litro de leche en los tres estratos, tanto en la época de verano e invierno, siendo superior la huella hídrica de la leche en el estrato I.

Tabla 11. Evaluación de la huella hídrica por litro de leche en verano e invierno.


Estrato	HH/litro de leche (verano)		Nivel de significancia
I	1 562,14	a	
III	824,93	b	< 0,0001
II	650,07	c	

Estrato	HH/litro de leche (ir	Nivel de significancia	
I	1 556,82	a	
III	821,21	b	
II	642,07	c	<0,0001

^{*}Medias con una letra común no son significativamente diferentes (p > 0.05)

Los hatos ganaderos del estrato I consumen mayor cantidad de agua con 1 562,1 L en época de verano y 1 556,8 L en invierno para producir un litro de leche, siendo estos datos de consumo de agua superior al resultado del estrato III y II, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

Figura 24. Evaluación de la huella hídrica para producir un litro de leche en época de verano e invierno.

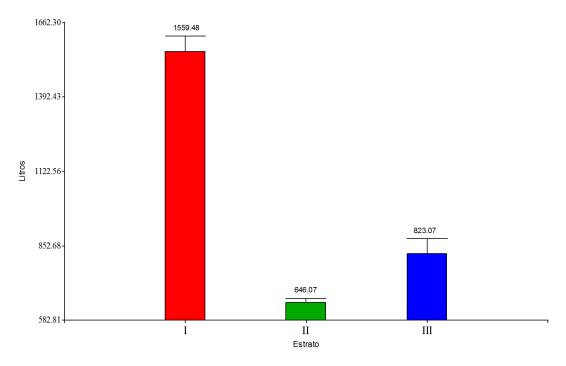

En la tabla 12, se observa que hay diferencias significativas en la huella hídrica promedio para producir un litro de leche en los tres estratos, siendo superior la huella hídrica de la leche en el estrato I.

Tabla 12. Evaluación de la variable huella hídrica por litro de leche promedio.

Estrato	HH/litro de leche pro	omedio	Nivel de significancia
I	1559,48	a	
III	823,07	b	
II	646,07	c	<0,0001

Así mismo en la figura 25, se observa que los hatos ganaderos del estrato I tienden a consumir mayor cantidad de agua haciendo un promedio de 1 559,5 L de agua para producir un litro de leche y en menor cantidad el estrato II con 646,1 L de agua para producir un litro de leche, esto debido a que los ganaderos tienden a tener más alta producción de leche por vaca y manejan mejor a sus animales por tener en menos cantidad por hato que los otros estratos, existiendo diferencias estadísticas significativas entre las medias de los estratos, con un nivel de significancia del 0,05.

Figura 25: Evaluación de la huella hídrica promedio para producir un litro de leche.

IV. DISCUSIÓN

De la investigación se observa el rendimiento de forraje verde que van desde 775,1 a 1136,4 g/m², estos resultados son iguales a lo reportado por Rivera, *et al.* (2015) que obtuvo 1 126 g de forraje verde/m² bajo un sistema silvopastoril intensivo y 761 g de forraje verde/m² bajo un sistema convencional.

Además, Ordóñez y Bojórquez (2004) encontraron rendimientos de 556 kg/Ha de forraje verde con la menor densidad de siembra y 4,831 kg/ha con la mayor densidad, siendo este resultado inferior a 7 751 kg/Ha obtenido en las fincas ganaderas bajo un sistema de pastoreo excesivo pertenecientes al estrato I del distrito de florida.

Las fincas ganaderas evaluados obtuvieron rendimientos de 1 432,2 a 2 129,1 kg de MS/Ha de materia seca, siendo estos resultados menores a lo calculado por Rivera, *et al.* (2015) que obtuvo 243 g MS/m² haciendo un rendimiento de 2 430 kg MS/Ha bajo un sistema de pastoril intensivo, pero obteniendo valores cercanos bajo un sistema convencional que presentó una oferta de 1690 kg MS/Ha.

Así mismo Giraldo y Bolívar (2006) obtuvo un rendimiento de 2 130 kg de MS/Ha bajo un sistema convencional y 2 084 kg de MS/Ha en un sistema silvopastoril con baja densidad de árboles, siendo este resultado superior a lo calculado en el distrito de Florida, que obtuvo resultados de 1 432,2 a 2 129,1 kg de MS/Ha.

En cuanto al consumo promedio de materia seca las vacas consumen desde 13,3 a 14,6 kg/día, siendo los valores inferiores con respecto a lo mencionado por Riquelme y Pulido (2008) que obtuvo un consumo de materia seca bajo el sistema de pastoreo en praderas de 17,6 kg/vaca/día, pero superior con respecto al sistema de pastoreo de praderas suplementadas con 6 kg de concentrado que obtuvo consumos de materia seca de 11,4 y 7,7 kg/vaca/día, esto es debido a que la suplementación del concentrado disminuye el tiempo de pastoreo en las fincas ganaderas y por tanto disminuye el consumo de forraje en base de materia seca.

Así mismo en la investigación realizada, se puede comprobar que existen producciones de leche que van desde 4,9 a 8,5 L/vaca/día, resultados similares a lo reportado por Bacab, *et*

al. (2011) que obtuvo producciones de leche desde 9 a 9,2 L/día en una ganadería bajo el sistema de pastoreo extensivo.

Bajo un sistema convencional Chuncho (2011) presentó una producción de leche por vaca de 2,9 kg/vaca/día y en fincas con sistemas silvopastoriles 4,6 kg/vaca/día, siendo estos resultados inferiores a 4,9 y 8,5 L/vaca/día calculados en las fincas ganaderas del distrito de Florida.

Por otro lado, los resultados encontrados demuestran que hay diferencias en las variables de consumo de agua directa en la época de verano que van desde 142,5 a 512,3 L y en invierno con valores que van desde 106,8 a 385,6 L, este incremento del consumo de agua se da con respecto al aumento de temperatura que por cada grado de elevación aumenta el consumo en 1.2 L (Martínez, 2006 y Murphy, 1992).

Además, Beede (1992) menciona que las necesidades de agua son de 1.2 a 2 veces superiores en animales sometidos a estrés térmico, y Arias, *et al.* (2008) también menciona que el clima afecta al ganado directa e indirectamente modificando los requerimientos de agua, demostrando estos estudios las diferencias en los resultados obtenidos de consumo de agua directo en las dos épocas del año de las fincas ganaderas del distrito de Florida.

Con respecto a la huella hídrica azul se encontraron valores de consumo de agua que van de 124,6 a 448,9 L de agua, corroborando estos resultados a lo mencionado por Muñoz, (2014) que obtuvo valores similares desde 35, 9 a 22,9 L/vaca por día bajo un sistema de crianza bovina convencional.

Además, el Instituto Interamericano de Cooperación para la Agricultura (2017) en la cuenca Mantaro del Perú obtuvo resultados de 140,1 hm³/año de huella hídrica azul correspondiente a la agricultura, siendo el resultado superior a lo calculado de 448,9 L de huella hídrica azul en las fincas ganaderas del distrito de Florida.

En cuanto a la huella hídrica verde se encontraron valores de consumo de agua que van de 20 233 a 95 114 L de agua por hato ganadero, resultados que se asemejan al consumo de agua indirecto calculado por Ríos, *et al.* (2012) quien obtuvo para Matiguas 4 352,4 y 3 953, 4 litros/día/vaca en Jinotega.

La huella hídrica gris calculado en la presente investigación con un nivel de uso de agua de 89 L/día, es inferior a lo reportado por Espinosa, *et al.* (2015) que obtuvo un valor de 102 litros por vaca en una ganadería tecnificada.

Los resultados calculados de la huella hídrica para producir un litro de leche en la época de verano van desde 650,1 a 1 562,1 L de agua y en invierno desde 642,1 a 1 552,5 L, resultados superiores a lo reportado por Muños, (2014) que obtuvo 951 a 1 111 L en época de verano y 693 a 1 021 L en época lluviosa bajo un sistema convencional e inferior a lo obtenido por Martínez-Mamian, *et al.* (2016) que obtuvo 1 900 litros de agua para producir un litro de leche.

Además, se tiene como resultado que la huella hídrica promedio para producir un litro de leche se necesita entre 646,1 a 1 559,5 L de agua, resultados que son inferiores a lo reportado por Lamas, (2005) y la FAO, (2010) quienes indican que en ganaderías extensivos se requieren entre 800 a 1 800 L/litro de leche.

Sin embargo, la huella hídrica promedio para producir un litro de leche en el distrito de Florida es inferior con respecto a lo calculado por Corredor, *et al.* (2017) que fue de 2 007,8 L/kg de leche y superior a Martínez y Zalazar, (2015) que obtuvo 278 a 265 L/kg de leche en sistemas de pastoreo y en suplementación con nabo y maíz forrajero.

Estos resultados de la huella hídrica promedio para producir un litro de leche entre 646,1 a 1559,5 L de agua, sé asemejan con datos calculados por *Rios et al.* (2012) que obtuvo resultados de 948,2 en Matiguas y 1588,8 L en Jinotega para producir un litro de leche bajo un sistema de pastoreo extensivo.

Finalmente, la Autoridad Nacional del Agua (2015) hace referencia que, en el Perú, como en la mayoría de los países del mundo, el sector agropecuario, que comprende el uso del agua para la producción de cultivos y la crianza de ganado, es el sector dominante en el uso del agua, generando el 90% de la huella hídrica de la producción nacional que totaliza 26 332 hm³/año, siendo este resultado superior a la huella hídrica de 1 559,5 L de agua para producir un litro de leche en el distrito de Florida.

V. CONCLUSIONES

El rendimiento de forraje verde obtenido de 775,1 g/m² en las fincas ganaderas bajo un sistema de pastoreo extensivo pertenecientes al estrato I, siendo inferior con respecto a los otros estratos, esto evidenciando a los ganaderos que manejan sus fincas con un sistema de pastoreo extensivo realizan prácticas de manejos insuficientes a lo requerido por los forrajes.

La producción de leche encontrada en las diferentes fincas ganaderas del distrito de Florida va desde los 4,9 a 8,5 L/vaca/día, siendo la mayor producción en las fincas ganaderas que se encuentran en el estrato II bajo un sistema de pastoreo a estaca.

La huella hídrica azul en las fincas ganaderas del distrito de Florida se encontró en un rango de 124,6 a 448,9 L/hato, obteniendo mayores resultados de consumo en las fincas ganaderas del estrato I.

El consumo indirecto de agua expresado en huella hídrica verde es la variable de mayor relevancia, ya que el consumo indirecto de agua representa entre 20 232,99 a 95 113,72 L/hato ganadero, seguido del consumo directo de agua y finalmente el uso del agua empleado en lavado de materiales de ordeño.

La huella hídrica gris en las fincas ganaderas del distrito de Florida se encontró en un rango de 47,4 a 89 L/hato, obteniendo mayores resultados de uso de agua en las fincas ganaderas del estrato I.

La huella hídrica promedio para producir un litro de leche en las fincas ganaderas del distrito de Florida se encontró en un rango de 646,1 a 1 559,5 L de agua respectivamente.

Las fincas ganaderas que se encuentran bajo el sistema de pastoreo a estaca presentan una menor cantidad de huella hídrica por litro de leche que aquellas que optan por un sistema extensivo y controlado con cerco eléctrico o de la ganadería basada en pastoreo.

VI. RECOMENDACIONES

Implementar prácticas adecuadas del uso y gestión del agua en las fincas ganaderas como el mantenimiento de las acequias de conducción de agua, limpieza de posas, riachuelos y mejorar germoplasmas forrajeros (gramíneas y leñosas) tolerantes a sequía, eficientes en el uso de agua y a la vez con alta producción y calidad de biomasa que permitan mejorar la alimentación del hato. Capacitar e implementar bebederos adecuados para los hatos ganaderos que no representen desperdicios de agua.

Realizar estudios de la huella hídrica en otros sistemas especializados de la ganadería del distrito de Florida para obtener la demanda total de agua y con esto planificar el desarrollo ganadero en relación a la disponibilidad de agua en la cuenca del distrito de Florida.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Autoridad Nacional del Agua (ANA), (2015). Huella hídrica del Perú. Sector agropecuario. Hecho el depósito legal en la Biblioteca Nacional del Perú. N° 2015-12788
- Araujo, F. & Febres, O. (2005). Factores que afectan el consumo voluntario en bovinos a pastoreo en condiciones tropicales. Maracaibo, Venezuela.
- Arias, R. A.; Mader, T. L. & Escobar, P. C. (2008). Factores climáticos que afectan el desempeño productivo del ganado bovino de carne y leche. Universidad Católica de Temuco, Chile. Archivos medico veterinaria Scielo. v.40: 7-22
- Bacab, H. M.; Pérez & Solorio, F. J.; Sánchez, (2011). Oferta y consumo de forraje y producción de leche en ganado de doble propósito manejado en sistemas silvopastoriles en Tepalcatepec, Universidad Autónoma de Yucatán, México. Tropical and Subtropical Agroecosystems. 13: 271 278
- Beede, D. K. (1992). Water for dairy cattle. In: H.H. VanHorn and C.J. Wilcox (eds.) Large Dairy Herd Management. Champaign IL: Am. Dairy Sci. Assoc. P. 260-271
- Brito, O. (2011). Diagnóstico de implementación de metodología de cálculo de la huella de agua y huella de carbono en empresa DSM. Puerto Montt Chile.
- Cardot, V.; Le Roux, Y. & Jurjanz, S. (2008). Drinking behavior of lactating dairy cows and prediction of their water intake. J Dairy Sci 91. Disponible en http://www.ncbi.nlm.nih.gov/pubmed/18487648
- Chapagain, A. K. & Hoekstra, A. Y. (2008). The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water International.
- Chapagain, A. K. & Orr, S. (2009). An improved water footprint methodology linking global consumption to local water resources: a case of Spanish tomatoes. J Environ Manage 90.

- Chapagain, A. K. & Hoekstra, A.Y. (2011) The Water Footprint Assessment Manual: Setting the Global Standard, Earthscan. London.
- Chuncho, C. (2011). Análisis de la percepción y medidas de adaptación al cambio climático que implementan en la época seca los productores de leche en Río Blanco y Paiwas, Nicaragua. CATIE. Turrialba, Costa Rica.
- Corredor, E. S.; Camargo; Castro, E.S.; Escobar & Páez, E.M.; Barón, (2017). Estimación de la huella hídrica para la producción de leche en Tunja, Boyacá. Rev. Cien. Agri. 2017; 14(2): 7-17.
- Duarte, E. (1998). Uso del Agua en establecimientos agropecuarios. Sistema de abrevadero. Sitio Argentino de producción animal.
- Ertug, A. & Hoekstra, A.Y. (2012). Carbon and Water Footprints. Paris: France.
- Espinoza, J. R.; Quintana, R. M.; Lujan S. E.; Palma, Y. (2015). La importancia de la huella hídrica en el sector agropecuario y un caso de estudio para la producción de leche de manera sustentable en el norte de México. Revista Latinoamericana el Ambiente y las Ciencias. 6(13):163-174
- Giraldo, L. & Bolibar, D. (2006). Evaluacion de un Sistema silvopastoril de *acacia* decurrens asociado con pasto kikuyu *pennicetum clandestinum*, en clima frio de Colombia. Universidad Nacional de Colombia. CONISILVO. Medellin, Colombia.
- Grajales, A. & Jaramillo, A. (2008). Los nuevos conceptos sobre "agua virtual" y "huella hídrica" aplicados al desarrollo sostenible: Implicaciones de la agricultura en el consumo hídrico. Universidad de Caldas.
- Gobierno Regional de Amazonas (2007). "Plan de Desarrollo Regional Concertado 2009-2021". Sub Gerencia de Planeamiento y Acondicionamiento Territorial. Amazonas: Chachapoyas.
- Herrero, M.; Nosetti, L.; Pol, M.; Maldonado, V.; Iramain, M. & Flores, M. (2002). Cuantificación y caracterización de agua y efluentes en establecimientos lecheros-Demanda de agua y manejo de efluentes.

- Hoekstra, A. Y.; Chapagain, A. K.; Aldaya, M. M. & Mekonnen M. M. (2009). Water Footprint Manual, State of the Art 2009. Water Footprint Network, Enschede, Netherlands. Correspondiente: a.y.hoekstra@utwente.nl
- Hoekstra, A. Y.; Chapagain, A. K.; Aldaya, M. M. & Mekonnen, M. M. (2011). The Water Footprint Assessment Manual: Setting the Global Standard, Water Footprint Network, Earthscan. Londres.
- Instituto Nacional de Estadística e Informática (INEI, 2012). Resultados definitivos IV Censo Nacional Agropecuario 2012. Perú.
- Instituto Nacional de Estadística e Informática (INEI, 2013). Anuario de Estadísticas Ambientales. Dirección Técnica de Demografía e Indicadores Sociales. Perú.
- Instituto de Investigaciones de la Amazonía Peruana (IIAP, 2015). Propuesta de zonificación ecológica y económica del departamento de Amazonas. Chachapoyas: Perú.
- Instituto Nacional de Estadística e Informática (INEI, 2015). Anuario de Estadísticas Ambientales 2014. Lima: Perú. Extraído de la Web: www.inei.gob.pe
- Instituto Interamericano de Cooperación para la Agricultura (IICA), (2017). Evaluación de la huella hídrica en cuencas hidrográficas: Experiencias piloto en Latinoamérica. 128pag. Disponible en: (http://creativecommons.org/licenses/by-sa/3.0/igo/)
- LEAD, (2005). Impacto de la ganadería en la disponibilidad y la calidad del agua. Conferencia sobre Agua para Alimentos y Ecosistemas. Disponible en: http://www.virtualcentre.org/es/frame.htm
- Llamas, M. R. (2005) Los Colores del Agua, El Agua Virtual y los Conflictos Hídricos, Discurso inaugural, curso 2005-2006, Real Academia de Ciencias Exactas, Físicas y Naturales, Madrid, 30 p. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, 99 (2): 369-389.

- Martínez Marín, A. L. (2006). Efectos climáticos sobre la producción del vacuno lechero: estres por calor. España. Revista Electrónica de Veterinaria REDVET. Vol. VII, Nº 10
- Martínez, L. J. & Zalazar, F. (2015). Huella hídrica de la producción de leche en el sur de Chile. V Congreso Latinoamericano de Agroecología. SEDICE-repositorio institucional de la UNLP. Disponible en: http://sedici.unlp.edu.ar/handle/10915/58530
- Martínez-Mamian, Carlos Augusto; Ruiz-Erazo, Ximena Andrea; Morales-Velasco, Sandra, (2016). Huella hídrica de una finca ganadera lechera bajo las condiciones agroecológicas del valle del cauca. Biotecnología en el Sector Agropecuario y Agroindustrial. EBSCO. Vol. 14 Issue 2, p47-56.
- Mercado, V. R. (2012). Huella hídrica de América Latina: Retos y oportunidades. Agua LAC. Vol.4
- MINAM, (2015). Estrategia nacional ante el cambio climático / Ministerio del ambiente. Dirección general de cambio climático, desertificación y recursos hídricos. Lima: Perú.
- Murphy, M. R. (1992). Water metabolism in dairy cattle. J. Dairy Sci. Vol. 75. 1992. P. 326-333
- Murgueitio, E. & Ibrahim, M. (2000). Agroforestería pecuaria para la reconversión de la ganadería en Latinoamérica. Panamá.
- Muños, Q. W. (2014). Tesis. Cálculo de la huella hídrica en fincas ganaderas ubicadas en la cuenca del río La Villa, Panamá. Turrialba, Costa Rica, CATIE.
- Ordóñez J & Bojórquez C. (2004). Establecimiento del *lolium multiflorum* con cinco densidades sobre pasturas degradadas como una alternativa a la siembra de cultivos agrícolas. Rev Inv Vet Perú; 15 (2): 87-91

- Organización de las naciones unidas para la agricultura y la alimentación (FAO), (2006a). Evapotranspiración de cultivos. Food and Agriculture Organization N° 56. Roma: Italia.
- Organización de las naciones unidas para la agricultura y la alimentación (FAO), (2006b). Sala de prensa. Organización de naciones unidad para la agricultura y la alimentación. La ganadería amenaza el medio ambiente. Roma.
- Organización de las naciones unidas (ONU), (2007). Cómo hacer frente a la escasez de agua Desafío del siglo XXI Disponible en: www.worldwaterday07.or
- Organización de las naciones unidas para la agricultura y la alimentación (FAO), (2009). The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050? Reunión de Expertos de FAO: "Cómo alimentar al mundo en 2050". Roma: Italia.
- Organización de las naciones unidas para la agricultura y la alimentación (FAO, 2010). Status of and Prospects for Smallholder Milk Production – A Global Perspectiva, by T. Hemme and J. Otte. Rome.
- Pengue, W. A. (2006). Agua virtual. Agricultura industrial y transnacionalización en America Latina. Programa de las Naciones Unidas para el Medio Ambiente. Red de Formación Ambiental. Gepama: Buenos Aires.
- Ríos, N.; Heidenger, H.; Zorogastua, P.; Ibrahim, M.; Velásquez, S. & Quiróz, R. (2008). Estimación del balance hídrico y producción de sedimentos bajo tres escenarios de cobertura en la subcuenca ganadera del Río Jabonal, Costa Rica, mediante el empleo de SWAT. Presentado en el Programa Cooperativo Centroamericano para el Mejoramiento de Cultivos y Animales (PCCMCA). San José: Costa Rica.
- Rios, N.; Hoekstra, A. Y.; Chapagain, A. K.; Aldaya, M. M; & Mekonnen, M. M. (2011). The Water Footprint Assessment Manual: Setting the Global Standard, Earthscan, London.

- Ríos, N.; Lanuza, E.; Gámez, B.; Montoya, A.; Díaz, A.; Sepúlveda, C.; Ibrahim, M. (2012). Cálculo de la huella hídrica para producir un litro de leche en fincas ganaderas en Jinotega y Matiguás, Nicaragua. Centro Agronómico de Investigación y Enseñanza-CATIE, Turrialba Costa Rica. ISSN 2238-457X
- Reátegui, F. & Martínez, P. (2007). Forestal, zonificación ecológica y económica del departamento de Amazonas. Gobierno Regional de Amazonas, Instituto de Investigaciones de la Amazonía. Chachapoyas: Perú.
- Riquelme, C. & Pulido, R. G., (2008). Efecto del nivel de suplementación con concentrado sobre el consumo voluntario y comportamiento ingestivo en vacas lecheras a pastoreo primaveral. Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile. Arch Med Vet 40, 243-249
- Rivera, E.; Cuartas, C.A.; Naranjo, J.F.; Tafur, O.; Hurtado, E.A.; Arenas, F.A.; Chará, J. & Murgueitio E., (2015). Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónico colombiano. Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria CIPAV. Carrera 25 No 6-62, Cali, Colombia.
- Rodríguez, R.; Garrido, A.; Llamas, M. R. & Varela-Ortega, C. (2008). La huella hidrológica de la agricultura española. Madrid.
- Rocha, F. A. (2011). El Agua Virtual en el mundo del siglo XXI. XIX CONEIC. Lima: Perú. La UNI.
- Sevilla, J. (2015). Informe Planeta Vivo 2014, Lima: Perú.
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M., & De Haan, C. (2009). La larga sombra del ganado: Problemas ambientales y opciones. Roma.
- Tobar e Ibrahim, (2008). Valor de los sistemas silvopastoriles para conservar la biodiversidad en fincas y paisajes ganaderos en América Central. CATIE: Costa Rica.

- UNESCO 2012. Boletín trimestral de información sobre las ciencias exactas y naturales: Un mundo de ciencia. Vol. 10, No. 2. Disponible en http://unesdoc.unesco.org/images/0021/002156/215616S.pdf
- Villanueva, C., Ibrahim, M., Haenel, G. (2010). Producción y rentabilidad de sistemas silvopastoriles. CATIE: Costa Rica.
- Water Food Print, (2008). Informe Planeta Vivo. Instituto de Zoología de Londres y Red de la Huella Global. Londres.
- Water Food Print, (2010). Planeta Vivo. Informe. Biodiversidad, biocapacidad y desarrollo.

VIII. ANEXOS

ANEXO 1: Formato de la encuesta para tipificar fincas ganaderas del distrito de Florida.

ENCUESTA PARA TIPIFICAR FINCAS GANADERAS DE GANADO BOVINO LECHERO- DISTRITO FLORIDA – PROVINCIA BONGARÁ - REGIÓN AMAZONAS

DATOS DEL PROPIETARIO Centro poblado: Sector: Nombre del Fundo: i. Generales ii. Hato ganadero ¿Cuántas hectáreas de terreno 2.1. ¿Qué razas presenta el hato poseen su finca? ganadero? N° de animales 1.2. ¿Cuántas hectáreas posee de 1. Simental pasto en su finca? 2. Brown Swiss 3. Holstein ¿Qué usos principales tiene su 4. Jersey finca? 5. Cruces 6. Otras: 1. Agricultura:.... 2.2. ¿Qué categorías de animales 2. Ganadería: presenta su hato ganadero? N° animales ¿Qué tipo de ganadería tiene en 1. Vacas en producción su finca? 2. Vacas en seca 1. Ganadería de leche 3. Vaquillonas 2. Ganadería de carne 4. Vaquillas 3. Ganadería doble propósito 5. Terneras 6. Toros 7. Toretes

	2.3.	¿Cuántos animales se		1. Si							
		encuentran en producción de		2. No							
		leche?	4.2.	¿Qué tipo de fuente de agua							
	2.4.	Producción diaria de leche en		posee la finca?							
		su finca al día:		1. Río							
	2.5.	Tipo de ordeño que realiza		2. Quebrada							
		1. Manual		3. Naciente							
		2. Mecánica	4. Pozo								
iii.	Pasto	s		5. Otro:							
	3.1.	Sus pasturas están bajo sistema:	4.3.	¿Conserva sus fuentes de agua?							
		1. Sistema Silvopastoril		1. Si, como:							
		2. Sistema a campo abierto		2. No							
		3. Ambos sistemas	4.4.	Tipo de acceso de agua por							
	3.2.	¿Qué tipo de pasto posee en su		parte del animal:							
		finca?		1. Rio o quebrada							
		1. Natural		2. Bebedero							
		2. Cultivado		3. Canal de riego							
	3.3.	¿Cuál es la principal especie		4. Pozo							
		forrajera? (principal o	4.5.	¿Utiliza usted instalaciones							
		asociación)		para el manejo de su ganado?							
				1. Si:							
	3.4.	¿Qué tipo de sistema de		2. No							
		pastoreo utiliza?	4.6.	¿Utiliza agua en el							
		1. Pastoreo extensivo (campo		mantenimiento de sus							
		abierto)		instalaciones? (lava o no lava):							
		2. Rotacional		1. Sí							
		3. Controlado (cerco eléctrico)		2. No							
		4. Estaca	4.7.	¿Realiza lavado de ubres?							
iv.	Rec	urso hídrico		1. Sí							
	4.1.	¿La finca cuenta con fuentes de		2. No							
		agua?									

ANEXO 2: Recolección de datos

Tabla 13. Encuesta de las 73 unidades agropecuarias muéstrales

NIO	Nombres y apellido del	1.1	1.2	1.3 ¿Qué usos	1.4 ¿ Qué tipo de ganaderia	2.1 ¿Que rasas	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	2.10	2.11 Tipo	3.1 Sus pasturas	3.2 ¿Qué	3.3 ¿Cuál	3.4 ¿Que tipo de	4.1 ¿La	4.2 ¿Qué	4.3	4.4 Tino do	4.5 . Titilion	a 4.6 Utilisa	4.7
productor	Productor	¿cuántas	2 cuántas	principales tiene su	tiene en su finca?	presenta en hato	Número de	Número de	Número de			Número de	Número de	Numero de		de ordeño	estan bajo	tipo de	es la	sistema de	finca	tipo de	Conserva	acceso de	instalacion	agua en el	realisa
		hectareas	hectareas	finca?		ganadero?	animales	vacas en	vacas en	vaquillonas	vaquillas	terneras	toros	toretes	diaria de	que realisa	sistema	pasto	principal	pastoreo utilisa?	cuenta con	fuente de	sus fuentes	agua por el			lavado de
		de terreno	de su finca			_	que	produccion	seca	-	· ·				leche en su			posee en	especie	-		agua posee	de agua?	animal		ento de sus	ubres?
		poseen su finca?	poseen				presenta el	de leche							finca por			su finca?	forrajera?		agua?	la finca?			su ganado?	? instalacion es?	
		iinca :	pasto?				nato								Clia											esr	
1	Jabe inga sopla	17	12	Ganaderia	Ganaderia de leche	Holstein	23	10	3	0	0	7	1	2	100	manual	Sistema a campo al	Natural	Rye grass	Extensivo y a esta	Si	Quebrada	Si	Poso	No	No S	Si
2	Victor Campo Ortis	4	4	Agricultura y ganaderia	Ganaderia doble proposito	Simental	8	4	0	0	0	3	0	1	25	manual	Sistema a campo al		Rye grass	Estaca	Si	Entuvada	No	Bebedero	No	No S	Si
3	Maribel Palomino Ocampo	11	10	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	16	11	1	0	0	3	0	2	60	manual	Sistema a campo a		Rye grass	Pastoreo extencivo		Naciente	Si	Poso	No	No S	Si
5	Gonzalo delgado Zamora Angel Sanches Apagustogue		10	Ganaderia Ganaderia	Ganaderia doble proposito Ganaderia de leche	Simental y Brown Swiss Brown Swiss	18	11 5	2	0	0	0	0	5	30	manual manual	Sistema a campo al Sistema a campo al	Natural	Rye grass Rye grass	Pastoreo extencivo Estaca	Si	Naciente Ouebrada	Si Si	Poso Rio o quebra	No No	No S	Si Si
6	Mariadet Chican Cubas	15	12	Ganaderia	Ganaderia de leche	Brown Swiss	18	10	0	0	0	6	1	1	65	manual	Sistema a campo al		Rye grass	Pastoreo extencivo	Si	Naciente	No		No	No S	Si
7	Joel Garcia Gostoc	25	22	Agricultura y ganaderia	Ganaderia doble proposito	Simental	8	4	0	0	0	3	0	1	20	manual	Sistema a campo al	Natural	Rye grass	Estaca	Si	Quebrada	Si	Poso	No	No S	Si
8	Leonoro Idigoin Tarrillo	10	10	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	17	6	7	0	0	2 7	0	2	20	manual	Sistema a campo al		Rye grass	Extensivo y a esta	Si	Entuvada	Si	Poso Rebedem	No	No S	Si
10	Joel Poclin Tuesta Hemilio Catpo Llaja	7	6	Ganaderia Agricultura y ganaderia	Ganaderia de leche Ganaderia de leche	Brown Swiss Simental v Brown Swiss	28 6	8	10	0	0	7	0	3	35 12	manual	Sistema a campo al Sistema a campo al		Rye grass y	Controlado (cerco Estaca	Si c:	Quebrada Ouebrada	Si No.	Bebedero	No No	No S	Si e:
11	Teodoro Rojas Sabaleta	5	4	Agricultura y ganaderia	Ganaderia de leche	Brown Swiss	10	5	0	0	0	1	1	4	39	manual	Sistema a campo al		Rye grass Rye gras y k	Controlado (cerco	Si	Naciente	No	Poso	No	No S	Si
12	Iban Altamirano Inga	6	5	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	9	6	0	0	0	3	0	0	45	manual	Sistema a campo a		Rye grass	Controlado (cerco	Si	Naciente	Si	Poso	No	No 5	Si
13	Jorge Basan Castañeda	3	3	Agricultura y ganaderia	Ganaderia de leche	Brown Swiss	7	3	2	0	0	1	0	1	8	manual	Sistema a campo al		Rye grass	Estaca	Si	Quebrada	Si	Poso	No	No S	Si
14 15	Laudina Araujo de tomangui Candelario Huaman Bautista	6	5	Ganaderia Agricultura y ganaderia	Ganaderia doble proposito Ganaderia de leche	Simental y Holstein Simental y Brown Swiss	9	4	2	0	0	0	0	1 2	15 42	manual manual	Sistema a campo al Sistema a campo al		Rye grass Rye grass	Pastoreo extencivo Controlado (cerco	Si c:	Naciente Ouebrada	No e:	Poso Rio o quebra	No	No S	Ši e:
16	Reinaldo Mejia Garcia	3	3	Ganaderia	Ganaderia doble proposito	Simental v Brown Swiss	8	2	4	0	0	0	0	2	15	manual	Sistema a campo al		Rye grass	Estaca	Si	Naciente	Si	Bebedero	No	No S	Si
17	Maira Hidrogo Culon	2	2	Agricultura y ganaderia	Ganaderia doble proposito	Simental	5	2	2	0	0	0	0	1	15	manual	Sistema a campo a		Rye grass	Estaca	Si	Naciente	Si	Poso	No	No S	Si
18	Mecias Isquerdo Varturon	5	5	Agricultura y ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	13	8	2	0	0	0	0	3	50	manual	Sistema a campo a		Rye grass	Controlado (cerco	Si	Naciente	Si		No	No S	Si
19 20	Hector Guerrero Cubas Dario Cotrina Paredes	6 35	4 30	Ganaderia Agricultura v ganaderia	Ganaderia de leche Ganaderia de leche	Brown Swiss Simental y Brown Swiss	27	6	8	0	0	10	3	0	46 18	manual	Sistema a campo a		Rye grass	Controlado (cerco	Si	Naciente Quebrada	Si	Bebedero Rio o quebra	No	No S	Si
21	Manuel Rodrigues Araujo	35	30 4	Agricultura y ganaderia Ganaderia	Ganaderia de leche	Simental y Brown Swiss Simental v Brown Swiss	9	4	2	0	0	2	0	1	25	manual manual	Sistema a campo al Sistema a campo al		Rye grass Rye grass	Estaca Estaca	Si	Quebrada Río	Si	Bebedero	No	No S	Si
22	Francisco Basques Benabide	15	12	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	15	3	0	0	0	4	0	8	18	manual	Sistema a campo al		Rye grass	Estaca	Si	Quebrada	Si	Bebedero	No	No S	Si
23	Idelver Muñes Acuña	4	4	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	8	3	2	0	0	1	0	2	26	manual	Sistema a campo al	Natural	Rye grass	Estaca	Si	Naciente	Si	Poso	No	No 5	Si
24	Rosalio Mendosa Asienso Victoriano Rodrigues Valleio	8	8	Agricultura y ganaderia Ganaderia	Ganaderia de leche Ganaderia de leche	Brown Swiss Brown Swiss	15	4	5	0	0	4	0	2	40 30	manual	Sistema a campo al		Rye grass	Pastoreo extencivo Estaca	Si	Quebrada Quebrada	No	Rio o quebra		No S	Ši
26	Eberta Chicana Areballos	9	8	Agricultura v ganaderia	Ganaderia de leche	Simental	14	- 6	0	0	0	4	0	1	50	manual	Sistema a campo a Sistema a campo a		Rye grass Rye grass	Pastoreo extencivo	Si e:	Quebrada	Si e:	Rio o quebra Rio o quebra		No S	S1 e:
27	Marcial Catpo Chicana	4	4	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	7	3	1	0	0	1	0	2	28	manual	Sistema a campo al		Rye grass	Estaca	Si	Quebrada	No	Rio o quebra		No S	Si
28	Elmer Caruajulca Saldaña	6	5	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	8	2	2	0	0	2	0	2	15	manual	Sistema a campo al		Rye grass	Estaca	Si	Quebrada	Si	Poso	No	No S	Si
29	Leonel Villegas Irigoin	6	5	Ganaderia	Ganaderia doble proposito	Simental	20	6	4	0	0	9	1	0	35	manual	Sistema a campo al		Rye grass	Controlado (cerco	Si	Naciente	No	Bebedero	No	No S	Si
30 31	Onosimo Valle Catpo Epigenio Catpo Gosgot	20	18	Ganaderia Agricultura v ganaderia	Ganaderia doble proposito Ganaderia doble proposito	Simental y Brown Swiss Simental y Brown Swiss	23	12	3	0	0	2	8	0	58 48	manual	Sistema a campo al Sistema a campo al		Rye grass Rye grass	Pastoreo extencivo Controlado (cerco		Naciente Naciente	Si e:	Poso Bebedem	No No	No S	Si e:
32	Segundo Dias Losano	4	4	Ganaderia	Ganaderia doble proposito	Simental Simental	8	4	0	0	0	2	0	2	23	manual	Sistema a campo al		Rye grass	Estaca	Si	Naciente	Si	Poso	No	No S	Si
33	Rosalina Herrera Hidrogo	10	8	Agricultura y ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	11	4	2	0	0	2	0	3	20	manual	Sistema a campo al		Rye grass	Pastoreo extencivo	Si	Entuvada	Si	Bebedero	No	No S	Si
34	Imer Mori Vilcarromero	22	20	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	22	13	4	0	0	2	0	6	60	manual	Sistema a campo al		Rye grass	Pastoreo extencivo	Si	Naciente	Si	Poso	No	No 5	Si
35 36	Domingo Gusman Vasques Dario Siesa Bustamante	5	5	Agricultura y ganaderia Ganaderia	Ganaderia de leche Ganaderia de leche	Simental y Holstein Simental y Holstein	14	5	3	4	0	0	0	2	45 26	manual manual	Sistema a campo a		Rye grass	Controlado (cerco Estaca	Si	Río Naciente	No	Poso	No	No S	Si
37	Marcial La Torre Reyes	20	15	Agricultura y ganaderia	Ganaderia de leche	Cruses	20	4	6	0	0	10	0	0	30	manual	Sistema a campo al Sistema a campo al		Rye grass Rye grass	Rotacional	Si	Naciente	Si Si	Poso	Si	Si Si	Si
38	Lusmila Valle Inga	8	8	Ganaderia	Ganaderia de leche	Simental y Brown Swiss	6	2	3	0	0	0	0	1	12	manual	Sistema a campo al		Rye grass	Pastoreo extencivo	Si	Quebrada	Si	Rio o quebra	No	No 5	Si
39	Esmaro Valle Tuesta	4	3	Agricultura y ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	7	4	0	0	0	3	0	0	35	manual	Sistema a campo al		Rye grass	Estaca	Si	Naciente	No		No	No S	Si
40	Sara Sanches Sanches Aristogenes Catpo Gosgot	3	3	Agricultura y ganaderia Ganaderia	Ganaderia de leche Ganaderia doble proposito	Brown swiss y Holstein Simental v Brown Swiss	10 22	4 8	0	0	0	2	4	0	40	manual	Sistema a campo al Sistema a campo al		Rye grass Rye grass	Estaca Controlado (cerco	Si	Río Ouebrada	Si	Rio o quebra Rio o quebra		No S	Si
42	Edith Oclin Dett	4	3	Ganaderia	Ganaderia dobie proposito	Brown Swiss	11	4	4	0	3	0	0	0	25	manual	Sistema a campo al		Rye grass	Estaca	Si	Río	Si Si	Rio o quebra		No S	Si
43	Jose Catpo Mori	12	10	Ganaderia	Ganaderia doble proposito	Brown Swiss	16	4	6	2	0	0	0	4	24	manual	Sistema a campo al		Rye grass	Pastoreo extencivo		Río	Si	Poso	No	No 5	Si
44	Hilda Ayay Chuquimango	4	4	Ganaderia	Ganaderia de leche	Simental y Brown Swiss	11	5	4	0	0	2	0	0	20	manual	Sistema a campo al	Natural	Rye grass	Pastoreo extencivo	Si	Quebrada	Si	Poso	No	No S	Si
45	Marilus Chuquimango Ramo		10	Ganaderia	Ganaderia de leche	Brown Swiss	6 24	2	2	0	0	0	0	2	12 65	manual manual	Sistema a campo a		Rye grass	Estaca	Si	Quebrada	Si	Poso	No No	No S	Si
46	Loidy Poclin Tuesta Walter Santos Eladio	12 10	10 8	Ganaderia Agricultura y ganaderia	Ganaderia doble proposito Ganaderia de leche	Simental y Brown Swiss Brown Swiss	6	14	2	0	0	0	1	0	65 10	manual	Sistema a campo al Sistema a campo al		Rye grass Rye grass	Pastoreo extencivo Estaca	Si	Naciente Entuvada	Si	1 0.00	No No	No S	Si
48	Liborio Gosgot Inga	5	5	Ganaderia	Ganaderia de leche	Brown Swiss	10	5	2	0	1	2	0	0	38	manual	Sistema a campo al		Rye gras y k	Controlado (cerco	Si	Quebrada	Si		No	No S	Si
49	Norma chuquital Culqui	6	6	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	16	5	0	6	1	3	1	0	36	manual	Sistema a campo al	Natural	Rye grass	Controlado (cerco	Si	Naciente	Si	Poso	No	No S	Si
50	Marino Servan Gupioc	2	12	Agricultura y ganaderia	Ganaderia de leche	Simental y Brown Swiss	7	3	1	0	0	1	0	2	25	manual	Sistema a campo al		Rye grass	Estaca	Si	Entuvada	Si	Poso	No	No S	Si
51 52	Magali Poclin Vallejos Juan Araujo Catpo	15	12	Ganaderia Ganaderia	Ganaderia doble proposito Ganaderia doble proposito	Brown Swiss Brown Swiss	41	14	6	5	5	6	0	6	60 40	manual manual	Sistema a campo al Sistema a campo al		kikuyo y ray Rye grass	Pastoreo extencivo Pastoreo extencivo		Quebrada Quebrada	No.	Rio o quebra Rio o quebra		No S	Si
53	Kelmer Valle Chicana	4	3	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	11	4	3	0	0	3	0	1	32	manual	Sistema a campo al	Natural	Rye grass	Estaca	Si	Naciente	Si	Poso	No	No S	Si
54	Flor Isabel Castrejon Chicar	2	2	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	7	4	0	0	0	2	0	1	34	manual	Sistema a campo al	Natural	Rye grass	Estaca	Si	Quebrada	Si	Rio o quebra	No	No S	Si
55	Carlos Gupioc Chicana	7	6	Agricultura y ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	23	6	4	3	3	4	1	2	55	manual	Sistema a campo a		Rye grass	Controlado (cerco		Quebrada	Si	Bebedero	Si	Si /	Si
56 57	Delfor Chicana Gupioc Escolastico Rodrigues Acuña	20	17	Ganaderia Ganaderia	Ganaderia de leche Ganaderia doble proposito	Brown Swiss Simental v Brown Swiss	26	10	5	0	4	5	0	4	60 30	manual manual	Sistema a campo a Sistema a campo a		Rye grass y Rye grass	Pastoreo extencivo Estaca	Si Si	Naciente Entuvada	No Si	Poso Bebedero	No No	No S	Si Si
58	Juan Jose Chicana Limachi	15	13	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss Simental y Brown Swiss	26	13	4	0	2	6	1	2	65	manual	Sistema a campo al		Rye grass	Pastoreo extencivo	Si	Naciente	Si	Poso	No	No S	Si
59	Ulices Vasques Monsalva	5	5	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	8	5	0	0	0	2	0	1	48	manual	Sistema a campo al	Natural	Rye grass	Controlado (cerco	Si	Quebrada	Si	Rio o quebra	No	No S	Si
60	Dilmer Rodrigues Medina	7	7	Ganaderia	Ganaderia de leche	Simental y Holstein	15	8	2	1	1	2	1	0	45	manual	Sistema a campo al		Rye grass	Controlado (cerco	Si	Quebrada	Si	Bebedero	No	No S	Si
62	Asuncion Gonsales Vasques Frank Valle Valle	10	10	Ganaderia Ganaderia	Ganaderia doble proposito Ganaderia doble proposito	Simental y Brown Swiss Brown Swiss	10	4 5	4	0	0	1 2	0	0	24 25	manual manual	Sistema a campo al Sistema a campo al		Rye grass Rye grass	Estaca Pastoreo extencivo	Si Si	Naciente Naciente	No Si	Poso Rio o quebra	No No	No S	Si Si
63	Jose Mestanza Chicana	3	3	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	8	4	2	0	0	1	0	2	32	manual	Sistema a campo al		Rye grass	Estaca	Si	Naciente	Si	Poso	No	No S	Si
64	Fransisco Chicana Catpo	5	5	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	10	5	1	0	0	2	0	2	46	manual	Sistema a campo a		Rye grass	Controlado (cerco	Si	Río	Si	Rio o quebra	No	No 5	Si
65	Juan Manuel Poclin Inga	25	22	Ganaderia	Ganaderia doble proposito	Brown Swiss	68	15	25	0	0	15	1	12	65	manual	Sistema a campo al		Rye grass	Pastoreo extencivo	Si	Quebrada	Si	Bebedero	No	No S	Si
66	Justimiano Arellana Tuesta	3	3	Agricultura y ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	7	3	2	0	0	0	0	1	15 35	manual	Sistema a campo al		Rye grass	Estaca	Si	Quebrada	Si	Rio o quebra		No S	Si
68	Fredy Catpo Chicana Mario mendoza	13	11	Agricultura y ganaderia Ganaderia	Ganaderia doble proposito Ganaderia doble proposito	Simental y Brown Swiss Simental v Brown Swiss	12	12	0	0	0	3	0	1	60	manual manual	Sistema a campo al Sistema a campo al		Rye grass Rye grass	Estaca Pastoreo extencivo	Si	Quebrada Naciente	Si	Rio o quebra Poso	No	No S	Si
69	Emperatris Valle Chicana	4	4	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	9	4	1	0	0	2	0	2	35	manual	Sistema a campo al		Rye grass	Estaca	Si	Río	Si	Rio o quebra	No	No S	Si
70	Elena Rojas Chicana	16	14	Ganaderia	Ganaderia doble proposito	Simental y Brown Swiss	9	4	2	0	0	1	1	1	15	manual	Sistema a campo a		Rye grass	Pastoreo extencivo	Si	Naciente	No	Poso	No	No 5	Si
71	Derfilia Araujo Detquisan	3	3	Ganaderia	Ganaderia doble proposito	Brown Swiss	9	4	2	0	0	2	0	1	33	manual		Natural	Rye grass	Estaca	Si	Naciente	Si	Poso	No	No S	Si
72 73	Mesias Isquerdo Barturen Lidia mori vilcarromero	22	19	Ganaderia Ganaderia	Garaderia doble proposito Garaderia doble proposito	Simental y Brown Swiss	15	7	2	0	0	3	0	2	30 60	manual manual	Sistema a campo al Sistema a campo al		Rye grass Rye grass	Controlado (cerco Pastoreo extencivo		Quebrada Naciente		Rio o quebra Poso	No.	No S	51
13	Liuia illoti viicarromero	22			poanauena dobie proposito																						

Tabla 14. Ubicación con GPS de las fincas agropecuarias

E-44-	ID	D4-	1	Ubicaciòn GPS	
Estrato	110	Punto	Cordenada	Latitud	Longitud
	3	14P	18M 0175179 9353380	5°50'32.31"S	77°55'58.66"O
	68	9P	18M 0171126 9353750	5°50'19.59"S	77°58'10.22"O
	46	29P	18M 0170961 9353764	5°50'19.11"S	77°58'15.58"O
ĺ	65	15P	18M 0173903 9353262	5°50'35.94"S	77°56'40.12"O
_	34	28P	18M 0172980 9352980	5°50'44.95"S	77°57'10.14"O
I	73	27P	18M 0173070 9353000	5°50'44.31"S	77°57'7.22"O
	30	26P	18M 0173120 9352741	5°50'52.75"S	77°57'5.64"O
	58	21P	18M 0172252 9353701	5°50'21.38"S	77°57'33.66''O
ĺ	51	25P	18M 0173965 9353203	5°50'37.86"S	77°56'38.11"O
	4	22P	18M 0174890 9352910	5°50'47.55"S	77°56'8.12"O
	39	12P	18M 0170781 9354218	5°50'4.31"S	77°58'21.35"O
	36	18P	18M 0170408 9354180	5°50'5.48"S	77°58'33.47"O
	67	23P	18M 0170415 9354049	5°50'9.74"S	77°58'33.26"O
	71	4P	18M 0170554 9354245	5°50'3.39"S	77°58'28.71"O
	69	7P	18M 0170856 9354255	5°50'3.12"S	77°58'18.90"O
II	53	30P	18M 0174319 9353315	5°50'34.28"S	77°56'26.60"O
	54	1P	18M 0168513 9354022	5°50'10.29"S	77°59'35.03"O
	23	2P	18M 0168463 9354075	5°50'8.56"S	77°59'36.65"O
[63	3P	18M 0170005 9354601	5°49'51.72"S	77°58'46.48"O
	27	16P	18M 0173708 9353200	5°50'37.92"S	77°56'46.46"O
	72	17P	18M 0170370 9354320	5°50'0.92"S	77°58'34.68"O
	41	10P	18M 0171101 9353793	5°50'18.19"S	77°58'11.03"O
	55	13P	18M 0175502 9353776	5°50'19.49"S	77°55'48.10"O
[31	11P	18M 0171358 9353931	5°50'13.74"S	77°58'2.66"O
III	15	24P	18M 0174326 9353251	5°50'36.37"S	77°56'26.38"O
1111	48	6P	18M 0170721 9353874	5°50'15.49"S	77°58'23.35"O
	11	20P	18M 0172740 9353577	5°50'25.49"S	77°57'17.83"O
	59	19P	18M 0170492 9353982	5°50'11.94"S	77°58'30.77"O
	12	8P	18M 0170647 9354329	5°50'0.68"S	77°58'25.68"O
Ì	64	5P	18M 0170563 9354122	5°50'7.39"S	77°58'28.44"O

Tabla 15. Cálculo de las unidades agropecuarias representativas del distrito de Florida para la representación población encuestada

Unidades agropecuarias con					
vacı	vacunos INEI, (2012)				
N =	791				
Z2 = 3.8416					
p = 0.05					
q = 0.95					
d2 =	0.0025				
N-1 = 790					
n = 73.3					

Tabla 16. Cálculo del porcentaje de uso de las fincas agropecuarias por grupo de conglomerado.

Uso principal de la finca	Grupo A	Grupo B	Grupo C
Ganadería %	73.1	64.0	72.7
Agricultura y ganadería %	26.9	36.0	27.3

Tabla 17. Representación porcentual de razas que presentan los hatos ganaderos por grupo de conglomerado.

Razas que presentan las fincas ganaderas	Grupo A	Grupo B	Grupo C
Holstein %	3.8	0.0	0.0
Brown Swiss %	34.6	20.0	27.3
Simental %	7.7	12.0	4.5
Simental y Brown Swiss %	53.8	60.0	54.5
Simental y Holstein %	0.0	4.0	13.6
Brown Swiss y Holstein %	0.0	4.0	0.0

Tabla 18. Representación de la extensión de terreno que presentan los hatos ganaderos por grupo de conglomerado.

Hectáreas de terreno	Grupo A	Grupo B	Grupo C
Min (has)	8	2	5
Max (has)	35	4	7

Tabla 19. Representación de la extensión de pasto que presentan las fincas ganaderas por grupo de conglomerado.

Hectáreas de pasto	Grupo A	Grupo B	Grupo C
Min (has)	8	2	4
Max (has)	30	4	7

Tabla 20. Representación numérica de animales por hato que presentan las fincas ganaderas por grupo de conglomerado.

N.º animales/hato	Grupo A	Grupo B	Grupo C
Min (unid)	6	5	8
Max (unid)	68	12	28

Tabla 21. Representación numérica de vacas en producción por hato que presentan las fincas ganaderas por grupo de conglomerado.

N.º vacas producción	Grupo A	Grupo B	Grupo C
Min (unid)	2	2	2
Max (unid)	15	6	8

Tabla 22. Representación numérica de la producción diaria de leche por hato que presentan las fincas ganaderas por grupo de conglomerado.

Producción diaria de leche/hato	Grupo A	Grupo B	Grupo C
Min (l)	10	8	15
Max (1)	100	40	55

Tabla 23. Representación porcentual del tipo de ordeño que presentan las fincas ganaderas por conglomerado de grupos.

Tipo ordeño	Grupo A	Grupo B	Grupo C
Manual %	100.00	100.00	100.00
Mecánico %	0.00	0.00	0.00

Tabla 24. Representación porcentual del tipo de pasto que presentan las fincas ganaderas por conglomerado de grupos.

Tipo de pasto	Grupo A	Grupo B	Grupo C
Natural %	96.2	92.0	95.5
Cultivado %	3.8	8.0	4.5

Tabla 25. Representación porcentual de la principal especie forrajera que presentan las fincas ganaderas por conglomerado de grupos.

Principal especie forrajera	Grupo A	Grupo B	Grupo C
Rye Grass %	92.3	100.0	86.4
Ray gras y kikuyo %	3.8	0.0	4.5
Rye grass y trébol %	3.8	0.0	9.1

Tabla 26. Representación porcentual del sistema de pastoreo por conglomerado de grupos.

Sistema de pastoreo	Grupo A	Grupo B	Grupo C
Pastoreo extensivo %	73.1	4.0	9.1
Estaca %	15.4	96.0	13.6
Controlado (cerco eléctrico) %	0.0	0.0	77.3
Extensivo y a estaca %	7.7	0.0	0.0
Rotacional %	3.8	0.0	0.0

Tabla 27. Representación porcentual del recurso hídrico por conglomerados de grupos

Recurso hídrico	Criterios	Grupo A	Grupo B	Grupo C
Cuenta con fuente de agua	Si %	100.0	100.0	100.0
Cuchta con fuente de agua	No %	0.0	0.0	0.0
	Quebrada %	34.6	36.0	50.0
Tipo de fuente de agua	Naciente %	50.0	40.0	36.4
Tipo de fuente de agua	Entubada %	11.5	8.0	4.5
	Riachuelo %	3.8	16.0	9.1

Tabla 28. Representación porcentual de la conservación y forma de acceso de agua de bebida por grupo de conglomerado.

Uso del recurso hídrico	Criterios	Grupo A	Grupo B	Grupo C	
Conserva la fuente de agua	Si	80.8	80.0	72.7	
Consciva la ruente de agua	No	19.2	20.0	27.3	
	Poso	65.4	56.0	31.8	
Tipo de acceso de agua	Bebedero	11.5	12.0	36.4	
Tipo de deceso de agua	Riachuelo o	23.1	32.0	31.8	
	quebrada	23.1	32.0	31.0	

Tabla 29. Representación porcentual del manejo de los hatos ganaderos por grupos de conglomerado.

Manejo del hato lechero	Criterios	Grupo A	Grupo B	Grupo C
Utiliza instalaciones	Si %	3.8	0.0	4.5
C tiliza ilistaraciones	No %	96.2	100.0	95.5
Realisa lavado de ubres	Si %	100.0	100.0	100.0
realisa lavado de deles	No %	0.0	0.0	0.0

Tabla 30. Variables de selección de tres sub grupos muéstrales para la investigación

Estrato	Sistema pastoreo	Hectáreas de terreno (has)	Vacas en producción (unid)	Producción de leche (l)
I	Extensivo	8 a mas	9 a mas	56 a mas
II	Estaca	1 a 4	1 a 4	1 a 35
III	Controlado con cerco eléctrico	5 hasta 7	5 hasta 8	36 hasta 55

Tabla 31. Cuadro de resumen de la medición de variables

Estrato	ID productor	Rendimiento de pasto FV/m2 (g)	Rendimiento de MS (kg)/ha	Peso promedio de las vacas (kg)	Consumo total de MS (kg)/hato/dia	Consumo total/ vaca/día (kg MS)	Produccion de leche (L)/hato/dia (verano)	Produccion de leche (L)/hato/dia (invierno)	Produccion promedio de leche (L)/hato/dia	Produccion promedio de leche (L)/vaca/hato/d ia	HH Azul (verano)/hato	HH Azul (invierno)/ hato	HH Azul promedio/h ato	HH Verde promedio/h ato	HH Gris promedio/ hato	HH/litro de leche (verano)	HH/litro de leche (invierno)	HH/litro de leche promedio
I	3	864.4	1659.6	431.6	142.4	12.9	60.0	59.7	59.8	5.4	475	365	420.4	81142.7	70	1361.5	1367.2	1364.4
I	68	680.8	1198.2	458.8	165.2	13.8	59.0	61.7	60.3	5.0	496	362	429.1	94079.8	75	1604.3	1532.7	1568.5
I	46	737.2	1356.4	427.7	179.6	12.8	66.0	64.3	65.2	4.7	557	468	512.9	102334.2	100	1560.5	1599.5	1580.0
I	65	645.6	1039.4	453.6	204.1	13.6	65.3	65.3	65.3	4.4	568	458	513.1	116279.5	110	1790.2	1788.5	1789.3
I	34	846.0	1717.4	424.1	165.4	12.7	59.0	60.0	59.5	4.6	536	356	445.7	94216.5	90	1607.5	1577.7	1592.6
I	73	856.8	1508.0	439.1	144.9	13.2	59.7	60.3	60.0	5.5	490	261	375.5	82544.1	90	1393.1	1374.0	1383.5
I	30	794.4	1596.7	447.3	161.0	13.4	58.3	57.7	58.0	4.8	494	352	423.0	91738.5	80	1582.5	1598.3	1590.4
I	58	765.6	1278.6	403.0	157.2	12.1	63.3	65.3	64.3	4.9	478	402	440.4	89533.9	90	1422.7	1378.0	1400.3
I	51	705.6	1284.2	469.9	197.4	14.1	60.3	60.3	60.3	4.3	556	466	511.2	112434.3	100	1874.4	1872.9	1873.7
I	4	854.8	1684.0	461.9	152.4	13.9	61.3	59.0	60.2	5.5	472	365	418.2	86833.7	85	1424.8	1479.4	1452.1
II	39	1245.6	2329.3	460.3	55.2	13.8	33.7	35.0	34.3	8.6	154	115	134.5	21165.4	50	634.7	609.4	622.1
II	36	1334.8	2576.2	469.0	42.2	14.1	26.3	25.3	25.8	8.6	121	88	104.6	16175.8	43	620.5	643.7	632.1
II	67	1367.6	2365.9	527.3	63.3	15.8	34.7	36.0	35.3	8.8	151	112	131.3	24246.5	50	705.2	678.0	691.6
II	71	1044.8	2037.4	436.5	52.4	13.1	33.3	32.7	33.0	8.3	154	117	135.6	20073.2	45	608.2	619.5	613.8
II	69	1087.2	2217.9	485.8	58.3	14.6	35.0	35.0	35.0	8.8	149	115	132.0	22338.0	53	644.0	643.0	643.5
II	53	976.0	1981.3	494.0	59.3	14.8	31.3	31.3	31.3	7.8	141	109	124.9	22717.4	50	731.1	730.1	730.6
II	54	1065.2	1874.8	459.8	55.2	13.8	34.0	34.3	34.2	8.5	153	112	132.2	21142.4	48	627.7	620.5	624.1
II	23	1001.2	1892.3	494.3	44.5	14.8	26.3	24.7	25.5	8.5	126	99	112.5	17049.6	45	653.9	697.0	675.5
II	63	1256.8	2124.0	463.3	55.6	13.9	31.0	34.7	32.8	8.2	154	110	132.1	21303.3	45	693.6	619.0	656.3
II	27	985.2	1891.6	467.3	42.1	14.0	28.0	29.0	28.5	9.5	122	91	106.8	16118.3	45	581.6	560.5	571.1
III	72	1065.2	1949.3	437.6	105.0	15.0	50.3	50.3	50.3	7.2	312	257	284.4	43317.7	80	868.4	867.3	867.9
III	41	904.0	1826.1	513.4	123.2	15.4	48.3	48.0	48.2	6.0	350	248	299.1	50815.7	75	1060.2	1065.4	1062.8
III	55	1130.8	2272.9	540.2	97.2	16.2	53.7	54.3	54.0	9.0	263	207	235.4	40100.7	85	753.7	743.4	748.6
III	31	1053.6	2412.7	563.1	135.2	16.9	47.7	48.0	47.8	6.0	353	242	297.3	55740.1	85	1178.6	1168.1	1173.3
III	15	1000.4	2050.8	477.7	86.0	12.3	41.7	42.0	41.8	6.0	278	210	244.1	35460.9	75	859.5	851.1	855.3
III	48	956.8	1664.8	435.8	65.4	13.1	38.3	37.3	37.8	7.6	212	168	190.1	26960.7	60	710.4	728.3	719.3
III	11	1045.6	1944.8	469.2	70.4	14.1	38.3	39.3	38.8	7.8	214	170	192.2	29026.9	70	764.6	744.1	754.4
III	59	827.6	1605.5	536.2	80.4	16.1	48.3	47.3	47.8	9.6	248	146	197.4	33171.9	70	692.9	705.4	699.1
III	12	956.8	1798.8	447.5	80.6	13.4	43.7	45.3	44.5	7.4	258	197	227.5	33221.4	75	768.4	738.8	753.6
III	64	1122.8	2256.8	442.6	66.4	13.3	46.7	46.0	46.3	9.3	209	165	186.9	27381.3	65	592.6	600.2	596.4

Tabla 32. Cálculo de la huella hídrica azul por estrato.

Estrato	ID productor	Vacas produción	HH Azul promedio(L)/h ato(verano)	verano	HH azul en epoca de invierno	invierno	dia	1/finca	HH Azul prom./animal/si stema
	3	11	475	43.2	365	33.2	420.4	38.2	
	68	12	496	41.4	362	30.2	429.1	35.8	
	46	14	557	39.8	468	33.5	512.9	36.6	
	65	15	568	37.9	458	30.6	513.1	34.2	
I	34	13	536	41.2	356	27.4	445.7	34.3	35.7
	73	11	490	44.5	261	23.8	375.5	34.1	33.7
	30	12	494	41.2	352	29.3	423.0	35.3	
	58	13	478	36.8	402	31.0	440.4	33.9	
	51	14	556	39.7	466	33.3	511.2	36.5	
	4	11	472	42.9	365	33.1	418.2	38.0	
	39	4	154	38.6	115	28.7	134.5	33.6	
	36	3	121	40.4	88	29.3	104.6	34.9	
	67	4	151	37.7	112	28.0	131.3	32.8	
	71	4	154	38.5	117	29.4	135.6	33.9	
п	69	4	149	37.3	115	28.7	132.0	33.0	33.9
111	53	4	141	35.3	109	27.2	124.9	31.2	33.9
	54	4	153	38.2	112	28.0	132.2	33.1	
	23	3	126	41.9	99	33.1	112.5	37.5	
	63	4	154	38.5	110	27.6	132.1	33.0	
	27	3	122	40.8	91	30.4	106.8	35.6	
	72	7	312	44.5	257	36.7	284.4	40.6	
	41	8	350	43.8	248	31.0	299.1	37.4	
	55	6	263	43.9	207	34.6	235.4	39.2	
	31	8	353	44.1	242	30.3	297.3	37.2	
,,,	15	7	278	39.7	210	30.0	244.1	34.9	20.1
III	48	5	212	42.4	168	33.6	190.1	38.0	38.1
	11	5	214	42.8	170	34.1	192.2	38.4	
	59	5	248	49.7	146	29.3	197.4	39.5	
	12	6	258	43.0	197	32.8	227.5	37.9	
	64	5	209	41.8	165	33.0	186.9	37.4	

Tabla 33 Cálculo de la huella hídrica verde por estrato.

Estrato	ID	Vacas en	Producción	Prod. leche	Consumo	Litros de agua usado x	HH Verde	HH Verde	HH Verde
Estrato	productor	producción	leche/hato	Prom/vaca	total/hato(kg MS)	1kg pasto MS	lt/hato	lt/animal	prom./animal/sistema
	3	11	59.83	5.44	142.44	569.66	81142.75	7376.61	
	68	12	60.33	5.03	165.15	569.66	94079.79	7839.98	
	46	14	65.17	4.65	179.64	569.66	102334.20	7309.59	
	65	15	65.33	4.36	204.12	569.66	116279.54	7751.97	
I	34	13	59.50	4.58	165.39	569.66	94216.50	7247.42	7548.67
1	73	11	60.00	5.45	144.90	569.66	82544.12	7504.01	7346.07
	30	12	58.00	4.83	161.04	569.66	91738.47	7644.87	
	58	13	64.33	4.95	157.17	569.66	89533.88	6887.22	
	51	14	60.33	4.31	197.37	569.66	112434.32	8031.02	
	4	11	60.17	5.47	152.43	569.66	86833.68	7893.97	
	39	4	34.33	8.58	55.23	383.22	21165.37	5291.34	
	36	3	25.83	8.61	42.21	383.22	16175.82	5391.94	
	67	4	35.33	8.83	63.27	383.22	24246.48	6061.62	
	71	4	33.00	8.25	52.38	383.22	20073.19	5018.30	
п	69	4	35.00	8.75	58.29	383.22	22338.03	5584.51	5469.45
11	53	4	31.33	7.83	59.28	383.22	22717.43	5679.36	3409.43
	54	4	34.17	8.54	55.17	383.22	21142.38	5285.60	
	23	3	25.50	8.50	44.49	383.22	17049.57	5683.19	
	63	4	32.83	8.21	55.59	383.22	21303.33	5325.83	
	27	3	28.50	9.50	42.06	383.22	16118.33	5372.78	
	72	7	50.33	7.19	105.03	412.43	43317.70	6188.24	
	41	8	48.17	6.02	123.21	412.43	50815.70	6351.96	
	55	6	54.00	9.00	97.23	412.43	40100.73	6683.45	
	31	8	47.83	5.98	135.15	412.43	55740.14	6967.52	
III	15	7	41.83	5.98	85.98	412.43	35460.87	5065.84	6010.21
111	48	5	37.83	7.57	65.37	412.43	26960.66	5392.13	0010.21
	11	5	38.83	7.77	70.38	412.43	29026.94	5805.39	
	59	5	47.83	9.57	80.43	412.43	33171.88	6634.38	
	12	6	44.50	7.42	80.55	412.43	33221.37	5536.89	
	64	5	46.33	9.27	66.39	412.43	27381.34	5476.27	

Tabla 34 Cálculo de la huella hídrica gris por estrato

Estrato	ID productor	Huella Hidrica Gris/finca	Huella Hidrica Gris/Sistema(l)
	3	70	
	68	75	
	46	100	
	65	110	
	34	90	99
I	73	90	89
	30	80	
	58	90	
	51	100	
	4	85	
	39	50	
	36	43	
	67	50	
	71	45	
	69	53	47.4
II	53	50	47.4
	54	48	
	23	45	
	63	45	
	27	45	
	72	80	
	41	75	
	55	85	
	31	85	
III	15	75	74
111	48	60	/4
	11	70	
	59	70	
	12	75	
	64	65	

Tabla 35. Cálculo del requeridito de agua de cultivo por sistema de pastoreo

Estrato	Pasto	RAC mm	Rendimiento kg ms/ha	uso agua mm/kg ms/ha	uso de agua m3/kg ms	uso de agua I/kg ms/pasto	% de pasto por hato	uso de agua I/kg ms/pasto	uso de agua I/kg ms
	Lolium multiflorum	92.2	1432.3	0.1	0.6	643.7	80.0	515.0	
I	Penicetum clandestinum	20.1	1432.3	0.0	0.1	140.3	15.0	21.1	569.7
	Trifolium repens	96.3	1432.3	0.1	0.7	672.4	5.0	33.6	
	Lolium multiflorum	92.2	2129.1	0.0	0.4	433.1	80.0	346.4	
III	Penicetum clandestinum	20.1	2129.1	0.0	0.1	94.4	15.0	14.2	383.2
	Trifolium repens	96.3	2129.1	0.0	0.5	452.3	5.0	22.6	
	Lolium multiflorum	92.2	1978.3	0.0	0.5	466.1	80.0	372.9	
II	Penicetum clandestinum	20.1	1978.3	0.0	0.1	101.6	15.0	15.2	412.4
	Trifolium repens	96.3	1978.3	0.0	0.5	486.8	5.0	24.3	

Tabla 36. Cálculo de la huella hídrica por litro de leche por estrato.

Estrato	ID productor	Consumo de agua directo e indirecto	Uso de agua (HH gris)	Produccion de litros de leche	Huella Hidrica Leche/hato/e poca	HH Leche promedio/sist ema/epoca de verano	Consumo de agua directo e indirecto	Uso de agua (HH gris)	Produccion de litros de leche	Huella Hidrica Leche/hato/e poca	HH Leche promedio/siste ma/epoca de invierno	Huella Hídrica/litro leche/hato	Huella Hídrica/litro leche/sistema pastoreo
	3	81618.1	70.0	60.0	1361.5		81508.1	70.0	59.7	1367.2		1364.4	
	68	94576.2	75.0	59.0	1604.3		94441.6	75.0	61.7	1532.7		1568.5	
	46	102891.6	100.0	66.0	1560.5		102802.6	100.0	64.3	1599.5		1580.0	
	65	116847.3	110.0	65.3	1790.2		116737.9	110.0	65.3	1788.5		1789.3	
I	34	94752.1	90.0	59.0	1607.5	1562.1	94572.3	90.0	60.0	1577.7	1556.8	1592.6	1559.5
1	73	83033.7	90.0	59.7	1393.1	1302.1	82805.5	90.0	60.3	1374.0	1330.6	1383.5	1339.3
	30	92232.7	80.0	58.3	1582.5		92090.3	80.0	57.7	1598.3		1590.4	
	58	90012.3	90.0	63.3	1422.7		89936.3	90.0	65.3	1378.0		1400.3	
	51	112990.5	100.0	60.3	1874.4		112900.5	100.0	60.3	1872.9		1873.7	
	4	87305.5	85.0	61.3	1424.8		87198.3	85.0	59.0	1479.4		1452.1	
	39	21319.8	50.0	33.7	634.7		21280.0	50.0	35.0	609.4		622.1	
	36	16297.0	43.0	26.3	620.5		16263.8	43.0	25.3	643.7		632.1	
	67	24397.3	50.0	34.7	705.2		24358.3	50.0	36.0	678.0		691.6	
	71	20227.0	45.0	33.3	608.2		20190.6	45.0	32.7	619.5		613.8	
п	69	22487.2	53.0	35.0	644.0	650.1	22452.8	53.0	35.0	643.0	642.1	643.5	646.1
11	53	22858.4	50.0	31.3	731.1	030.1	22826.2	50.0	31.3	730.1	042.1	730.6	040.1
	54	21295.0	48.0	34.0	627.7		21254.2	48.0	34.3	620.5		624.1	
	23	17175.4	45.0	26.3	653.9		17148.8	45.0	24.7	697.0		675.5	
	63	21457.1	45.0	31.0	693.6		21413.7	45.0	34.7	619.0		656.3	
	27	16240.7	45.0	28.0	581.6		16209.5	45.0	29.0	560.5		571.1	
	72	43629.5	80.0	50.3	868.4		43574.7	80.0	50.3	867.3		867.9	
	41	51165.7	75.0	48.3	1060.2		51063.9	75.0	48.0	1065.4		1062.8	
	55	40364.1	85.0	53.7	753.7		40308.1	85.0	54.3	743.4		748.6	
	31	56092.7	85.0	47.7	1178.6		55982.1	85.0	48.0	1168.1		1173.3	
III	15	35738.9	75.0	41.7	859.5	824.9	35671.1	75.0	42.0	851.1	821.2	855.3	823.1
III	48	27172.9	60.0	38.3	710.4	824.9	27128.7	60.0	37.3	728.3	821.2	719.3	823.1
	11	29240.9	70.0	38.3	764.6		29197.3	70.0	39.3	744.1		754.4	
	59	33420.3	70.0	48.3	692.9		33318.3	70.0	47.3	705.4		699.1	
	12	33479.4	75.0	43.7	768.4		33418.4	75.0	45.3	738.8		753.6	
	64	27590.3	65.0	46.7	592.6		27546.1	65.0	46.0	600.2		596.4	

ANEXO 3: Análisis de varianza

Tabla 37. Análisis de varianza del rendimiento de pasto FV/m2 (g)

F.V.	SC	gl	CM	F	p-valor
Estrato	669816.29	2	334908.14	26.28	<0.0001
Error	344064.22	27	12743.12		
Total	1013880.51	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
I	775.12	10	35.7	A		
III	1006.36	10	35.7		В	
II	1136.44	10	35.7			С

Tabla 38. Análisis de varianza rendimiento de MS (kg)/ha

F.V.	SC	gl	CM	F	p-valor
Estrato	2687996.16	2	1343998.08	21.94	<0.0001
Error	1653885.15	27	61255.01		
Total	4341881.31	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.		
I	1432.25	10	78.27	A	
III	1978.27	10	78.27		В
II	2129.05	10	78.27		В

Tabla 39. Análisis de varianza del peso promedio de las vacas (kg)

F.V.	SC	gl	CM	F	p-valor
Estrato	10872.35	2	5436.17	4.85	0.0158
Error	30249.71	27	1120.36		
Total	41122.05	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.		
I	441.7	10	10.58	A	
II	475.74	10	10.58	A	В
III	486.33	10	10.58		В

Tabla 40. Análisis de varianza del consumo total de MS (kg)/hato/día

F.V.	SC	gl	CM	F	p-valor
Estrato	67555.33	2	33777.66	95.44	< 0.0001
Error	9556.04	27	353.93		
Total	77111.37	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	52.8	10	5.95	A		
III	91.0	10	5.95		В	
I	167.0	10	5.95			С

Tabla 41. Análisis de varianza del consumo total de MS (kg)/vaca/día

F.V.	SC	gl	CM	F	p-valor
Estrato	9.6	2	4.8	4.25	0.0249
Error	30.51	27	1.13		
Total	40.11	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.		
I	13.25	10	0.34	A	
II	14.27	10	0.34	A	В
III	14.57	10	0.34		В

Tabla 42. Análisis de varianza de la producción de leche (L)/hato/día (verano)

F.V.	SC	gl	CM	F	p-valor
Estrato	4462.49	2	2231.24	149.86	< 0.0001
Error	401.99	27	14.89		
Total	4864.48	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	31.37	10	1.22	A		
III	45.7	10	1.22		В	
I	61.23	10	1.22			С

Tabla 43. Análisis de varianza de la producción de leche (L)/hato/día (invierno)

F.V.	SC	gl	CM	F	p-valor
Estrato	4375.03	2	2187.51	129.98	< 0.0001
Error	454.41	27	16.83		
Total	4829.44	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	31.8	10	1.3	A		
III	45.8	10	1.3		В	
I	61.37	10	1.3			С

Tabla 44. Análisis de varianza de la producción promedio de leche (L)/hato

F.V.	SC	gl	CM	F	p-valor
Estrato	4418.59	2	2209.3	143.37	< 0.0001
Error	416.07	27	15.41		
Total	4834.66	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	31.58	10	1.24	A		
III	45.75	10	1.24		В	
I	61.3	10	1.24			С

Tabla 45. Análisis de varianza de la producción promedio de leche (1)/vaca

F.V.	SC	gl	CM	F	p-valor
Estrato	71.48	2	35.74	48.03	<0.0001
Error	20.09	27	0.74		
Total	91.57	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
I	4.91	10	0.27	A		
III	7.58	10	0.27		В	
II	8.56	10	0.27			С

Tabla 46. Análisis de varianza de la huella hídrica azul (verano)/hato

F.V.	SC	gl	CM	F	p-valor
Estrato	705843.06	2	352921.53	235.47	<0.0001
Error	40468.04	27	1498.82		
Total	746311.1	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	142.5	10	12.24	A		
III	269.74	10	12.24		В	
I	512.28	10	12.24			С

Tabla 47. Análisis de varianza de la huella hídrica azul (invierno)/hato

F.V.	SC	gl	CM	F	p-valor
Estrato	402244.99	2	201122.5	103.89	< 0.0001
Error	52267.8	27	1935.84		
Total	454512.79	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	106.8	10	13.91	A		
III	201.14	10	13.91		В	
I	385.62	10	13.91			С

Tabla 48. Análisis de varianza de la huella hídrica azul promedio/hato

F.V.	SC	gl	CM	F	p-valor
Estrato	543438.11	2	271719.06	184.21	< 0.0001
Error	39825.49	27	1475.02		
Total	583263.61	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	124.65	10	12.15	A		
III	235.44	10	12.15		В	
I	448.95	10	12.15			С

Tabla 49. Análisis de varianza de la huella hídrica verde promedio/hato

F.V.	SC	gl	CM	F	p-valor
Estrato	30743408685	2	15371704342	187.25	< 0.0001
Error	2216449020	27	82090704.43		
Total	32959857704	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	20232.99	10	2865.15	A		
III	37519.73	10	2865.15		В	
I	95113.72	10	2865.15			С

Tabla 50. Análisis de varianza de la huella hídrica Gris promedio/hato

F.V.	SC	gl	CM	F	p-valor
Estrato	8877.07	2	4438.53	59.2	< 0.0001
Error	2024.4	27	74.98		
Total	10901.47	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	47.4	10	2.74	A		
III	74	10	2.74		В	
I	89	10	2.74			С

Tabla 51. Análisis de varianza de la huella hídrica /litro de leche época de verano

F.V.	SC	gl	CM	F	p-valor
Estrato	4686469.04	2	2343234.52	112.9	< 0.0001
Error	560387.97	27	20755.11		
Total	5246857.01	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	650.07	10	45.56	A		
III	824.93	10	45.56		В	
I	1562.14	10	45.56			С

Medias con una letra común no son significativamente diferentes (p > 0.05)

Tabla 52. Análisis de varianza de la huella hídrica /litro de leche época de invierno

F.V.	SC	gl	CM	F	p-valor
Estrato	4699939.39	2	2349969.7	113.41	< 0.0001
Error	559450.59	27	20720.39		
Total	5259389.99	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	642.07	10	45.52	A		
III	821.21	10	45.52		В	
I	1556.82	10	45.52			С

Tabla 53. Análisis de varianza de la huella hídrica promedio/litro de leche

F.V.	SC	gl	CM	F	p-valor
Estrato	4693180.91	2	2346590.45	114.39	< 0.0001
Error	553864.44	27	20513.5		
Total	5247045.35	29			

Agrupación de información utilizando el método de test Tukey Alfa=0.05

Estrato	Medias	n	E.E.			
II	646.07	10	45.29	A		
III	823.07	10	45.29		В	
I	1559.48	10	45.29			С

ANEXO 4: Paneles Fotográficos

Panel 1: Identificación de las fincas ganaderas del distrito de Florida.

Panel 2: Encuesta realizada a los ganaderos del distrito de Florida.

Panel 3: Ubicación de las fincas ganaderas del distrito de Florida

Panel 4: Repartición de los bebederos en las fincas ganaderas del distrito de Florida

Panel 5: Control de peso de las vacas en producción en las fincas ganaderas del distrito de Florida.

Panel 6: Análisis de materia seca de las muestras extraídas de pasto de las fincas ganaderas del distrito de Florida.

Panel 7: Evaluación de la producción de leche de las fincas ganaderas del distrito de Florida.

Panel 8: Evaluación del consumo directo de agua en las fincas ganaderas del estrato II del distrito de Florida.

Panel 9: Evaluación del consumo directo de agua en las fincas ganaderas del estrato III del distrito de Florida.

Panel 10: Evaluación del consumo directo de agua en las fincas ganaderas del estrato I del distrito de Florida.

Panel 10: Evaluación del uso de agua en las fincas ganaderas del estrato I del distrito de Florida.

