UNIVERSIDAD NACIONAL "TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS"

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL ESCUELA ACADEMICA PROFESIONAL DE INGENIERÍA CIVIL

ANÁLISIS Y DISEÑO ESTRUCTURAL COMPARATIVO DE UNA VIVIENDA
MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA DE
CONCRETO CELULAR Y CONCRETO ESTRUCTURAL EN CHACHAPOYAS
2015

TESIS

PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTOR

: Bach. HITLER PEDRO GONGORA ROJAS

Bach. FERNANDO HUAMAN MAS

ASESOR

: Ing. JHON HILMER SALDAÑA NUÑEZ

CO-ASESOR: Ing..PERCY RAMOS TORRES

CHACHAPOYAS - PERÚ 2015

UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ANÁLISIS Y DISEÑO ESTRUCTURAL COMPARATIVO DE UNA VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA DE CONCRETO CELULAR Y CONCRETO ESTRUCTURAL EN CHACHAPOYAS-2015

Tesis para obtener el título profesional de: INGENIERO CIVIL

Autores:

Bach. HITLER PEDRO GONGORA ROJAS

Bach. FERNANDO HUAMAN MAS

Asesor:

Ing. JOHN HILMER SALDAÑA NUÑEZ

Co-Asesor:

Ing. PERCY RAMOS TORRES

CHACHAPOYAS – PERÚ

2015

A nuestros padres, fuentes de inspiración y motivación, por hacernos creer que existe un mundo sin límites, y sin cuyo apoyo y amor incondicional dificilmente hubiésemos llegado a donde estamos hoy.

Hitler Pedro Gongora Rojas & Fernando Huaman Mas

AGRADECIMIENTO

Quisiéramos dedicar estas primeras páginas a todos aquellos que de una u otra manera han hecho posible la presente investigación puesto que nos han acompañado a lo largo de la misma brindándonos su completo apoyo, orientación y comprensión.

En primer lugar agradecemos a los Ingenieros John Hilmer Saldaña Nuñes y Percy Ramos Torres quienes estimularon y facilitaron la elaboración de este trabajo. Sus consejos y orientaciones fueron un apoyo fundamental y les estaremos siempre muy agradecidos.

A todos los ingenieros integrantes del jurado de tesis, quienes con gran entusiasmo colaboraron a la realización de este proyecto, brindándonos su experiencia y conocimiento, y sin los cuales este no hubiera sido posible.

Al arquitecto Arturo Diaz Jauregui por su desinteresada colaboración durante el proceso de diseño arquitectónico.

Al Dr. Patricio Arellano Ludeña Gerente de la división TM's Concrete & Waterproofing SIKA PERÚ S.A. por proporcionarnos una muestra del agente espumante HT-Sika LightCrete PE para la elaboración de muestras de concreto celular.

Al Técnico en Mecánica de Suelos Miguel Tapayuri Chota por su apoyó con la realización del estudio de mecánica de suelos.

Y al finalizar, también agradecemos a los que fueron nuestros compañeros de clase durante todos los ciclos de universidad ya que gracias al compañerismo, amistad y apoyo moral han aportado en un alto porcentaje a nuestras ganas de seguir adelante en nuestra carrera profesional.

LOS AUTORES

AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRIGUEZ DE MENDOZA DE AMAZONAS

Ph. D. Jorge Luis Maicelo Quintana

RECTOR

Dr. Oscar Andrés Gamarra Torres

VICERRECTOR ACADÉMICO

Dra. María Nelly Lujan Espinoza

VICERRECTORA DE INVESTIGACIÓN

Lic. José Luis Quispe Osorio

DECANO DE LA FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

VISTO BUENO DEL ASESOR DE TESIS

El docente de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas que suscribe, hace constar que ha asesorado la tesis titulada "Análisis y diseño estructural comparativo de una vivienda multifamiliar de Muros de Ductilidad Limitada de concreto celular y concreto estructural en Chachapoyas – 2015", de los tesistas egresados de la Facultad de Ingeniería Civil y Ambiental, escuela académico profesional de Ingeniería Civil.

- Bach. Hitler Pedro Góngora Rojas.
- Bach. Fernando Huamán Mas

El suscrito da el visto bueno de la mencionada tesis dándole pase para que sea sometida a la revisión por el jurado evaluador comprometiéndose a supervisar el levantamiento de las observaciones que formulen para su posterior sustentación.

Chachapoyas 14 de Septiembre de 2015

Ing. John Hilmer Saldaña Núñez.

ASESOR

VISTO BUENO DEL CO - ASESOR DE TESIS

El docente de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas que suscribe, hace constar que ha asesorado la tesis titulada "Análisis y diseño estructural comparativo de una vivienda multifamiliar de Muros de Ductilidad Limitada de concreto celular y concreto estructural en Chachapoyas – 2015", de los tesistas egresados de la Facultad de Ingeniería Civil y Ambiental, escuela académico profesional de Ingeniería Civil.

- Bach. Hitler Pedro Góngora Rojas.
- Bach. Fernando Huamán Mas

El suscrito da el visto bueno de la mencionada tesis dándole pase para que sea sometida a la revisión por el jurado evaluador comprometiéndose a supervisar el levantamiento de las observaciones que formulen para su posterior sustentación.

Chachapoyas 14 de Septiembre de 2015

Ing. Percy Ramos Torres

CO-ASESOR

JURADO DE TESIS

Ing. Jorge Chávez Guivin

PRESIDENTE

Mg. Edwin Adolfo Díaz Ortiz

SECRETARIO

Ing. Percy Ramos Torres

VOCAL

ÍNDICE GENERAL	Pág.
DEDICATORIA	ii
AGRADECIMIENTO	iii
AUTORIDADES UNIVERSITARIAS	iv
Vo. Bo. DEL ASESOR	V
Vo. Bo. DEL JURADO	vi
JURADO DE TESIS	vii
ÍNDICE	X .
RESUMEN	xix
ABSTRACT	хх

				Pág.
I.	INTR	ODUC	CIÓN	2
	1.1.	EL PR	OBLEMA	3
		1.1.1.	Selección del problema	3
		1.1.2.	Antecedentes	3
		1.1.3.	Formulación del problema	3
	1.2.	OBJET	TIVOS	4
		1.2.1.	Objetivo general	4
		1.2.2.	Objetivo específicos	4
	1.3.	VARIA	ABLES	4
	1.4.	MARC	CO TEÓRICO	5
		1.4.1.	Sistema de muros de ductilidad limitada	5
			1.4.1.1. Definición del sistema	5
			1.4.1.2. Importancia del sistema	5
		1.4.2.	Concreto celular	5
			1.4.2.1. Definición	5
			1.4.2.2. Características	6
			1.4.2.3. Tipos	9
			1.4.2.4. Propiedades	13
		1.4.3.	Concreto estructural	17
			1.4.3.1. Definición	17
			1.4.3.2. Tipos	17
			1.4.3.3. Propiedades	19
II.	MA	TERIAL	LES Y MÉTODOS	22
	2.1.	EL PR	OYECTO ARQUITECTÓNICO	22
	2.2.	CARG	SAS DE DISEÑO	25
		2.2.1.	Carga muerta (CM)	25
		2.2.2.	Carga viva (CV)	25
		2.2.3.	Carga de sismo (CS)	26
	2.3.	MÉTC	DDO DE DISEÑO	26
	2.4.	MATE	ERIALES EMPLEADOS	27
		2.4.1.	Concreto armado	27
		2.4.2.	Acero de refuerzo	27
	2.5.	NORM	MAS EMPLEADAS	28

				Pág.
	2.6.	MARC	CO METODOLÓGICO	28
		2.6.1.	Sistema de muros de ductilidad limitada	28
			2.6.1.1. Conceptos básicos	28
			2.6.1.2. Requisitos reglamentarios (RNE)	29
			2.6.1.2.1. Cuantía mínima de refuerzo	29
			2.6.1.2.2. Diseño por flexión o flexocompresión	29
			2.6.1.2.3. Diseño por fuerza cortante	31
			2.6.1.2.4. Refuerzo de muros	32
			2.6.1.3. Criterios de estructuración	33
		2.6.2.	Modelos estructurales	33
			2.6.2.1. Modelo estructural del edificio	34
			2.6.2.1. Modelo de la losa de cimentación	35
III.	RES	SULTA	DOS	36
	3.1.	PRED	IMENSIONAMIENTO DE ELEMENTOS ESTRUCTURALES	36
		3.1.1.	Muros de ductilidad limitada	36
	•		3.1.1.1. Concreto estructural	37
			3.1.1.2. Concreto celular	38
		3.1.2.	Losas aligeradas	38
		3.1.3.	Escaleras	39
	3.2.	ANÁL	ISIS SÍSMICO	39
		3.2.1.	INTRODUCCIÓN	39
		3.2.2.	PARÁMETROS DEL ANÁLISIS SÍSMICO	4 0
			3.2.2.1. Parámetros de sitio	40
		•	3.2.2.1.1. Zonificación: Factor Z	40
			3.2.2.1.2. Condiciones geotécnicas: Factor S, TP Y TL	40
			3.2.2.1.3. Factor de amplificación sísmica: Factor C	41
			3.2.2.2. Requisitos generales	41
			3.2.2.2.1. Categoría de las edificaciones: factor U	41
			3.2.2.2. Sistema estructural: Coeficiente básico de	
		•	reducción de fuerzas sísmicas Ro	41
			3.2.2.2.3. Sistema estructural: Irregularidad	
			estructural Ia. In	42.

			Pag.
		3.2.2.2.4. Sistema estructural: Coeficiente de reducción	de la
		fuerza sísmica R	42
	3.2.3.	ANÁLISIS ESTÁTICO	43
		3.2.3.1. Generalidades	43
		3.2.3.2. Periodo fundamental	43
		3.2.3.3. Peso total de la edificación	44
		3.2.3.4. Fuerza cortante en la base	44
		3.2.3.5. Desplazamientos laterales	45
		3.2.3.6. Fuerzas internas	46
	3.2.4.	ANÁLISIS DINÁMICO	48
,		3.2.4.1. Generalidades	48
		3.2.4.2. Procedimiento del análisis dinámico con el	
		programa ETABS	48
		3.2.4.3. Fuerza cortante en la base	51
		3.2.4.4. Periodo de vibración	52
		3.2.4.5. Efectos de torsión	53
		3.2.4.6. Desplazamientos laterales	54
		3.2.4.7. Fuerzas internas	56
3.3.	DISEÑ	ÑO	57
	3.3.1.	Generalidades del diseño	57
		3.3.1.1. Resistencia requerida	57
		3.3.1.2. Resistencia de diseño	57
	3.3.2.	Diseño de losa aligerada	58
		3.3.2.1 Diseño por flexión	59
		3.3.2.2. Diseño por corte	60
	3.3.3.	Diseño de vigas chatas	61
		3.3.3.1. Diseño por flexión	61
		3.3.3.1. Diseño por corte	62
	3.3.4	Diseño de vigas peraltadas	64
		3.3.4.1. Diseño por flexión	64
		3.3.4.2 Diseño por cortante	65
	3.3.5.	Diseño de muros	66
		3.3.5.1. Estructura de concreto estructural	66

		Pág.
	3.3.5.1.1. Diseño por flexocompresión	66
	3.3.5.1.2. Diseño por corte	72
	3.3.5.1.3. Diseño por corte fricción	73
	3.3.5.2. Estructura de concreto celular	74
	3.3.5.2.1. Diseño por flexocompresión	74
	3.3.5.2.2. Diseño por corte	79
	3.3.5.2.3. Diseño por corte fricción	80
	3.3.6. Diseño de escaleras	81
	3.3.6.1. Diseño por flexión	81
	3.3.6.2. Diseño por corte	83
	3.3.7. Diseño de cimentación	85
	3.3.7.1. Consideraciones para el diseño de cimentación	85
	3.3.7.1.1. Comportamiento e idealización de la losa de	
	cimentación	85
	3.3.7.1.2. Esfuerzos actuantes en el suelo	86
	3.3.7.1.3. Diseño por flexión de losa de cimentación	88
	3.3.7.1.4. Ejemplo de diseño de losa de cimentación	91
3.4.	ANÁLISIS ECONÓMICO	93
	3.4.1. EMDL concreto estructural	93
	3.4.1.1. Planilla de metrados	93
	3.4.1.2. Análisis de gastos generales	95
	3.4.1.3. Presupuesto de obra	95
	3.4.1.4. Programación de obra	95
	3.4.1.5. Análisis de costos unitarios	95
	3.4.2. EMDL Concreto celular	99
	3.4.2.1. Planilla de metrados	99
•	3.4.2.2. Análisis de gastos generales	101
	3.4.2.3. Presupuesto de obra	101
	3.4.2.4. Programación de obra	101
	3.4.2.5. Análisis de costos unitarios	101
3.5	ANÁLISIS COMPARATIVO	105
	3.5.1. Comportamiento sísmico	105
	3.5.1.1. Análisis estático	105

	Pág.
3.5.1.2. Análisis dinámico	107
3.5.1.3. Diseño estructural	110
3.5.2. Análisis económico	113
IV. DISCUSIONES	116
V. CONCLUSIONES	117
VI. RECOMENDACIONES	118
VII. REFERENCIAS BIBLIOGRÁFICAS	120
VIII. ANEXOS	122

ÍNDICE DE TABLAS

Tabla 1. Resistencia a la compresión del concreto aireado.	14
Tabla 2. Resistencias en comprensión del concreto arenado.	15
Tabla 3. Pesos unitarios de los materiales.	25
Tabla 4. Sobrecargas consideradas en la edificación.	25
Tabla 5. Factores de zona.	40
Tabla 6. Factor S.	41
Tabla 7. Periodos TP y TL.	41
Tabla 8. Coeficiente básico de reducción de fuerza sísmica, R ₀ .	42
Tabla 9. Masas y peso de la estructura (Concreto estructural)	44
Tabla 10. Masas y peso de la estructura (Concreto celular)	44
Tabla 11. Cortante estática en la base de la estructura (Concreto estructural)	45
Tabla 12. Cortante estática en la base de la estructura (Concreto celular)	45
Tabla 13. Derivas máximas del análisis estático (Concreto estructural)	45
Tabla 14. Derivas máximas del análisis estático (Concreto celular)	46
Tabla 15. Fuerzas internas del muro M18 por cargas estáticas (Concreto estructural)	47
Tabla 16. Fuerzas internas del muro M18 por cargas estáticas (Concreto celular)	47
Tabla 17. Propiedades de los materiales	48
Tabla 18. Cortante dinámica en la base de la estructura (Concreto estructural)	52
Tabla 19. Cortante dinámica en la base de la estructura (Concreto celular)	52
Tabla 20. Periodo de cada uno de los modos de vibración (Concreto estructural)	52
Tabla 21. Periodo de cada uno de los modos de vibración (Concreto celular)	53
Tabla 22. Periodos fundamentales de vibración.	53
Tabla 23. Derivas máximas del análisis dinámico (Concreto estructural)	55
Tabla 24. Derivas máximas del análisis dinámico (Concreto celular)	55
Tabla 25. Fuerzas internas del muro M18 (Concreto estructural)	56
Tabla 26. Fuerzas internas del muro M18 (Concreto celular)	57
Tabla 27. Momentos resistentes en vigueta.	59
Tabla 28. Área de aceros mínimos en vigueta.	59
Tabla 29. Acero negativo en vigueta (Concreto estructural).	60
Tabla 30. Acero positivo en vigueta (Concreto estructural).	60
Tabla 31. Acero negativo en vigueta (Concreto celular).	60
Tabla 32. Acero positivo en vigueta (Concreto celular).	60

Tabla 33. Acero en flexión en VCH-01(20x20) (Concreto estructural).	62
Tabla 34. Acero en flexión en VCH-01(20x20) (Concreto celular).	62
Tabla 35. Acero en flexión en VP-01 (30x40) (Concreto estructural)	65
Tabla 36. Acero en flexión en VP-01 (30x40) (Concreto celular)	65
Tabla 37. Fuerzas internas en el muro M18 de concreto estructural.	67
Tabla 38. Cargas amplificadas en la dirección X.	68
Tabla 39. Cargas amplificadas en la dirección Y.	68
Tabla 40. Acero vertical colocado en el muro M18 de concreto estructural.	69
Tabla 41. Fuerzas internas en el muro M18 de concreto celular.	74
Tabla 42. Cargas amplificadas en la dirección X.	75
Tabla 43. Cargas amplificadas en la dirección Y.	75
Tabla 44. Acero vertical colocado en el muro M18 de concreto celular.	76
Tabla 45. Diseño de acero por flexión en escalera (Concreto estructural).	83
Tabla 46. Diseño de acero por flexión en escalera (Concreto celular).	83
Tabla 47. Diseño de refuerzo en losa de cimentación (Concreto estructural).	91
Tabla 48. Diseño de refuerzo en losa de cimentación (Concreto celular).	91
Tabla 49. Resumen de metrados de la estructura de concreto estructural.	93
Tabla 50. Resumen de metrados de la estructura de concreto celular.	99
Tabla 51. Parámetros sísmicos.	105
Tabla 52. Peso de la edificación.	105
Tabla 53. Fuerza cortante estática en la base.	106
Tabla 54. Derivas máximas del análisis estático.	106
Tabla 55. Fuerzas internas estáticas del Muro M18 en el piso 01.	107
Tabla 56. Fuerza cortante dinámica en la base.	108
Tabla 57. Periodos fundamentales de vibración.	109
Tabla 58. Derivas dinámicas máximas.	109
Tabla 59. Fuerzas internas dinámicas del muro M18 en el Piso 01.	110
Tabla 60. Momentos últimos y área de acero en losa aligerada diseñada el capítulo III.	111
Tabla 61. Momentos últimos y área de acero en viga chata V.CH 01(0.20X0.20).	111
Tabla 62. Momentos últimos y área de acero en viga peraltada V.P 01(0.30X0.40).	111
Tabla 63. Momentos últimos, cortante ultima, momento de agrietamiento y área de acerc	en en
muro M18.	111
Tabla 64. Momentos últimos y área de acero en escalera diseñada en el capítulo III.	111
Tabla 65. Momentos últimos, cortantes últimos y área de acero en losa de cimentación.	111

ÍNDICE DE FIGURAS

Figura 1.Planta típica para el 1er, 2do y 3er piso.	23
Figura 2. Vista 3D de la elevación posterior.	24
Figura 3. Vista 3D de la elevación principal.	24
Figura 4. Modelo estructural del edificio en ETABS 2015.	34
Figura 5. Modelo de la losa de cimentación en SAFE v14.	35
Figura 6. Muro M18 de ductilidad limitada concreto estructural.	37
Figura 7. Muro M18 de ductilidad limitada analizado por fuerzas internas estáticas.	47
Figura 8. Definición de masas en ETABS 2015.	49
Figura 9. Planta típica estructurada en el programa ETABS 2015.	50
Figura 10. Periodo Vs aceleración espectral de la estructura.	51
Figura 11. Ventana de ETABS 2015 donde se incluye la torsión accidental.	54
Figura 12. Muro M18 de ductilidad limitada analizado por fuerzas internas dinámicas.	56
Figura 13. Vigueta a diseñar.	58
Figura 14. DFC de la vigueta a diseñar (Concreto estructural)	58
Figura 15. DMF de la vigueta a diseñar (Concreto estructural)	58
Figura 16. DMF de la vigueta a diseñar (Concreto celular)	59
Figura 17. DFC de la vigueta a diseñar (Concreto celular)	59
Figura 18. Distribución de refuerzo en losa aligerada (Concreto estructural y concreto	
celular).	61
Figura 19. Viga chata VCH-01 (20x20) a diseñar.	61
Figura 20. Envolvente de los DMF en VCH-01(20x20) (Concreto estructural).	62
Figura 21. Envolvente de los DMF en VCH-01(20x20) (Concreto celular).	62
Figura 22. Envolvente de DMF en VCH-01(20x20) (Concreto estructural).	62
Figura 23. Envolvente de DMF en VCH-01(20x20) (Concreto celular).	63
Figura 24. Diseño de viga chata VCH-01(20X20) (Concreto estructural).	63
Figura 25. Diseño de viga chata VCH-01(20X20) (Concreto celular).	63
Figura 26. Viga peraltada VP-01 (30x40) a diseñar.	64
Figura 27. Envolvente de los DMF en VP-01 (30x40) (Concreto estructural).	64
Figura 28. Envolvente de los DMF en VP-01(30x40) (Concreto celular).	64
Figura 29. Envolvente de los DFC en VP-01(30x40) (Concreto estructural).	65
Figura 30. Envolvente de los DFC en VP-01(30x40) (Concreto celular).	65
Figura 31. Diseño de viga peraltada VP-01(30X40) (Concreto estructural).	66

Figura 32. Diseño de viga peraltada VP-01(30X40) (Concreto celular).	66
Figura 33. Muro M18 a diseñar.	67
Figura 34. Diagrama de interacción para el muro M18 en la aplicación section designer.	70
Figura 35. Distribución de acero para el muro M18 e la aplicación section designer.	70
Figura 36. Diagrama de interacción para el muro M18 en la dirección Y.	71
Figura 37. Diagrama de interacción para el muro M18 de en la dirección X.	71
Figura 38. Distribución de acero para el muro M18 e la aplicación section designer.	77
Figura 39. Diagrama de interacción para el muro M18 en la aplicación section designer.	77
Figura 40. Diagrama de interacción para el muro M18 en la dirección Y.	78
Figura 41. Diagrama de interacción para el muro M18 en la dirección X.	78
Figura 42. Detalle de refuerzo de muro M18 (concreto celular y concreto estructural)	81
Figura 43. Sección de la escalera - 3er tramo típico.	82
Figura 44. Diagrama de momentos flectores -3er tramo típico. (Concreto estructural).	82
Figura 45. Diagrama de momentos flectores -3er tramo típico. (Concreto celular).	82
Figura 46. Diagrama de fuerzas cortantes 3er tramo típico (Concreto estructural)	83
Figura 47. Diagrama de fuerzas cortantes 3er tramo típico (Concreto celular)	84
Figura 48. Diseño de la escalera – 3er tramo típico (Concreto celular y	
concreto estructural)	84
Figura 49. Comportamiento de la losa e idealización del suelo.	85
Figura 50. Modelo estructural de la losa de cimentación.	86
Figura 51. Presiones en el suelo debido a cargas de servicio (CM+CV)	
(Concreto estructural)	87
Figura 52. Presiones en el suelo debido a cargas de servicio (CM+CV) (Concreto celular)	88
Figura 53. Distribución de MF en las direcciones X e Y (CM + CV) (Concreto celular).	89
Figura 54. Distribución de MF en las direcciones X e Y (CM + CV) (Concreto estructural)	. 89
Figura 55. Distribución de FC en las direcciones X e Y (CM + CV) (Concreto celular).	90
Figura 56. Distribución de FC en las direcciones X e Y (CM + CV) (Concreto estructural).	90
Figura 57. Distribución de refuerzo en losa de cimentación (Concreto estructural).	92
Figura 58. Distribución de refuerzo en losa de cimentación (Concreto celular).	92
Figura 59. Distribución de masas en la edificación.	105
Figura 60. Cortante basal (Concreto estructural (Izquierda) Concreto celular (Derecha)).	106
Figura 61. Fuerzas axial M18 (Concreto estructural (Izquierda)	
Concreto celular (Derecha)).	107
Figura 62. Cortante basal (Concreto estructural (Izquierda) Concreto celular (Derecha)).	108

Figura 63. Fuerzas axial M18 (Concreto estructural (Izquierda)	
Concreto celular (Derecha)).	110
Figura 64. Incidencia de partidas de concreto armado en la edificación (Concreto estructura	al
(Derecha) Concreto celular (Izquierda)).	111
Figura 65. Costo de partidas de concreto armado en la edificación.	111
Figura 66. Costo total de proyecto.	111
Figura 67. Resumen de presupuesto.	111

RESUMEN

Se ha elaborado el diseño estructural de una vivienda multifamiliar de concreto armado de tres pisos conformado por un departamento por piso ubicado en el sector del Cerro el Colorado distrito de Chachapoyas. El terreno de cimentación corresponde a una arcilla inorgánica de alta plasticidad (CH) con una presión admisible de 0.75 kg/cm² a 1.00 m respecto del nivel actual del terreno, no presentando agresividad del suelo a la cimentación.

La estructuración del edificio es en base a Muros de Ductilidad Limitada (MDL) tanto en los ejes X-X e Y-Y con espesores de 10 y 30 cm. Los techos en todos los niveles son losas aligeradas de 20 cm de espesor. La cual fue analizada y estructurada para dos diferentes tipos de concreto (concreto estructural y concreto celular).

El tipo de cimentación escogido para el diseño fue de losas de cimentación para ambos casos, las cuales presentas dientes perimetrales.

Con respecto al análisis sísmico, se realizó el análisis estático y el análisis dinámico según lo estipulado en la NTE E-030 para poder comparar las derivas y los desplazamientos con los valores exigidos en la norma, encontrando estos por debajo del valor exigido.

El análisis y el diseño se realizaron según los requerimientos de las normas NTE E-020 (cargas), NTE E-030 (Diseño Sismorresistente), NTE E-050 (Suelos y Cimentaciones) y NTE E-060 (Concreto Armado) y para el caso de los muros se utilizó el Anexo 02 Especificaciones Normativas para Diseño Sismorresistente en el caso de Edificaciones de Muros de Ductilidad Limitada (EMDL).

El costo de la estructura con concreto celular fue de S/. 20,867.06 menos que la de concreto estructural.

En lo correspondiente al plazo de ejecución, no se encontraron diferencias significativas entre ambos materiales.

Palabras claves: Concreto Estructural, Concreto celular, edificaciones de muros de ductilidad limitada.

ABSTRACT

It has developed the structural design of reinforced concrete apartment house three floors

consists of a department for apartment located in the area of Cerro Colorado district of

Chachapoyas. The foundation soil corresponds to a high plasticity inorganic clay (CH)

with a permissible pressure of 0.75 kg / cm² to 1.00 m from the current ground level,

showing no aggression to the foundation soil.

The structure of the building is based on ductility Walls Limited (MDL) in both axes XX

and YY with thicknesses of 10 and 30 cm. The ceilings on all levels are lightened slabs

20 cm thick. Which it was analyzed and structured to two different types of concrete

(concrete structural and cellular concrete).

The type of foundation design was chosen for the foundation slab for both cases, which

show peripheral teeth.

With respect to seismic analysis, static analysis and dynamic analysis as stipulated in the

NTE E-030 was performed to compare the drifts and displacements to values required by

the standard, finding these below the required value.

The analysis and design were performed according to the requirements of the NTE E-020

(charges), NTE E-030 (Seismic Design), NTE E-050 (Soils and Foundations) and NTE

E-060 (Reinforced Concrete) and standards if the walls are used Annex 02 Specifications

Standards for Seismic Design of Buildings in the case of walls ductility Limited (EMDL).

The cost of cellular concrete structure was S /. 20867.06 unless the structural concrete.

As for the term of execution, no significant differences were found between the two

materials.

Keywords: Structural Concrete, cellular concrete, building walls limited ductility.

 $\mathbf{X}\mathbf{X}$

I. INTRODUCCIÓN

En la actualidad existe una gran demanda de vivienda en nuestro país, por lo que en los últimos años se ha promovido la construcción de viviendas de bajo costo. Estas edificaciones tienen muros de concreto armado de 10 a 15 cm de espesor y su altura varía normalmente entre cinco y siete pisos, construidas en la mayoría en la costa de nuestro país.

Estas estructuras son llamadas Edificios de Muros de Ductilidad Limitada (EMDL), debido principalmente a dos razones: sus muros no poseen ningún confinamiento en sus extremos, dado que por su espesor es imposible usar estribos, y porque el refuerzo que generalmente se usa son mallas electrosoldadas de poca ductilidad. Estas dos condiciones impiden que los muros puedan desarrollar desplazamientos inelásticos importantes.

En cuanto a sus características estructurales, presentan generalmente una platea de espesor entre 20 y 25 cm como cimentación; gran densidad y simetría en los muros, cuyos espesores varían entre 10 (espesor mínimo indicado por la Norma Peruana de Edificaciones), 12 y 15 cm; y las losas de piso son macizas con espesores de 10 y 12 cm con ensanches para permitir el paso de tuberías.

La presente investigación inicia un estudio comparativo del comportamiento de este tipo de sistema estructural considerando dos tipos de materiales, el primero el concreto estructural común (cemento + agregado fino + agregado grueso + agua + aire) y el segundo un concreto aireado (Cemento + agregado fino + aire + agua + materiales sílicos) conocido también como concreto celular.

Los parámetros evaluados en la presente investigación fueron los mismos en ambos casos, partiendo de la premisa que toda estructura debe cumplir con las exigencias de las normas de Diseño Sismorresistente y de Diseño Estructural vigentes.

Inicialmente se hizo uso de software REVIT 2015 para el diseño arquitectónico, para el Análisis Estático y el Análisis Dinámico se hizo uso del programa ETABS 2015, también se realizó un análisis económico con ambos materiales, finalizando con un análisis comparativo y sus respectivas conclusiones y recomendaciones.

1.1. El problema

1.1.1. Selección del problema

El mercado de vivienda popular durante años ha sido atendido principalmente por el sector informal (autoconstrucción) lo que ha producido viviendas de baja calidad, con elevados costos financieros y sociales. Existe en tanto un severo déficit en la oferta de soluciones habitacionales de calidad, accesibles a sectores mayoritarios de la población.

El déficit habitacional tanto cuantitativo como cualitativo, la carencia de soluciones constructivas económicas y las políticas de formalización de procesos irregulares de ocupación del suelo han generado un serio problema, el cual conlleva al inadecuado desarrollo urbano y la baja calidad de vida presente en nuestra ciudad.

1.1.2. Antecedentes

Existen algunas investigaciones, sobre el sistema de Muros de Ductilidad limitada en nuestro país, siendo las más destacadas: "Comportamiento a fuerza cortante de muros de concreto de ductilidad limitada con 8 cm de espesor" del ingeniero Miguel Ernesto Rodríguez, "Edificios Peruanos con Muros de Concreto de Ductilidad Limitada" de los ingenieros Raúl Javier Delgado y Catalina Peña. De igual manera el ingeniero Luis Alfredo Zavaleta realizo un estudio comparativo entre sistemas estructurales de albañilería confinada y muros de ductilidad limitada.

En relación al concreto celular existe muy poca información en nuestro país, a pesar que a nivel mundial ya se produce este tipo de concreto desde 1929 utilizándose de dos formas: Premezclado en paneles para muros, losas de entrepisos y azoteas, y bloques de construcción; Mezclado en sitio para elementos estructurales y secundarios, curado al aire por aspersión o vapor. A nivel de Latinoamérica encontramos algunas investigaciones como del ingeniero mexicano Juan José Ramírez quien realizó un estudio del comportamiento de muros de concreto celular con diferentes cuantías de acero de refuerzo.

1.1.3. Formulación del problema

¿Cuál es el efecto de diseñar una vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto celular o concreto estructural en Chachapoyas?

1.2. Objetivos

1.2.1. Objetivo general

Determinar cuál es el efecto de diseñar una vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto celular o concreto estructural en Chachapoyas.

1.2.2. Objetivo específicos

- a) Determinar el comportamiento estructural frente a una solicitación sísmica de una vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto celular.
- b) Determinar el comportamiento estructural frente a una solicitación sísmica de una vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto estructural.
- c) Determinar el presupuesto de una vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto celular.
- d) Determinar el presupuesto de una vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto estructural.
- e) Determinar el tiempo de ejecución de una vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto celular.
- f) Determinar el tiempo de ejecución de una vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto Estructural.
- g) Realizar un análisis comparativo de una vivienda multifamiliar modelo de Muros de Ductilidad Limitada con ambos materiales.

1.3. Variables

Variable independiente:

- X1: Vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto celular
- X2: Vivienda multifamiliar modelo de Muros de Ductilidad Limitada con concreto estructural

Variable dependiente:

Y1: Comportamiento estructural.

Asentamientos y desplazamientos (mm)

Y2: Costo (S/.).

Y3: Tiempo (Días).

1.4. Marco teórico

1.4.1. Sistema de muros de ductilidad limitada

1.4.1.1. Definición del sistema

Zabaleta Chumbiauca (2009) lo define como un sistema estructural donde la resistencia ante cargas sísmicas y cargas de gravedad, en las dos direcciones, está dada por muros de concreto armado que no pueden desarrollar desplazamientos inelásticos importantes. Los muros son de espesores reducidos, se prescinde de extremos confinados y el refuerzo vertical se dispone en una solo hilera. Los sistemas de piso son losas macizas o aligeradas que cumplen la función de diafragma rígido.

1.4.1.2. Importancia del sistema

El sistema de muros de concreto para edificios de vivienda resulta muy conveniente, por cuanto que nos asegura que no se produzcan cambios bruscos de las propiedades resistentes y principalmente de las rigideces y un costo atractivo frente a otros sistemas, permitiendo mayor rapidez y un ordenamiento en los plazos y ejecución de la obra. A nivel nacional este sistema en la actualidad está siendo muy utilizado debido a la facilidad que la industrialización ha traído para este sistema, mediante el uso de encofrados metálicos estructurales y el uso de concreto premezclado, haciendo más ágil y económico el proceso constructivo de las obras.

1.4.2. Concreto celular

1.4.2.1. Definición

Ramírez Zamora (2007) define al concreto celular como una mezcla con estructura más o menos homogénea de silicatos de calcio en granos finos que contiene pequeñas celdas de aire no comunicadas entre sí. Es un material de peso ligero que puede ser

5

elaborado con o sin agregados y adicionando a sus componentes un gas o una espuma que reacciona químicamente.

El concreto celular, también conocido como concreto aireado, es un producto de peso ligero compuesto por cemento, agua, arena y otros materiales sílicos. Se elabora mediante un proceso físico o químico durante el cual se introduce aire o gas a la mezcla.

La cantidad de aire que se puede incluir en los concretos aireados prefabricados o colados en sitio varía de 30 a 60 por ciento en volumen cuando se utilizan como elementos estructurales, pero puede llegar a ocupar de 70 a 85 por ciento en concretos colados en sitio destinados sólo para aislamiento térmico, o como elementos secundarios.

Está formado por poros de aire micro y macroscópicos, uniformemente distribuidos en la pasta de cemento. Esta estructura es muy importante para determinar las propiedades físicas del material: bajo peso, baja conductividad térmica, alta resistencia al fuego, baja resistencia a la compresión y a la congelación debido a la distribución de los poros y la cantidad de microporos.

El Instituto Americano del Concreto (ACI, por sus siglas en inglés) define el concreto ligero celular como "aquel en el cual todo o parte del agregado grueso es sustituido por burbujas de gas o aire".

1.4.2.2. Características

Al concreto celular se le pueden atribuir las siguientes características:

- a) Aislante térmico y acústico por su bajo peso y densidad variable.
- b) Bombeable y autonivelante por su consistencia que varía de plástica a fluida.
- c) Resistente al tránsito peatonal.
- d) Incombustible y no degradable.

Dadas las características térmicas del concreto celular, éste se recomienda utilizar en:

a) Clima cálido, ya sea húmedo o seco, con invierno templado y verano demasiado caliente. En estos lugares debe evitarse el empleo de materiales pesados que

propicien la acumulación de calor hasta un nivel que imposibilite su enfriamiento. Los habitantes de las zonas desérticas han recurrido a lo largo del tiempo a viviendas construidas con materiales ligeros. El concreto celular se encuentra en el grupo de los materiales ligeros y además evita la penetración del calor dentro de la vivienda.

b) Clima frío. En lugares con bajas temperaturas deben utilizarse materiales térmicos para propiciar la acumulación de calor interior evitando el enfriamiento. El concreto aireado se ubica entre los materiales térmicos debido a las células que lo conforman.

Desde hace varios años, el concreto celular ha sido un material de construcción común e ideal en ciertas regiones climáticas del planeta. Actualmente, es fácil encontrarlo en edificaciones de Noruega, Países Bajos, Suecia, Gran Bretaña, Alemania, Francia, Estados Unidos, Canadá y países de América del Sur y del Sureste Asiático. Se le utiliza especialmente en aquellas regiones cuyo clima es templado, semi-frío o extremoso, tanto en invierno como en verano. Su empleo en estos climas ha sido un ejemplo de adecuación de la vivienda al entorno, al aprovechar las propiedades térmicas del material que permiten no cambiar el clima interior a pesar de las variaciones diarias y estacionales de los elementos meteorológicos.

El concreto celular se emplea de dos formas:

- a) Premezclado: en paneles para muros, losas de entrepiso y azoteas, y bloques de construcción, los cuales son usualmente curados con vapor a alta presión (con autoclave).
- b) Mezclado en sitio: para elementos estructurales y secundarios, curado al aire por aspersión o vapor.

Con cualquiera de los procedimientos que se utilicen, se puede obtener "concreto gas" o "concreto espuma" de muy baja densidad, por ejemplo, 40 kg/m3 cuando no tienen ningún agregado pétreo o de otra clase y 250 kg/m3 cuando tienen agregados ligeros.

Además, su densidad varía de acuerdo con el estado en que se encuentre: densidad en estado plástico, en estado de fraguado y secado en horno. Por lo tanto, se determina

que el intervalo de densidad de acuerdo con las características mencionadas fluctúa entre 40 y 1,900 kg/m3.

Las aplicaciones para el empleo del concreto celular son bastantes; es tan grande su versatilidad que permite a los elementos con él elaborados adaptarse a una gran variedad de formas, diseños y sistemas estructurales. Hasta ahora, en nuestro país, sólo se le ha utilizado generalmente en trabajos como: bloques y losas para vivienda.

Sin embargo, el concreto celular puede ser empleado casi en cualquier construcción, del tipo que sea, tanto en uso arquitectónico, estructural o como simple relleno con las limitantes estructurales inherentes al material.

Existen varios métodos para que los poros se puedan formar con técnicas de gasificación interior:

- a) Polvo de aluminio. Este elemento reacciona con el hidróxido de cal libre del cemento durante el fraguado y genera hidrógeno en forma de burbujas diminutas que son distribuidas en toda la masa, formando una reacción que, simplificada, resultaría en aluminato tricálcico hidratado + hidrógeno. La rapidez e intensidad de la reacción depende del tipo y de la cantidad de polvo de aluminio que se agregue a la mezcla, así como de la finura del cemento, temperatura, proporción de los componentes y algunos otros factores. El porcentaje de aluminato para tener una compensación de todas las disminuciones de volumen que sufre un concreto desde que se coloca hasta que está endurecido y seco, es del orden de 0.005 a 0.02 por ciento del peso del cemento. El más empleado a la fecha es este proceso, sobre todo en la manufactura de unidades premezcladas y bloques de construcción.
- b) Polvo de zinc. Cuando se emplea polvo de zinc, se forma el zincato de calcio + hidrógeno. En ambos casos el hidrógeno en las células es rápidamente reemplazado por el aire y, por lo tanto, no existe ningún peligro de fuego.
- c) Agua oxigenada y polvo blanqueador. Con esta adición se efectúa la siguiente reacción en la cual se desprende oxígeno en vez de hidrógeno: cloruro de calcio + oxígeno + agua.
- d) Sulfonatos alkyl aryl, el sulfonado de lauryl de sodio, ciertos jabones y resinas, aditivos espumantes destinados a extinguir incendios, así como plásticos o resinas

sintéticas en estado líquido viscoso. Son apropiadas para la elaboración de concretos colados en sitio.

Existen varios aditivos tales como generador espumante, fibra dispersante, expansor, retardante, escoria, ceniza volante, etcétera, que ayudan a cubrir algunas de las deficiencias que conlleva a la baja densidad del concreto celular.

1.4.2.3. Tipos

Se distinguen también algunos tipos de concreto celular:

- a) Concreto celular puro. Se emplea cemento portland, agua, gas o espuma preparada, no contiene agregados sólidos, generalmente está limitado en el intervalo de baja densidad siendo en estado fraguado de 40 a 720 kg/m³. Para su elaboración se mezclan primero el cemento y el agua, y posteriormente se añade un agente químico o una espuma estable preparada, la cual debe ser bien mezclada con la pasta de cemento para lograr la consistencia celular.
- b) Concreto celular arenado. Contiene cemento y arena, para lograr resistencias más elevadas, agua y el agente seleccionado para desarrollar las células; el intervalo de su densidad es de 880 a 1,920 kg/m³. Los agregados minerales tales como la arena de sílice son utilizados con éxito para evitar la contracción del concreto aireado.
- c) Concreto celular con agregado ligero. Es parecido al anterior y es fabricado con agregados ligeros tales como el tezontle, piedra pómez, etcétera, para lo cual se reemplaza parte de la arena. Este agregado o cualquier otro utilizado deben contar con una resistencia mayor para aumentar su intervalo de resistencia a la compresión, con lo cual se lograrían densidades de 1,600 kg/m³.
- e) Concreto celular con agregado expansivo. La adición de vermiculita y perlita en el concreto ha demostrado que ayuda en climas cálidos a retener el agua del curado. Estas adiciones son también ideales en los casos en que el concreto celular asista a las estructuras metálicas a la protección contra el fuego, siendo necesario que estos agregados se utilicen en la fabricación de unidades premezcladas ya que logran su expansión en altas temperaturas.
- f) Concreto celular modificado. Se considera concreto celular modificado a cualquiera de los tipos antes mencionados al que se le añade un aditivo.

- g) Concreto celular con aditivo dispersante. Agente que ayuda a exponer mayor superficie de las partículas del cemento a la hidratación. Su acción dispersante aumenta considerablemente la fluidez e incrementa la resistencia a la compresión resultante de la reducción de la proporción agua/cemento en la mezcla, especialmente en el estado plástico, logrando un incremento de resistencia hasta de 10 por ciento en densidades de 1,440 kg/m³, y de 40 por ciento en densidades de 1,760 kg/m³.
- h) Concreto celular con fibras. Esta fibra debe ser resistente al álcali; puede tratarse de resinas sintéticas o de fibra de vidrio. Se agrega al concreto celular de baja densidad para incrementar la resistencia a la tensión y ayudar a controlar considerablemente el agrietamiento por contracción, y además colaboran en bajo grado al aumento de la resistencia a la compresión y a la flexión. La cantidad utilizada está determinada en función de la trabajabilidad deseada del concreto y el costo.
- i) Concreto celular con aditivo expansor. La utilización de aditivo expansor en el concreto celular refuerza a los componentes de éste, ya que la expansión puede ser de la misma magnitud que la contracción y la retracción del concreto; esta expansión compensa parcialmente los efectos de contracción en el secado característicos del concreto aireado. La tendencia a expandirse se controla por el acero de refuerzo, por lo cual éste debe ser colocado lo más cercano posible al centro de la sección para evitar empuje y por consiguiente, una deformación del elemento.
- j) Concreto celular con escoria y ceniza volante. La arena puede ser reemplazada por las cenizas de combustible pulverizado o escoria de alto horno molidas. Estos ingredientes funcionan en parte como relleno y en parte como reactivo químico con el aglutinante. La ceniza volante y la arena de cuarzo pueden ser empleadas para reemplazar parcialmente la cantidad de cemento, lo cual ayuda a reducir tiempo de mezclado y, por consiguiente, la segregación; además, aumenta su resistencia.
- k) Concreto celular con otros aditivos. Este concreto es compatible también con los densificadores, retardantes, agentes humectantes, estabilizadores de los poros.

También se utilizan los álcalis solubles tales como la sosa cáustica para acelerar la reacción de los adicionantes metálicos.

La arena y otros componentes sílicos se muelen en molino de bolas hasta llegar al grado de finura requerido, que por lo general es comparable a la finura del cemento portland ordinario. Las mezclas del concreto celular se pueden hacer con cemento portland CPO, y con cemento portland tipo CPR, resistencia rápida.

Según la forma de producción también tenemos:

a) Concreto celular prefabricado.

El concreto celular prefabricado puede ser producido en bloques de construcción para muros y unidades reforzadas para muros y losas. Sus densidades varían de 400 a 800 kg/m³ y son materiales empleados desde hace más de 50 años. Los bloques son de gran utilidad en la industria de la construcción porque reducen enormemente el peso muerto de las estructuras y representan ahorros considerables en las cargas por manejar, así como por la gran área que se puede cubrir con cada uno de ellos.

Para elaborar el concreto celular prefabricado se debe contar con un espacio para mezclar el material en moldes, cortar y curar. Se requiere mantener una temperatura ambiente constante para poder fabricar elementos de alta calidad.

Una vez preparada la mezcla, se coloca con precisión el acero de refuerzo de manera que cuando se corten las piezas, no se dañe. La masa celular es vertida en moldes que son llenados parcialmente y a los 20 minutos la mezcla se expande cubriendo totalmente el molde. Después de tres a seis horas, la mezcla habrá fraguado lo necesario para poder ser cortado.

De acuerdo con el informe del comité técnico del ACI (ACI 523.2R-68) hay varios sistemas que se pueden utilizar para el curado del concreto celular:

- Curado por lo menos a 21°C o más, como mínimo por siete días si es cemento portland normal tipo I y por tres días si se utiliza cemento portland de alta resistencia tipo III.
- Curado a vapor a alta presión.

- Curado en autoclave, lugar donde permanecerá de 14 a 28 horas, bajo una presión aproximada de 1 MPa (10.5 kgf/cm²) y a una temperatura de 185°C. El curado en vapor es necesario para obtener "concreto gas" de primera calidad.
- Cualquier sistema de curado podrá ser utilizado mientras se conserve adecuadamente el contenido de agua del concreto y se proporcione la máxima calidad de resistencia a los elementos.

El acero de refuerzo utilizado en el concreto celular curado en autoclave debe ser protegido para evitar la corrosión, en un baño de una mezcla de recubrimiento que puede ser:

- Una solución bituminosa oxidada que se endurece al aire.
- Una capa de lechada de cemento con o sin látex de hule y un material coloidal como la caseína.
- Resinas epóxicas.
- Ahogado en concreto normal.
- concreto celular con espesores mayores.

Otra solución podría ser utilizar aceros presforzados.

b) Concreto celular mezclado en sitio.

El concreto celular es el ideal para mezclarse en el sitio, ya que es fácil adicionar la espuma directamente en la obra. El cemento, el agua, los agregados seleccionados y los aditivos se colocan en la mezcladora de la misma forma que se hace con el concreto normal; a éste se le introduce el generador de espuma especial que es un concentrado diluido en agua. La cantidad del generador de espuma depende del tipo de componente, el tamaño de la carga o volumen de concreto, la eficiencia de la mezcladora y la densidad que se espera del concreto. Después de haber agregado la espuma se continúa el mezclado para que al agitarla logre su expansión total, que llega a ser hasta de 30 veces, y también así garantizar la distribución uniforme de las células de aire dentro de la mezcla.

Un punto básico para evitar la contracción del concreto celular es el curado en autoclave; por lo tanto, es necesario hacer consideraciones de cambio en el diseño de las mezclas del concreto mezclado en sitio, tales como añadir agentes expansivos que ayudan a evitar el agrietamiento y la contracción por secado.

Estos concretos fabricados con agregados ligeros y espuma dan propiedades especiales a la mezcla, ya que además de aumentar la resistencia, retienen el agua ayudando al curado en climas secos y reduciendo el costo del concreto.

El acero de refuerzo también ayuda a controlar la contracción por secado, como se había indicado con anterioridad.

El "concreto espuma" es bombeable, fácilmente trabajable y autonivelante, pero es necesario utilizar fluidizantes y retardantes cuando es mezclado en climas superiores a los 20°C, con el objeto de no perder su estructura celular, y en el caso de temperaturas de 1 a 4°C durante las primeras 24 horas de mezclado, se deben tomar ciertas precauciones; esto incluye a los concretos elaborados tanto para cementos tipo I como tipo III. Este concreto nunca debe ser mezclado cuando haya presencia de nieve, lluvia, granizo o heladas.

El "concreto espuma" debe ser protegido para evitar el rápido secado; en caso de presentarse éste, debe ser curado por aspersión o con membrana. La membrana de curado debe ser compatible con los recubrimientos que recibirá posteriormente el concreto celular; además, no se debe permitir el pisado de las áreas hasta que no estén fraguadas, ya que esto produciría compactación y destrucción de los poros.

1.4.2.4. Propiedades

a) Propiedades físicas del concreto celular.

Se ha considerado últimamente que la densidad es la característica más sobresaliente del concreto aireado, sin tomar en cuenta sus propiedades térmicas, su trabajabilidad, etcétera, que generan grandes ventajas en la industria de la construcción. Otra gran cualidad es su factibilidad de diseño que aunada a las anteriores, permite gran confort a quienes lo utilizan y disfrutan de él.

b) Resistencia a la compresión.

Los principales factores que afectan la resistencia a la compresión del concreto celular son la densidad, el contenido de cemento, el tipo y cantidad de agregado, la relación agua/cemento, los aditivos y las condiciones de curado. Pruebas hechas con cemento portland tipo I y agentes para desarrollar las células con diferentes agregados determinaron los intervalos de densidad de éste en estado plástico. La densidad del concreto celular varía en un amplio intervalo que es determinado por el contenido de la matriz, siendo de 320 a 1,920 kg/m³. Cuando el concreto celular es elaborado sin aditivos y con arena, su intervalo varía de 800 a 1,920 kg/m³; las mezclas que contienen agentes dispersantes y arena tienen una densidad aproximada de 1,360 kg/m³; las combinaciones que tienen una densidad en estado plástico por arriba de 800 kg/m³ tienen un consumo aproximado de 390 kg/m³ de cemento.

De acuerdo con las consideraciones anteriores y pruebas del ACI (ACI 523.1R- 92 y ACI 523.3R-93), la resistencia a la compresión del concreto aireado sin aditivos ni agregados y secado en horno es la señalada en la Tabla 1.

Tabla 1. Resistencia a la compresión del concreto aireado.

Densidad Kg/m ³	Resistencia a la compresión MPa (Kgf/cm²)
320	0.48 (4.93)
400	0.86 (8.80)
480	1.55 (15.83)
560	2.43 (24.63)
800	5.18 (52.78)

Fuente: ACI (ACI 523.1R- 92 y ACI 523.3R-93)

En la Tabla 2 con relación a mezclas de concreto celular arenado con densidades mayores y sin aditivos, también de acuerdo con al ACI, se tienen las resistencias.

Tabla 2. Resistencias en comprensión del concreto arenado.

Densidad (Kg/m³)	% Arena	Relación a/c	Densidad cemento (Kg/m³)	Resistencia a la compresión MPa (Kgf/cm²)
960	0.65	0.50	446	3.5 (35.2)
1120	1.06	0.45	446	4.1 (42.2)
1280	1.42	0.45	446	5.2 (52.8)
1440	1.78	0.45	446	9.0 (91.5)
1600	2.14	0.45	446	12.4 (126.7)
1760	2.44	0.50	446	17.3 (175.9)
1920	2.80	0.50	446	24.3 (247.7)

Fuente: ACI (ACI 523.1R- 92 y ACI 523.3R-93)

c) Módulo de elasticidad.

El módulo de elasticidad del concreto celular es función de su densidad y su resistencia a la compresión; es bajo con relación al concreto convencional. En pruebas efectuadas a mezclas sin agregados pétreos y considerando como único complemento las burbujas de las células producidas por la reacción química, se determina que el módulo de elasticidad es más bajo con relación a concretos de su misma densidad, elaborados con agregados ligeros pero más rígidos. Esto ha sido señalado por pruebas de laboratorio con concretos aireados utilizados sólo como aislantes, que dieron densidades por debajo de 1,280 kg/m3.

En una Investigación realizada por la Universidad de Texas en Austin (Estados Unidos de América) para determinar la relación que guarda el módulo de elasticidad del Concreto Aireado curado en Autoclave (CAA) (E) con la resistencia a compresión del mismo (f_{CAA}), se ensayaron pilas de 102 mm x 102 mm x 204 mm. Con los datos obtenidos, se propusieron dos expresiones para calcular el módulo de elasticidad en función de la resistencia en compresión, una función lineal y otra no lineal:

$$E = 0.3 f_{CAA} + 105$$

$$E = 6500 f_{CAA}^{0.6}$$

Donde E y f_{CAA} están en lb/pulg²

d) Resistencia a la tensión y cortante.

Por lo regular, la resistencia a la tensión se toma en función de la resistencia en compresión. En pruebas de resistencia a cortante efectuadas en laboratorio, se determinó que, a pesar de que la estructura que compone al concreto celular es distinta que la de un concreto ligero normal, no existe disminución de tal resistencia, la cual se apega a las normas establecidas por el ACI 318 para el concreto ligero.

En cuanto a la resistencia directa a cortante del CAA se propuso la siguiente expresión en función de la resistencia en compresión:

$$f_{\nu} = 0.15 f_{CAA}$$

Donde f_v y f_{CAA} están en lb/pulg²

e) Conductividad térmica, resistencia al fuego y permeabilidad.

Las características de aislamiento térmico del concreto celular dependen primeramente de la densidad; otros factores que la determinan son los agregados utilizados, los poros, etcétera.

La conductividad térmica significa permitir el paso de la energía o temperatura de un lado a otro. Por sus características de poros de aire, el concreto celular reduce el paso de la temperatura exterior al interior de la construcción.

Los valores de conductividad térmica del concreto celular son similares a los de la madera y menores que los del adobe. Comparando muros de igual espesor resulta que un concreto de 400 kg/m3 aísla nueve veces más que el tabique rojo recocido y once veces más que el concreto común.

En relación con la resistencia al fuego, se ha demostrado en pruebas de laboratorio hechas a paneles de concreto celular, que pueden mantenerse a fuego directo las losas durante una hora, y los muros durante cuatro horas, sin perder su condición estructural. En las mismas pruebas, este concreto soportó ser expuesto a temperaturas arriba de 700 ° C y su punto de fusión es de 1000-2000 ° C, dependiendo de los materiales básicos.

1.4.3. Concreto estructural

1.4.3.1. Definición

El concreto es una mezcla de cemento Portland, agregado fino, agregado grueso, aire y agua en proporciones adecuadas para obtener ciertas propiedades prefijadas, especialmente la resistencia.

El cemento y el agua reaccionan químicamente uniendo las partículas de los agregados, constituyendo un material heterogéneo. Algunas veces se añaden ciertas sustancias, llamadas aditivos, que mejoran o modifican algunas propiedades del concreto (Abanto Castillo, 2012)

1.4.3.2. Tipos

a) Concreto simple.- Es una mezcla de cemento Portland, agregado fino, agregado grueso y agua. En la mezcla el agregado grueso deberá estar totalmente envuelto por la pasta de cemento, el agregado fino deberá rellenar los espacios entre el agregado grueso y a la vez estar recubierto por la misma pasta.

b) Concreto armado.- Se denomina así al concreto simple al cuando este lleva armaduras de acero como refuerzo y está diseñada bajo la hipótesis de que los dos materiales trabajan conjuntamente, actuando la armadura para soportar los esfuerzos de tracción o incrementar la resistencia a la comprensión del concreto.

c) Concreto estructural.- Se denomina así el concreto simple, cuando este es dosificado, mezclado, transportado y colocado, de acuerdo a especificaciones precisas, que garanticen una resistencia mínima pre-establecida en el diseño y una durabilidad adecuada.

d) Concreto ciclópeo.- Se denomina así al concreto simple que esta complementado con piedras desplazadoras de tamaño máximo de 10", cubriendo hasta el 30% como máximo, del volumen total. Las piedras deben ser introducidas previa selección y lavado, con el requerimiento indispensable de que cada piedra, en su ubicación definitiva debe estar totalmente rodeada de concreto simple.

CONCRETO SIMPLE + PIEDRA DESPLAZADORA = CONCRETO CICLOPEO

- e) Concretos livianos.- Son preparados con agregados livianos y su peso unitario varía desde 400 a 1700Kg/m3
- f) Concretos normales.- Son preparados con agregados corrientes y su peso unitario varía de 2300 a 2500 Kg/m3. Según el tamaño máximo del agregado. El peso promedio es de 2400 Kg/m3.
- g) Concreto pesados.- Son preparados utilizando agregados pesados, alcanzando el peso unitario valores entre 2800 a 600 Kg/m3. Generalmente se usan agregados como las baritas, minerales de fierro como la magnetita, limonita y hematita.

También, agregados artificiales como el fosforo de hierro y partículas de acero.

- La aplicación principal de los concretos pesados la constituye la protección bilógica contra los efectos de las radiaciones nucleares. También se utiliza en paredes de bóveda y cajas fuertes, en pisos industriales y en la fabricación de contenedores para desechos radiactivos.
- h) Concreto premezclado.- Es el concreto que se dosifica en planta, que puede ser mezclado en la misma o en camiones mezcladoras y que es transportado a obra.
- i) Concreto prefabricado.- Elementos de concreto simple o armado fabricados en una ubicación diferente a su posición final en la estructura.
- j) Concreto bombeado.- Concreto que es impulsado por bombeo, a través de tuberías hacia su ubicación final.

1.4.3.3. Propiedades

a) Trabajabilidad

Es la facilidad que presenta el concreto fresco para ser mezclado, colocado compactado y acabado sin segregación y exudación durante estas operaciones.

No existe prueba alguna hasta el momento que permita cuantificar esta propiedad generalmente se le aprecia en los ensayos de consistencia.

b) Consistencia.

Está definida por el grado de humedecimiento de la mezcla, depende principalmente de la cantidad de agua usada.

c) Segregación.

Es una propiedad del concreto fresco, que implica la descomposición de este en sus partes constituyentes o lo que es lo mismo, la separación del Agregado Grueso del Mortero.

Es un fenómeno perjudicial para el concreto, produciendo en el elemento llenado, bolsones de piedra, capas arenosas, cangrejeras. etc.

La segregación es una función de la consistencia de la mezcla, siendo el riesgo mayor cuando más húmeda es esta y menor cuando más seca lo es.

En el proceso de diseño de mezclas, es necesario tener siempre presente el riesgo de segregación, pudiéndose disminuir este, mediante el aumento de finos (cemento o A. fino) y de la consistencia de la mezcla.

Generalmente procesos inadecuados de manipulación y colocación con las causas del fenómeno de segregación en las mezclas. La segregación ocurre cuando parte del concreto se mueve más rápido que el concreto adyacente, por ejemplo, el traqueteo de las carretillas con ruedas metálicas tiende a producir que el agregado grueso se precipite al fondo mientras que la "lechada" asciende a la superficie.

Cuando se suelta el concreto de alturas mayores de ½ metro el efecto es semejante.

También se produce segregación cuando se permite que le concreto corra por canaletas, máxime si estas presentan cambios de dirección.

El excesivo vibrado de la mezcla produce segregación.

d) Resistencia.

La resistencia del concreto no puede probarse en condición plástica, por lo que el procedimiento acostumbrado consiste en tomar muestras durante el mezclado las cuales después de curadas se someten a pruebas de compresión.

Se emplea la resistencia a la compresión por la facilidad en la realización de los ensayos y el hecho de que la mayoría de propiedades del concreto mejoran al incrementarse esta resistencia. La resistencia en compresión del concreto es la carga máxima para una unidad de área soportada por una muestra, antes de fallar por compresión (agrietamiento, rotura)

La resistencia a la comprensión de un concreto (f'c) debe ser alcanzado a los 28 días, después de vaciado y realizado el curado el curado respectivo.

e) Durabilidad.

El concreto debe ser capaz de resistir la intemperie, acción de productos químicos y desgaste, a los cuales estará sometido en el servicio. Gran parte de los daños por intemperie sufrido por el concreto pueden atribuirse a los ciclos de congelación y descongelación. La resistencia del concreto a esos daños puede mejorarse aumentando la impermeabilidad incluyendo de 2 a 6% de aire con un agente inclusor de aire, o aplicando un revestimiento protector a la superficie.

Los agentes químicos, como ácidos inorgánicos. Ácidos acéticos y carbónicos y los sulfatos de calcio, sodio, magnesio, potasio, aluminio y hierro desintegran o dañan el concreto. Cuando puede ocurrir contacto entre estos agentes y el concreto se debe proteger el concreto con un revestimiento resistente, para lograr resistencia a los sulfatos, se debe usar cemento portland tipo V. La resistencia al desgaste, por lo general, se logra con un concreto denso, de alta resistencia, hecho con agregados duros.

f) Impermeabilidad.

Es una importante propiedad del concreto que puede mejorarse, con frecuencia, reduciendo la cantidad de agua en la mezcla. El exceso de agua deja vacíos y cavidades después de la evaporación y si están interconectadas, el agua puede penetrar o atravesar el concreto. La inclusión de aire (burbujas diminutas) así como un curado adecuado por tiempo prolongado, suelen aumentar la impermeabilidad

II. MATERIALES Y MÉTODOS

2.1. El proyecto arquitectónico

Como profesionales en ingeniería se debe buscar calidad, y que un proyecto sea una verdadera obra de arte, que sea la suma de verdad, razón y belleza. Con el diseño se intentó alcanzar la razón constructiva, funcional y geométrica y para aprovechar al máximo su excelencia hay que desenmascarar, es nuestra obligación, el mito una gran obra de arte residencial, diferenciando entre lo accesorio y lo esencial.

Dado las limitaciones que presenta las edificaciones con el sistema de muros de ductilidad limitada, los estacionamientos, están en las áreas comunes exteriores del proyecto y por lo tanto no fue necesario la presencia de sótanos.

El proyecto consiste en una vivienda multifamiliar de 3 pisos con un área total techada de 174.964 m², una altura total de 10.60 m incluyendo la azotea y una altura de entre piso de 2.80 m.

La distribución del edificio consiste en un ingreso principal el cual conduce al Hall común y circulación vertical, a través de las escaleras, que comunica con los niveles superiores.

El edificio posee 01 departamentos por piso cuya distribución es típica en todos los pisos y consiste en:

Departamento 01: Posee sala-comedor-estar, cocina, lavandería, dormitorio 01 con baño incorporado, dormitorio 02 con baño incorporado, dormitorio 03 con baño incorporado, 01 baño común, dormitorio de servicio y baño de servicio. El área techada de este departamento es 174.964 m².

Los departamentos de pisos superiores cuentan además con 2 terrazas en el comedor y dormitorio principal respectivamente.

La Figura 1 muestra la planta típica del edificio y la Figura 2 y 3 nos muestran una vista 3D del edificio.

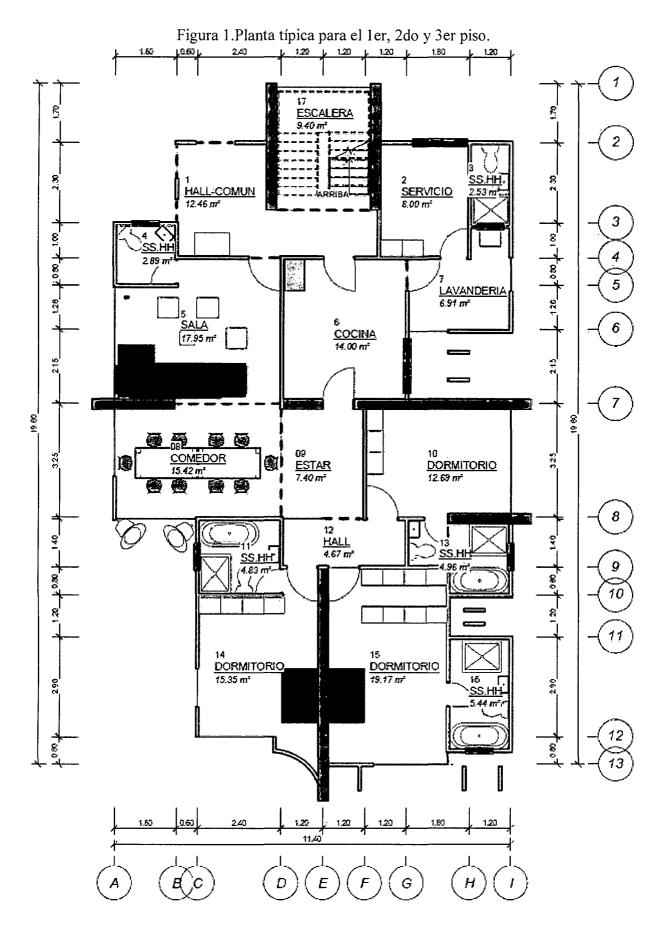
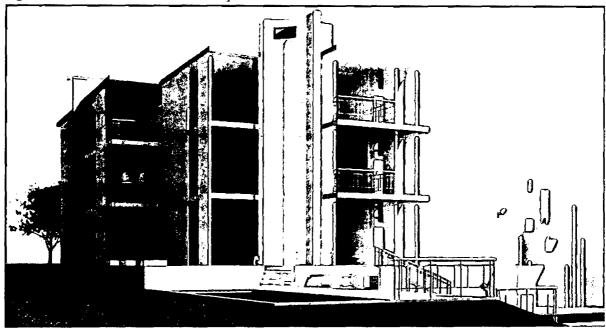



Figura 2. Vista 3D de la elevación posterior.

Fuente: Elaboración propia.

Figura 3. Vista 3D de la elevación principal.

2.2. Cargas de diseño

Las cargas de gravedad y de sismo que se utilizaron para el análisis estructural del edificio y en el diseño de los diferentes elementos estructurales, cumplen con la Norma Técnica de Edificaciones E-020 Cargas (NTE E-020) y con la Norma Técnica de Edificaciones E-030 Diseño Sismorresistente (NTE E-030). Se consideraron tres tipos de cargas:

2.2.1. Carga muerta (CM)

Estas son cargas permanentes que la estructura soporta. Considera el peso real de los materiales que conforman la edificación, dispositivos de servicio y equipos, tabiques y otros elementos soportados por la edificación incluyendo su peso propio. Los pesos unitarios de los materiales se obtuvieron del Anexo 1 de la NTE E-020 y artículos relacionados con el tema de la investigación, los valores se muestran en la Tabla 03:

Tabla 3. Pesos unitarios de los materiales.

CONCRETO ESTRUC	TURAL	CONCRETO CELULAR			
MATERIAL O ELEMENTO	P.U	MATERIAL O ELEMENTO	P.U		
Concreto Armado	2.40 ton/m^3	Concreto Armado	1.86 ton/m^3		
Losa Aligerada (h=0.20 m)	0.30 ton/m^2	Losa Aligerada (h=0.20 m)	0.25 ton/m2		
Piso Terminado (e=5cm)	0.10 ton/m^2	Piso Terminado (e=5cm)	0.10 ton/m2		
Tabiquería Móvil	0.10 ton/m^2	Tabiquería Móvil	0.10 ton/m2		

Fuente: NTE E-020, Comportamiento de muros de concreto celular con diferentes cuantías de acero de refuerzo (Dr. Juan José Ramírez Zamora)

2.2.2. Carga viva (CV)

Es el peso eventual de todos los ocupantes, materiales, equipos, muebles y otros elementos movibles soportados por la edificación También llamada sobrecarga, se calcula como una carga uniformemente distribuida basándose en un peso unitario por m² proporcionado por la NTE E-020. Los valores de la Tabla 4 se aplicaron a ambas estructuras:

Tabla 4. Sobrecargas consideradas en la edificación.

OCUPACION O USO	CARGA REPARTIDA
Viviendas	0.20 ton/m^2
Corredores y escaleras	0.20 ton/m^2
Azotea ⁻	0.10 ton/m^2
Fuenta: NTE E 020 (2006)	

Fuente: NTE E-020 (2006)

2.2.3. Carga de sismo (CS)

Es la carga que se genera debido a la acción sísmica sobre la estructura. Para calcular los

esfuerzos que estas cargas producen en la estructura se ha utilizado el programa ETABS

2015.

2.3. Método de diseño

Los elementos de concreto armado para los 2 tipos se diseñaron con el Diseño por

Resistencia, o también llamado Diseño a la Rotura. Lo que se pretende es proporcionar a

los elementos una resistencia adecuada según lo que indique la NTE E-060 2009,

utilizando factores de cargas y factores de reducción de resistencia. Primero se tiene de

un metrado las cargas de servicio, las cuales se amplifican mediante los llamados factores

de carga. Luego se aplica las siguientes combinaciones de cargas:

U = 1.4CM + 1.7CV

 $U = 1.25(CM + CV) \pm CS$

U = 0.9CM + CS

Donde:

U: Resistencia requerida o resistencia última

CM: Carga muerta

CV: Carga viva

CS: Carga de sismo

Estas combinaciones se encuentran especificadas en la NTE E-060 en el acápite 9.2 y de

esta manera se está analizando la estructura en su etapa última. La resistencia de diseño

proporcionada por un elemento deberá tomarse como la resistencia nominal (resistencia

proporcionada considerando el refuerzo realmente colocado) multiplicada por un factor ϕ

de reducción de resistencia, según el tipo de solicitación a la que esté sometido el elemento.

Estos factores de reducción de resistencia se indican en la NTE E-060 en el acápite 9.3.2.

Algunos de estos son:

Flexión: 0.9

Cortante: 0.85

Carga axial: 0.7

26

Resumiendo:

Resistencia de Diseño ≥Resistencia Requerida (U)

Resistencia de Diseño = ϕ Resistencia Nominal

2.4. Materiales empleados

Los materiales a utilizados en la construcción de los elementos estructurales son:

2.4.1. Concreto armado

Es el concreto que tiene acero de refuerzo distribuido en el elemento para que pueda resistir los esfuerzos a los que se encuentre sometido. Las propiedades varían de acuerdo al tipo de concreto y acero, para este edificio se utilizó:

a) Concreto estructural.

Resistencia a la compresión:

 $f'c = 175kg/cm^2$

Módulo de Poisson:

v = 0.15

Módulo de Elasticidad:

 $Ec = 15000\sqrt{f'c} = 198431.348kg/cm^2$

a) Concreto celular.

Resistencia a la compresión:

 $f'c = 175kg/cm^2$

Módulo de Poisson:

v = 0.11

Módulo de Elasticidad:

 $Ec = Ec(Estruc.)/1.45 = 136849.2kg/cm^2$

* El valor Ec se toma considerando que el peso del concreto estructural es aproximadamente 45% mayor al del concreto celular. (Fuente: CARACTERIZACIÓN DE CONCRETO CELULAR A BASE DE ESPUMA PREFORMADA, Delma V.Almada Navarro, Francisco S. Yeomans Reyna, Carlos Nungaray Pérez y Adolfo Elizondo Fósil)

2.4.2. Acero de refuerzo

Debido a que el concreto tiene poca resistencia a la tracción se coloca acero en el concreto para que soporte estas tracciones, además contribuye a resistir la compresión y corte. El acero que se usa son barras de acero corrugado de Grado 60. Las principales propiedades de estas barras son las siguientes:

Límite de Fluencia:

 $fy = 4200kg/cm^2$

Módulo de Elasticidad: $Es = 2000000 kg/cm^2$

2.5. Normas empleadas

El análisis y diseño estructural se realizó conforme se indica en las siguientes normas, contenidas en el Reglamento Nacional de Edificaciones:

- Norma Técnica de Edificación E-020 "CARGAS".
- Norma Técnica de Edificación E-030 "DISEÑO SISMORRESISTENTE" (Ver*)
- Norma Técnica de Edificación E-050 "SUELOS Y CIMENTACIONES".
- Norma Técnica de Edificación E-060 "CONCRETO ARMADO".
- * En el caso del análisis y diseño sísmico se utilizó la NTE E-030 2014

2.6. Marco metodológico

2.6.1. Sistema de muros de ductilidad limitada

2.6.1.1. Conceptos básicos

Catalogados dentro de los sistemas estructurales de Muros Portantes, este sistema de estructuración se ha venido aplicando en nuestro país, con una gran intensidad, desde comienzos de la década del 2000. Su característica principal consiste en la alta resistencia que poseen debido a la significativa cantidad de áreas de muros estructurales.

Los sistemas para resistir las cargas de gravedad y las cargas laterales de viento o sismo, están compuestos por muros de concreto armado de espesores reducidos, reforzados con acero corrugado convencional en los extremos y malla electro soldada o barras corrugadas en el alma del muro, generalmente en una sola capa de refuerzo, pues los espesores típicos suelen estar entre los 10 y 15 cm.

Dada a la gran rigidez lateral del Muro de Ductilidad Limitada, estos elementos absorben grandes cortantes, que a su vez producen grandes momentos.

Si los muros son Esbeltos se comportan como elementos sometidos a flexocompresión y cortante pudiendo ser diseñados bajo la hipótesis básica de flexión. (Que son las mismas para flexocompresión)

Si los muros son Cortos o bajos el comportamiento a flexocompresión ya no puede ser analizado por las hipótesis usuales de flexión, sino que al parecerse más a la denominada viga pared, ya no cumplen la distribución de deformaciones y esfuerzos de Navier, por lo cual se debe hacer un análisis aplicando la Teoría de Elasticidad.

2.6.1.2. Requisitos reglamentarios (RNE)

2.6.1.2.1. Cuantía mínima de refuerzo

De acuerdo a la Norma para Edificaciones con Muros de Ductilidad Limitada, la cuantía mínima de refuerzo vertical y horizontal de los muros deberá cumplir con las siguientes limitaciones:

Sí:

$$V_u > 0.5 \emptyset V_c \rightarrow \rho h \ge 0.0025 \ y \ \rho v \ge 0.0025$$

 $V_u < 0.5 \emptyset V_c \rightarrow \rho h \ge 0.0020 \ y \ \rho v \ge 0.0015$

Si hm / lm \leq 2 la cuantía vertical del refuerzo no deberá de ser menor que la cuantía horizontal. Estas cuantías son indistintamente aplicables a la resistencia del acero.

2.6.1.2.2. Diseño por flexión o flexocompresión

Para muros esbeltos (H/L≥1), serán aplicables los lineamientos generales establecidos para flexocompresión; se investigará la resistencia en base a una relación Carga Axial-Momento.

Teniendo dimensionadas las secciones del muro de corte, el cálculo del acero se efectuará simplemente haciendo una iteración entre las siguientes expresiones:

$$A_S = \frac{M_u}{\emptyset f_v(d - a/2)}$$
 $a = \frac{A_S f_v}{0.85 f_c' b}$

Donde:

 M_u = Momento de diseño, calculado por carga muerta y sismo.

Ø = Factor de reducción de resistencia = 0.9

 f_v = Esfuerzo de fluencia a usar.

d = Peralte efectivo.

a = Profundidad del bloque equivalente en compresión del concreto.

 $A_s =$ Área de acero por flexión.

 f'_c = Resistencia del concreto a la compresión.

b = Espesor de la sección.

Para muros de poca esbeltez (H/L<1), y con cargas axiales no significativas, no son válidos los lineamientos establecidos para flexocompresión, debiéndose calcular el área del refuerzo del extremo en tracción para el caso de secciones rectangulares como sigue: (Norma E-060)

$$M_u = \emptyset A_S f_y Z$$

$$Z = 0.4L \left[1 + \frac{H}{L} \right]; \quad si \ 0.5 < \frac{H}{L} < 1$$

$$Z = 1.2H; \quad si \ \frac{H}{L} \le 0.5$$

El esfuerzo vertical deberá distribuirse a lo largo de la longitud del muro, debiéndose concentrar mayor esfuerzo en los extremos. Adicionalmente se colocará refuerzo repartido a lo largo de la longitud de muro, cumpliendo con el acero mínimo de refuerzo vertical.

El refuerzo vertical distribuido no necesita estar confinado por estribos a menos que su cuantía exceda a 0.01 o que sea necesario por compresión.

Si el refuerzo en la fibra en tracción calculado suponiendo comportamiento lineal elástico:

$$\sigma_u = \frac{M_{ux}Y_t}{I_g} - \frac{P_u}{A_g}$$

Excede de $2\sqrt{f'_c}$ deberá verificarse que el refuerzo en tracción de los extremos provea un momento resistente por lo menos igual a 1.2 veces el momento de agrietamiento (M_{cr}) de la sección (Especificaciones Normativas EMDL)

$$M_{cr} = \left(2\sqrt{f_c'} + \frac{P_u}{A_g}\right) \frac{I_g}{Y_t}$$

Donde:

 M_{cr} = Momento de agrietamiento.

 I_q = Momento de inercia bruta de la sección.

 f'_c = resistencia del concreto a la compresión.

 P_u = Carga axial última.

 A_a = Área bruta de la sección.

 Y_t = Distancia del eje centroidal de la sección total a la fibra extrema en tracción (sin considerar el refuerzo) o $L_w/2$

 $L_w =$ Longitud del alma de la sección.

2.6.1.2.3. Diseño por fuerza cortante

Los muros con refuerzos de corte debidos a la acción de fuerzas coplanares considerando:

$$V_{u} \leq \emptyset V_{n}$$

$$\emptyset V_{n} = \emptyset V_{c} + \emptyset V_{s} = \emptyset \left(A_{c} \alpha \sqrt{f'_{c}} \right) + \emptyset \left(A_{c} \rho_{n} f_{y} \right)$$

Donde \emptyset = 0.85, " A_c " representa el área de corte en la dirección analizada, " ρ_h " la cuantía horizontal del muro y " α " es un valor que depende del cociente entre la altura total del muro " h_m " (del suelo al nivel más alto) y la longitud del muro en planta " l_m ".

$$si\left(\frac{h_m}{l_m}\right) \le 1.5$$
 $\alpha = 0.8$
 $si\left(\frac{h_m}{l_m}\right) \le 2.5$ $\alpha = 0.53$
 $si\ 1.5 < \left(\frac{h_m}{l}\right) < 2.5$,

 α se obtiene interpolando entre 0.8 y 0.53 y V_n no deberá de exceder de $V_n 2.7 \sqrt{f'_c t d}$

Cuando un muro está sujeto a esfuerzos de tracción axial significativa o cuando los esfuerzos de compresión sean pequeños $N_u/A_g < 0.1 f'_c$, deberá considerarse $V_C = 0$.

La fuerza cortante última de diseño (V_u) debe ser mayor o igual que el cortante último proveniente del análisis (V_{ua}) amplificado por el cociente entre el momento nominal asociado al acero colocado (M_n) y el momento proveniente del análisis (M_{ua}) , es decir

$$V_u \ge V_{ua} \left(\frac{M_n}{M_{ua}} \right)$$

La distancia "d" de la fibra extrema en compresión al centroide de la fuerzas en tracción del refuerzo se calculará con un análisis basado en la compatibilidad de deformaciones; la Norma permite usar un valor aproximado de "d" igual 0.8 L

2.6.1.2.4. Refuerzo de muros

a) Refuerzo horizontal por corte.

Cuando V_u exceda a $\emptyset V_c$, deberá colocarse refuerzo horizontal por corte. El área de este esfuerzo se calculará con la siguiente fórmula:

$$V_s = \frac{A_v f_y d}{s}$$

La cuantía ph del refuerzo horizontal por corte (referida a la sección total vertical de concreto de la sección en estudio), será mayor o igual a 0.0025. El espaciamiento del refuerzo horizontal no excederá los siguientes valores:

- L/5
- 3t
- 45cm.

El refuerzo vertical deberá anclarse en los extremos confinado del muro en forma que pueda desarrollar su esfuerzo de fluencia.

b) Refuerzo vertical por corte.

La cuantía pv del refuerzo vertical por corte (referida a la sección total horizontal del concreto), será igual a:

$$\rho v = [0.0025 + 0.5(2.5 - H/L)(\rho h - 0.0025)]$$

Pero necesitará ser mayor que el refuerzo horizontal requerido. El espaciamiento del refuerzo vertical no deberá ser mayor que los siguientes valores:

- L/3
- 3t
- 45cm.

En caso que V_u sea menor que $0.5 \emptyset V_c$, las cuantías de refuerzo horizontal y vertical pueden reducirse a los siguientes valores:

$$\rho h > 0.0020$$

$$\rho v > 0.0015$$

Cuando el espesor del muro sea igual o mayor a 25 cm el refuerzo por corte vertical y horizontal tendrá que distribuirse en dos caras.

El refuerzo vertical distribuido debe garantizar una adecuada resistencia al corte fricción ($\emptyset V_n$) en la base de todos los muros. La resistencia a corte fricción deberá calcularse como:

$$\emptyset V_n = \emptyset \mu \big(N_u + A_v f_v \big)$$

Donde la fuerza normal última (N_u) se calcula en función de la carga muerta (N_m) como $N_u = 0.9N_m$, el coeficiente de fricción debe tomarse como $\mu = 0.6$ y $\emptyset = 0.85$. Excepcionalmente cuando se prepare adecuadamente la junta se tomara $\mu = 1$.

2.6.1.3. Criterios de estructuración

- a) La experiencia indica que un predimensionamiento adecuado consiste en asegurar una densidad de muros en cada dirección de la planta de 50 cm2 por cada m2 techado. (Se considera el área techada total y se evalúa la densidad en el primer nivel)
- b) Lo ideal es tener muros de longitudes similares, de tal manera que no haya concentraciones de esfuerzos en algunos muros, en algunos casos se recomienda hacer juntas en muros largos (>4.00m) para tener longitudes similares.
- c) Cuando se tienen edificios alargados, es conveniente hacer juntas de separación, las que también ayudan a disminuir los efectos de contracción y temperatura.
- d) Cuando se tienen estacionamientos en el primer piso o en el sótano no es recomendable usar el sistema de Muros de Ductilidad Limitada pues se tiene una discontinuidad y se crea en el primer nivel un piso "blando" que requerirá desarrollar mucha ductilidad, que no es fácil conseguir, a menos que se idee algún otro método o procedimiento a fin de evitar el llamado "piso blando".

2.6.2. Modelos estructurales

Se presentan el desarrollo de los modelos del edificio, escaleras y losa de cimentación. Estos modelos se desarrollaron con ayuda de los programas ETABS 2015 y SAFE v14.

2.6.2.1. Modelo estructural del edificio

Para el edificio se desarrolla un modelo tridimensional usando el software ETABS 2015, el cual nos facilita el análisis tanto a cargas de gravedad como para cargas laterales de sismo.

Las losas se consideran como áreas que distribuyen la carga de gravedad hacia los muros. Los muros se consideran como empotrados en su base y transmiten las cargas de gravedad y sismo hacia la cimentación.

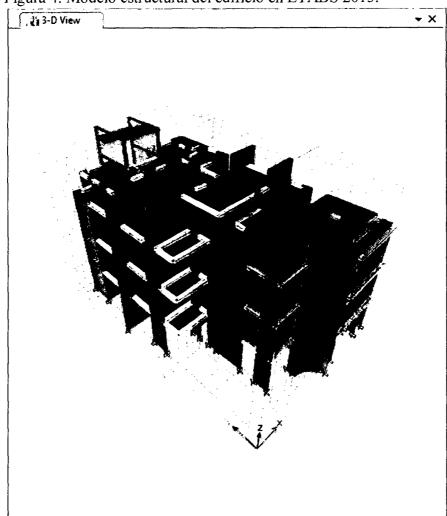


Figura 4. Modelo estructural del edificio en ETABS 2015.

2.6.2.2. Modelo de la losa de cimentación

El modelo de la losa de cimentación se realiza con el software SAFE v14 el cual realiza un análisis mediante elementos finitos. Para realizar el modelo se necesita establecer la geometría que tendrá la platea, la ubicación de los muros, y también introducir las cargas del edificio ya sean estas de gravedad o de sismo.

En este caso se exportan las cargas desde del modelo del edificio en ETABS, luego de esto se ingresan los datos como espesor de la platea y coeficiente de balasto del suelo, el cual está en función de la capacidad portante del terreno.

La platea es una losa apoyada sobre el suelo, por lo tanto el terreno solo resiste esfuerzos de compresión, esta condición también la tiene en cuenta el programa.

Figura 5. Modelo de la losa de cimentación en SAFE v14.

III. RESULTADOS

3.1. Predimensionamiento de elementos estructurales

3.1.1. Muros de ductilidad limitada

Para el pre-dimensionamiento de los Muros de Ductilidad Limitada (MDL) en ambas direcciones, se ha tenido en cuenta lo descrito en Especificaciones Normativas para diseño en concreto armado en EMDL, Especificaciones Normativas para diseño Sismo resistente en EMDL y la NTE E-060.

Las Especificaciones Normativas para diseño Sismo Resistente en EMDL permite:

- Uso de muros de ductilidad limitada en edificios con un máximo de 7 pisos: Este límite se cumple en el proyecto ya que tenemos 3 pisos.
- Espesor mínimo de 10 cm: El proyecto cuenta con espesores de 10cm y 30 cm.

De acuerdo al artículo 14.5.2 de la NTE E-060, se deberá verificar que la resistencia del muro a compresión sea mayor a las cargas actuantes amplificadas. De lo contrario se deberá aumentar el espesor del muro. Esta verificación es para MDL y para Muros Estructurales.

La siguiente expresión estima la resistencia a carga vertical de un muro diseñado como elemento en compresión:

$$\phi Pnw = 0.55\phi f'cAg\left[1 - \left(\frac{K(lc)}{32(t)}\right)^2\right]$$

Donde:

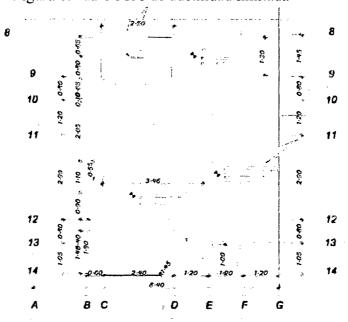
 $\phi = 0.7$

 $f'c = 175 Kg/cm^2$

lc = distancia vertical entre apoyos = 2.80m

Ag =área bruta de la sección

t = espesor del muro


k = factor de restricción = 0.8

3.1.1.1. Concreto estructural

A continuación se toma como ejemplo el muro M18, Figura 6, para verificar que se cumpla la siguiente desigualdad:

$Pu \leq \phi Pnw$

Figura 6. Muro M18 de ductilidad limitada

Fuente: Elaboración propia.

Cálculo de Pu

Área en planta del muro = 0.52 m^2

Altura total del muro = 8.4 m

Peso específico del concreto=2.4 tn/m³

 $Wm/Losa = 0.30 \text{ tn/m}^2$

 $Wm/Piso terminado = 0.10 tn/m^2$

Wv/Típico =0.2tn/m2

Wv/Azotea = 0.1tn/m2

Área tributaria =7.71m2

Peso total del muro = $(0.52 \times 8.4) \times 2.4 = 10.48 \text{tn}$

Peso total del techo = $(0.30+0.1) \times 7.71 \times 3 = 9.25 \text{ton}$

Wv Total del techo = (0.2x 7.71 x 2 + 0.1 x 7.71 x 1) = 3.85tn

Carga muerta total=10.48tn+9.25tn ≈ 19.73 tn

Carga viva total ≈3.85tn

$$Pu = 1.4 (19.73) + 1.7 (3.85) \approx 34.17 tn$$

<u>Cálculo de Pnw</u>

$$\phi Pnw = 0.55x0.7x175x5200x \left[1 - \left(\frac{0.8x280}{32x10} \right)^2 \right] = 178.68tn$$

Entonces.

$$Pu = 34.17tn \le \phi Pnw = 178.68tn, OK$$

3.1.1.2. Concreto celular

Para el caso del concreto celular se hizo la verificación del mismo muro en análisis M18.

Cálculo de Pu

Área en planta del muro = 0.52 m^2

Altura total del muro = 8.4 m

Peso específico del concreto=1.86 tn/m³

 $Wm/Losa = 0.25 \text{ tn/m}^2$

 $Wm/Piso terminado = 0.10 tn/m^2$

Wv/Típico = 0.2tn/m2

Wv/Azotea = 0.1tn/m2

Área tributaria =7.71m2

Peso total del muro = $(0.52 \times 8.4) \times 1.86 = 8.12 \text{tn}$

Peso total del techo = $(0.25+0.1) \times 7.71 \times 3 = 8.10 \text{ ton}$

Wv Total del techo = (0.2x 7.71 x 2 + 0.1 x 7.71 x 1)=3.85tn

Carga muerta total= $8.12tn+8.10tn \approx 16.22tn$

Carga viva total ≈3.85tn

$$Pu = 1.4 (16.22) + 1.7 (3.85) \approx 29.25 tn$$

Cálculo de priv

$$\phi Pnw = 0.55x0.7x175x5200x \left[1 - \left(\frac{0.8x280}{32x10} \right)^2 \right] = 178.68tn$$

Entonces,

$$Pu = 29.25tn \le \phi Pnw = 178.68tn, OK$$

3.1.2. Losas aligeradas

Se escogió losa aligerada para el sistema de techado por ser más económico y por presentar mejor aislamiento acústico que las losas macizas. Además con el sistema

propuesto no habría dificultades para la instalación de las tuberías de desagüe puesto a que ellas quedarían empotradas en la losa aligerada sin problemas, por lo que no necesitamos ensanchar la losa ni colocar un falso techo.

Para escoger el espesor de la losa, se ha tenido en cuenta las luces de los paños. En este caso la mayoría de luces son menores que 4m, siendo posible usar 20cm de espesor. También se decidió el espaciamiento entre viguetas, de acuerdo a las dimensiones del ladrillo de arcilla, que son 30 cm de largo y un ancho de vigueta de 10cm (usado generalmente en el Perú), quedando el espaciamiento de 40cm entre eje de viguetas.

3.1.3. Escaleras

Se contempló en el diseño arquitectónico que las dimensiones de las escaleras cumplan con las dimensiones establecidas en el Reglamento Nacional de Edificaciones.

Siendo esta la condición:

$$60cm \le 2cp + p \le 64cm$$

Con las dimensiones consideradas en el proyecto tenemos:

• Contrapaso:

cp = 17.5cm

Paso:

p=25cm

Obteniendo entonces:

$$60 \le 2(17.5) + 25 = 60 \le 64, \mathbf{OK}$$

3.2. Análisis sísmico

3.2.1. Introducción

El análisis sísmico tiene como finalidad determinar las fuerzas internas en los elementos estructurales bajo la acción del "sismo de diseño". Adicionalmente permite estimar los desplazamientos laterales de una edificación. Para los muros de ductilidad limitada, la norma específica que el máximo desplazamiento relativo de entrepiso (calculado según el numeral 5.2 de NTE E-030 2014), dividido entre la altura de entrepiso, conocido como deriva, no debe exceder de 0.005.

Para el cálculo de las fuerzas internas y esfuerzos en cada uno de los elementos estructurales, se han contemplado los dos métodos (estático y dinámico), con la finalidad de comparar sus resultados.

3.2.2. Parámetros del análisis sísmico

3.2.2.1. Parámetros de sitio

3.2.2.1.1. Zonificación: Factor Z

En el numeral 2.1 de la NTE E-030 2014, considera el territorio nacional en cuatro zonas diferentes y a cada una de estas le asigna un factor Z. Este valor Z se define como la aceleración máxima del terreno con una probabilidad de 10% de ser excedida en 50 años. El edificio en estudio se encuentra ubicado en la ciudad de Chachapoyas, por lo tanto, pertenece la Zona 2 y su factor es Z = 0.25, como se aprecia en la Tabla 5.

Tabla 5. Factores de zona.

ZONA	Z
4	0.45
3	0.35
學生的學學生。	C 25 1 1
1	0.15

Fuente: NTE E-030 2014.

3.2.2.1.2. Condiciones geotécnicas: Factor S, TP y TL

La NTE E-030 2014 considera 4 perfiles de suelo que se clasifican tomando en cuenta las propiedades mecánicas del suelo, el espesor del estrato, el periodo fundamental de vibración, la velocidad de las ondas y la zonificación.

Los 4 perfiles de suelos tienen asociado un factor de amplificación S el cual permite estimar la amplificación de las solicitaciones sísmicas respecto a la base rocosa, un parámetro T_P que define el inicio de la plataforma del espectro de Pseudo aceleraciones y T_L que indica el inicio de desplazamiento constante.

El suelo sobre el cual esta cimentado el proyecto es arcilla inorgánica de alta plasticidad (CH) y de acuerdo a la norma este es un suelo tipo S2 (Suelos intermedios) y le asigna el valor de S=1.20, $T_P=0.6$ sy $T_L=2$ s. Como se muestra en la Tabla 6 y Tabla 7.

Tabla 6. Factor S.

ZONA/SUELO	S0	S1	S2	S3
Z4	0.8	1	1.05	1.1
Z 3	0.8	1	1.15	1.2
Z 2	0.8	1	6-12	1.4
Z 1	0.8	1	1.6	2

Fuente: NTE E-030 2014.

Tabla 7. Periodos TP y TL.

	Perfil de suelo					
	S0 S1 S2 S3					
$T_P(S)$	0.3	0.4	JOH.	1		
T _L (S)	3	2.5	7	1.6		

Fuente: NTE E-030 2014.

3.2.2.1.3. Factor de amplificación sísmica: Factor C

Según la NTE E-030 2014 este coeficiente se interpreta como el factor de amplificación de la respuesta de la estructura con respecto a la aceleración del suelo, el valor de C tiene 03 fórmulas de cálculo, las cuales se indican a continuación.

$$C = \begin{cases} 2.5, & cuando \ T \leq T_P \\ 2.5 \cdot \left(\frac{T_P}{T}\right), & Cuando \ T_P < T \leq T_L \\ 2.5 \cdot \left(\frac{T_P \cdot T_L}{T^2}\right), & Cuando \ T > T_L \end{cases}$$

Y también debe cumplirse $C/R \ge 0.125$

3.2.2.2. Requisitos generales

3.2.2.2.1. Categoría de las edificaciones: Factor U

Según el numeral 3.1 de la NTE E-030 2014, clasifica las estructuras según las categorías mencionadas en la tabla N° 5 de dicha norma. El edificio en análisis pertenece a la categoría C "Edificios Comunes" la cual tiene un valor asignado de U=1.0

3.2.2.2.2. Sistema estructural: Coeficiente básico de reducción de fuerzas sísmicas Ro

Según el numeral 3.4 "Sistemas Estructurales" de la NTE E-030 2014, clasifica a los sistemas estructurales según los materiales usados y el sistema de estructuración

Sismorresistente en la tabla N°7 de la norma y le asigna un coeficiente básico de reducción de fuerza sísmica R₀.

Para el proyecto con un sistema regular para una estructura de Concreto Armado debido al numeral 3.2.1."Edificación de baja altura con alta densidad de muros de ductilidad limitada" se tomará el valor de R₀=4 como se muestra en la Tabla 8.

Tabla 8. Coeficiente básico de reducción de fuerza sísmica, R₀.

SISTEMA ESTRUCTURAL	
CONCRETO ARMADO	Ro
Pórtico	8
Dual	7
De muros estructurales	6
Wrufoe de ductile of	
E NITE E 020 2014	

Fuente: NTE E-030 2014.

3.2.2.2.3. Sistema estructural: Irregularidad estructural Ia, Ip

La NTE E-030 2014 indica que el factor la es el menor valor de la tabla N° 08 presente en misma, correspondiente a las irregularidades existentes en altura.

El factor Ip se determina como el menor valor de la tabla N° 09 de la misma norma correspondiente a las irregularidades existentes en planta.

Los factores de irregularidad serán únicos en ambas direcciones de análisis.

Las irregularidades presentes en el proyecto no alcanzan los valores establecidos en las tablas antes mencionadas, por lo que los factores toman los siguientes valores, Ia = 1 y Ip = 1.

3.2.2.2.4. Sistema estructural: Coeficiente de reducción de la fuerza sísmica R

De acuerdo con la NTE E-030 2014 la cual estable en el numeral 3.8 que el coeficiente de reducción sísmica se determina mediante el producto del coeficiente básico de reducción de la fuerza sísmica R_0 y los factores de irregularidad estructural la e Ip.

$$R = R_0 \cdot I_a \cdot I_P$$
$$R = 4 \cdot 1 \cdot 1 = 4$$

3.2.3. Análisis estático

3.2.3.1. Generalidades

Según la NTE E-030 2014 de diseño Sismorresistente, este método representa las solicitaciones sísmicas mediante un conjunto de fuerzas horizontales actuando en cada nivel de la edificación. Así mismo la norma señala en el numeral 4.5 que se podrá analizar mediante este procedimiento todas las estructuras regulares e irregulares ubicadas en la zona sísmica 1, las estructuras clasificadas como regulares según el numeral 3.5 de la misma norma de no más de 45 metros de altura y las estructuras de muros portantes de concreto armado y albañilería armada o confinada de no más de 15 metros de altura aun cuando sean irregulares.

3.2.3.2. Periodo fundamental

La norma nos permite calcular de manera aproximada el periodo fundamental de la estructura según el numeral 4.5.4 según la fórmula:

$$T = \frac{h_n}{Ct}$$

Donde:

Ct = 60, para edificios de albañilería y para todos los edificios de concreto armado duales, de muros estructurales y muros de ductilidad limitada.

 $h_n = 10.60m$, Altura total de la edificación en metros.

Entonces obtenemos:

$$T = \frac{10.60}{60} = 0.176 \text{ seg}$$

Con el periodo fundamental, podemos hallar el factor de amplificación.

$$C = \begin{cases} 2.5, & cuando \ T \leq T_P \\ 2.5 \cdot \left(\frac{T_P}{T}\right), & Cuando \ T_P < T \leq T_L \\ 2.5 \cdot \left(\frac{T_P \cdot T_L}{T^2}\right), & Cuando \ T > T_L \end{cases}$$

Siendo: $T = 0.176 \le T_P = 0.6$ entonces C = 2.5

Comprobando la siguiente relación:

$$\frac{C}{R} = \frac{2.5}{4} = 0.625 \ge 0.125 \rightarrow \mathbf{Ok}$$

3.2.3.3. Peso total de la edificación

La NTE E-030 2014, en el numeral 4.3, nos indica que el peso (P) se calculará adicionando a la carga permanente y total de la edificación un porcentaje de la carga viva o sobrecarga. Para edificaciones de categoría C, se toma el 25% de la carga viva.

En la Tabla 9 y Tabla 10 se muestran el peso por piso de la edificación obtenida del software ETABS 2015.

Tabla 9. Masas y peso de la estructura (Concreto estructural)

Piso	Diefragma	Masa X Masa Y		CM X	CM Y	
	Diafragma	kgf-s²/cm	kgf-s²/cm	m	m	
Piso 4	D4	6.640	6.640	6.65	18.01	
Piso 3	D3	118.305	118.305	6.86	9.74	
Piso 2	D2	173.718	173.718	6.98	9.81	
Piso 1	D1	223.889	223.889	6.98	9.80	
Masa tota	l de la estructur	~a		52255.260	kgf-s²/m	
Peso de la	estructura			512.624	Tn	

Fuente: Elaboración propia.

Tabla 10. Masas y peso de la estructura (Concreto celular)

Dica	Dieframe	Masa X	Masa Y	CM X	CM Y
Piso	Diafragma	kgf-s²/cm	kgf-s²/cm	m	m
Piso 4	D4	6.640	6.640	6.65	18.01
Piso 3	D3	118.305	118.305	6.86	9.74
Piso 2	D2	173.718	173.718	6.98	9.81
Piso 1	D1	18.505	18.505	6.98	9.80
Masa total de la estructura		.a		31716.818	kgf-s²/m
Peso de la estructura				311.141985	Tn

Fuente: Elaboración propia.

3.2.3.4. Fuerza cortante en la base

La NTE E-030 2014, señala en el numeral 4.5.2 que la fuerza cortante en la base de la estructura, correspondiente a la dirección considerada, se determinará por la siguiente expresión:

$$V = \frac{ZUCS}{R} \cdot P$$

En la Tabla 11 y Tabla 12: Se muestra los valores obtenidos de la cortante en la base de la estructura en ETABS 2015 para los dos materiales.

Tabla 11. Cortante estática en la base de la estructura (Concreto estructural)

Tipo de	Dirección	С	К	Peso	Cortante Basal	
carga		_		ton	ton	
Sismo X	X + Ecc. Y	0.1875	1	516.412	96.827	
Sismo Y	Y + Ecc. X	0.1875	1	516.412	96.827	

Fuente: Elaboración propia

Tabla 12. Cortante estática en la base de la estructura (Concreto celular)

Tipo de carga	Dirección	С	К	Peso	Cortante Base	
Sismo X	X + Ecc. Y	0.1875		430.419	80.704	
Sismo Y	Y + Ecc. X	0.1875	1	430.419	80.704	

Fuente: Elaboración propia.

3.2.3.5. Desplazamientos laterales

La NTE E-030 2014 señala en el numeral 5.1 que los desplazamientos laterales se calcularán multiplicando por 0.75R los resultados obtenidos del análisis lineal y elástico con las solicitaciones sísmicas reducidas. Para el caso de estructuras irregulares deberá emplearse el valor de 0.85R.

En la Tabla 13 y Tabla 14 se muestran los valores de los desplazamientos obtenidos del análisis Estático.

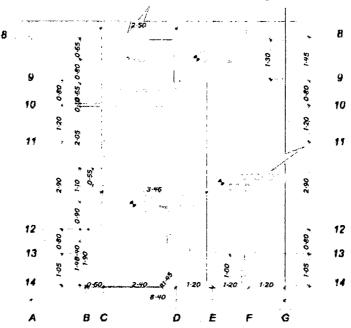
Tabla 13. Derivas máximas del análisis estático (Concreto estructural)

Piso	Caso de	Ítem	Deriva	Х	Υ	Z	Deriva
	carga	item	Deriva	m	m	m	*0.75R
Piso 4	Sismo X	Max Drift X	0.000153	8.15	20.65	10.6	0.000459
Piso 4	Sismo X	Max Drift Y	0.000012	5.15	20.65	10.6	0.000036
Piso 4	Sismo Y	Max Drift X	0.000004	5.15	20.65	10.6	0.000012
Piso 4	Sismo Y	Max Drift Y	0.000043	8.15	20.65	10.6	0.000129
Piso 3	Sismo X	Max Drift X	0.000166	8.15	20.65	8.4	,
Piso 3	Sismo X	Max Drift Y	0.000038	0	11.45	8.4	0.000114
Piso 3	Sismo Y	Max Drift X	0.000017	6.65	0	8.4	0.000051
Piso 3	Sismo Y	Max Drift Y	0.000052	12.65	8.15	8.4	0.000156
Piso 2	Sismo X	Max Drift X	0.000143	5.15	20.65	5.6	0.000429
Piso 2	Sismo X	Max Drift Y	0.000037	0	11.45	5.6	0.000111
Piso 2	Sismo Y	Max Drift X	0.000017	6.65	0	5.6	0.000051
Piso 2	Sismo Y	Max Drift Y	0.000054	12.65	11.45	5.6	0.000162
Piso 1	Sismo X	Max Drift X	0.000081	8.15	20.65	2.8	0.000243
Piso 1	Sismo X	Max Drift Y	0.000019	0	11.45	2.8	0.000057
Piso 1	Sismo Y	Max Drift X	0.000009	6.65	0	2.8	0.000027
Piso 1	Sismo Y	Max Drift Y	0.000033	12.65	11.45	2.8	0.000099

De la Tabla 13 vemos que la máxima se da en el 3er piso y es 0.000498. La deriva permitida por la norma para MDL es 0.005. Como 0.000498<0.005 cumple.

De la Tabla 14 vemos que la máxima se da en el 3er piso y es 0.000579. La deriva permitida por la norma para MDL es 0.005. Como 0.000579<0.005 cumple.

Tabla 14. Derivas máximas del análisis estático (Concreto celular)


Piso	Caso de	ltem	Deriva	Х	Y	Z	Deriva
	carga	item	Deriva	m	m	m	*0.75R
Piso 4	Sismo X	Max Drift X	0.000178	8.15	20.65	10.6	0.000534
Piso 4	Sismo X	Max Drift Y	0.000014	5.15	20.65	10.6	0.000042
Piso 4	Sismo Y	Max Drift X	0.000003	5.15	20.65	10.6	0.000009
Piso 4	Sismo Y	Max Drift Y	0.000051	8.15	20.65	10.6	0.000153
Piso 3	Sismo X	Max Drift X	0.000193	8.15	20.65	8.4	$(),\beta,\gamma^{*}\ell^{*},$
Piso 3	Sismo X	Max Drift Y	0.000042	0	11.45	8.4	0.000126
Piso 3	Sismo Y	Max Drift X	0.000015	6.65	0	8.4	0.000045
Piso 3	Sismo Y	Max Drift Y	0.00006	12.65	8.15	8.4	0.00018
Piso 2	Sismo X	Max Drift X	0.000165	5.15	20.65	5.6	0.000495
Piso 2	Sismo X	Max Drift Y	0.00004	0	11.45	5.6	0.00012
Piso 2	Sismo Y	Max Drift X	0.000018	6.65	0	5.6	0.000054
Piso 2	Sismo Y	Max Drift Y	0.000063	12.65	11.45	5.6	0.000189
Piso 1	Sismo X	Max Drift X	0.000093	8.15	20.65	2.8	0.000279
Piso 1	Sismo X	Max Drift Y	0.00002	0	11.45	2.8	0.00006
Piso 1	Sismo Y	Max Drift X	0.000011	6.65	0	2.8	0.000033
Piso 1	Sismo Y	Max Drift Y	0.000039	12.65	11.45	2.8	0.000117

Fuente: Elaboración propia.

3.2.3.6. Fuerzas internas

La Tabla 15 y Tabla 16, muestran como ejemplo las fuerzas internas del Muro M18 para los casos de carga de sismo en la dirección longitudinal X y sismo en la dirección transversal Y, del 1er. al 3er piso.

Figura 7. Muro M18 de ductilidad limitada analizado por fuerzas internas estáticas.

Fuente: Elaboración propia.

Tabla 15. Fuerzas internas del muro M18 por cargas estáticas (Concreto estructural)

Piso	Muro	Caso de	Р	V2	V3	M2	M3
		carga	ton	ton	ton	ton-m	ton-m
Piso 3	M18	Sismo X	1.193	0.911	-1.487	-1.037	-2.685
Piso 3	M18	Sismo Y	0.322	0.373	-0.071	-0.187	-0.492
Piso 2	M18	Sismo X	2.545	1.659	-2.880	-1.993	-9.112
Piso 2	M18	Sismo Y	0.799	1.268	-0.689	-0.936	-2.596
Piso 1	M18	Sismo X	3.579	1.289	-3.475	-2.025	-17.497
Piso 1	M18	Sismo Y	1.299	2.406	-0.613	-1.587	-4.389

Fuente: Elaboración propia.

Tabla 16. Fuerzas internas del muro M18 por cargas estáticas (Concreto celular)

Piso	Muro	Caso de	Р	V2	V3	M2	M3
		carga	ton	ton	ton	ton-m	ton-m
Piso 3	M18	Sismo X	0.973	0.727	-1.208	-0.833	-2.140
Piso 3	M18	Sismo Y	0.248	0.312	0.032	-0.125	-0.205
Piso 2	M18	Sismo X	2.077	1.351	-2.420	-1.650	-7.541
Piso 2	M18	Sismo Y	0.622	1.033	-0.570	-0.766	-1.993
Piso 1	M18	Sismo X	2.923	0.989	-2.995	-1.676	-14.783
Piso 1	M18	Sismo Y	1.028	1.982	-0.536	-1.320	-3.570

3.2.4. Análisis dinámico

3.2.4.1. Generalidades

La NTE E-030 2014, establece al análisis dinámico, como un método aplicable a cualquier edificio. El análisis puede realizarse mediante procedimientos de combinación espectral o por medio de análisis tiempo-historia. Se utilizará el procedimiento de combinación espectral, por tratarse de una edificación convencional.

Se ha considerado en este análisis tres grados de libertad por piso, por lo tanto para el análisis del edificio de 3 pisos más la azotea, se tendrán 12 modos de vibración.

3.2.4.2. Procedimiento del análisis dinámico con el programa ETABS

A continuación se detallan los pasos seguidos para el modelamiento con el programa ETABS 2015.

1. Se define el material:

Tabla 17. Propiedades de los materiales

Propiedad	Concreto Estructural	Concreto Celular
Peso unitario (Kg/m³)	2400	1860
Módulo de elasticidad (tn/m²)	$1.98 X 10^6$	$1.36 X 10^6$
Módulo de Poisson	0.15	0.11
f'c Kg/cm ²	175	175
fy Kg/cm ²	4200	4200

Fuente: Elaboración propia.

2. Se definen todos los elementos estructurales.

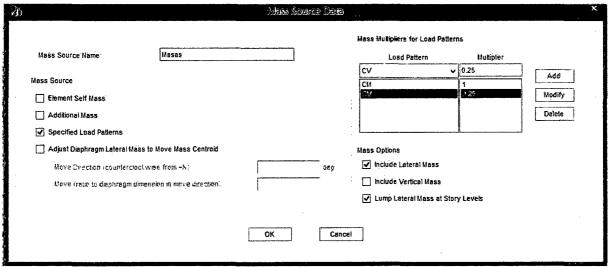
• MUROS.

Se definen los muros (Wall), según sus espesores.

• VIGAS CHATAS Y/O PERALTADAS.

Se definen las vigas, según las dimensiones de su sección.

LOSA ALIGERADA.


Se definen las losas aligeradas de h=20cm como Shell-Thin y se les asigna la carga muerta y viva por m². Hay que incluir la dirección de las viguetas.

3. Se considera la estructura empotrada en la base.

- **4.** Se definen y asignan diafragmas rígidos a todas las losas, para asegurar que en cada piso todos los elementos estructurales de ese piso tengan el mismo desplazamiento lateral frente a solicitaciones sísmicas.
- 5. Para el cálculo del peso de la edificación, La NTE E-030 2014, en el numeral 4.3, nos indica que el peso (P) se calculará adicionando a la carga permanente y total de la edificación un porcentaje de la carga viva o sobrecarga. Para edificaciones de categoría C, se toma el 25% de la carga viva.

En la Figura 8 se muestra los factores de masa que se colocan en ETABS 2015 para carga muerta como para carga viva.

Figura 8. Definición de masas en ETABS 2015.

Fuente: Elaboración propia.

Se define el espectro de aceleraciones, para lo cual primero se debe establecer la función que relaciona el periodo con la aceleración espectral. Esta función es:

$$S_a = \frac{ZUCS}{R}g$$

6. Finalmente se definen las siguientes combinaciones de carga para diseñar las vigas con la envolvente:

$$1.4CM + 1.7CV$$
$$1.25(CM + CV) \pm CS$$
$$0.9CM \pm CS$$

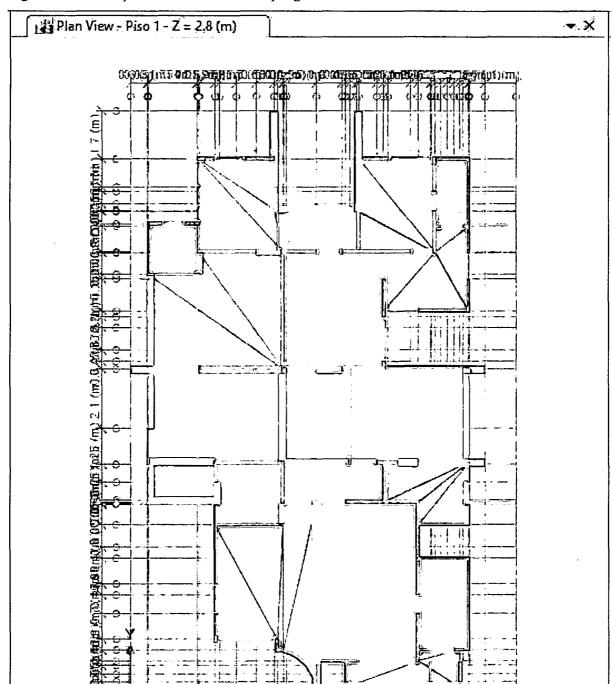
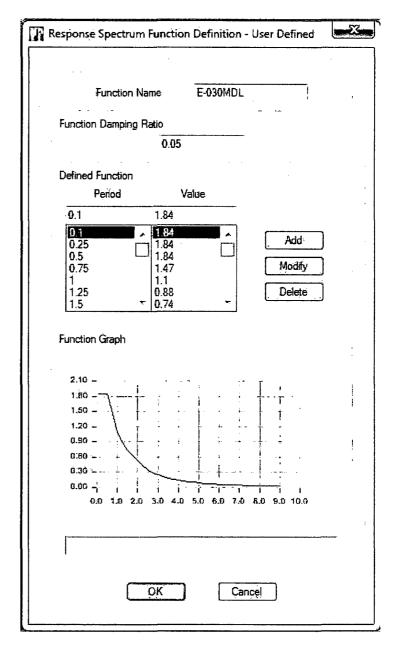



Figura 9. Planta típica estructurada en el programa ETABS 2015.

Figura 10. Periodo vs aceleración espectral de la estructura.

-	0-1
T	Sa (x,y)
0.10	1.84
0.25	1.84
0.50	1.84
0.75	1.47
1.00	1.10
1.25	0.88
1.50	0.74
1.75	0.63
2.00	0.55
2.25	0.44
2.50	0.35
2.75	0.29
3.00	0.25
3.25	0.21
3.50	0.18
3.75	0.16
4.00	0.14
4.25	0.12
4.50	0.11
4.75	0.10
5.00	0.09
5.25	0.08
5.50	0.07
5.75	0.07
6.00	0.06
6.25	0.06
6.50	0.05
6.75	0.05
7.00	0.05
7.25	0.04
7.50	0.04
7.75	0.04
8.00	0.03
8.25	0.03
8.50	0.03
8.75	0.03
9.00	0.03

Fuente: Elaboración propia.

3.2.4.3. Fuerza cortante en la base

La NTE E-030 2014, en el numeral 4.6.4, señala que para el análisis de estructuras regulares, se deberá considerar que la fuerza cortante en la base del edificio, no deberá ser menor que el 80% del valor calculado según el numeral 4.5.3, y 90% para estructuras irregulares.

V dinamico > 80% V estático

Tabla 18. Cortante dinámica en la base de la estructura (Concreto estructural)

	V estático (tn)	V dinámico (tn)	80% V estático (tn)	
X	96.8273	757.369	77.462	CUMPLE
Y	96.8273	757.369	77.462	CUMPLE

Fuente: Elaboración Propia.

Tabla 19. Cortante dinámica en la base de la estructura (Concreto celular)

	V estático (tn)	V dinámico (tn)	80% V estático (tn)	
XX	80.7036	630.9138	64.563	CUMPLE
YY	80.7036	630.9138	64.563	CUMPLE

Fuente: Elaboración propia.

3.2.4.4. Periodo de vibración

La masa representa una parte de la masa total del edificio al cual le corresponde un modo de vibración. Según la NTE E-030 2014, en el numeral 4.6.1, para hallar los períodos de vibración, se identifican los modos fundamentales, según los porcentajes de masas efectivas de la estructura. De esta manera (ver tabla 20 y 21), tenemos que de los 12 modos de vibración:

En la dirección longitudinal XX: El modo fundamental es el Modo 2

En la dirección transversal YY: El modo fundamental es el Modo 3

Tabla 20. Periodo de cada uno de los modos de vibración (Concreto estructural)

Modo	Periodo segundos	UX	UY	
1	0.132	0.0054	0.001	
2	(4.G)(1.		0.0041	
3	* + O.C.57	0.0042		
4	0.047	0.0256	0.0001	
5	0.03	0.0004	0.0001	
6	0.029	0.0038	0.0001	
7	0.026	0.0127	0.0001	
8	0.024	0.1208	0.0003	
9	0.024	0.00002976	4.128E-06	
10	0.02	0.0407	0.0087	
11	0.019	0.0008	0.1584	
12	0.018	0.0104	0.0164	

Tabla 21. Periodo de cada uno de los modos de vibración (Concreto celular)

Modo	Periodo segundos	Masa XX	Masa YY
1	0.143	0.0021	0.0015
2		0.7424	0.0035
3		0.0035	0.7/32
4	0.05	0.026	0.00004758
5	0.032	0.0002	0.0002
6	0.031	0.0033	0.0002
7	0.028	0.0129	0.00003036
8	0.026	0.1311	0.0003
9	0.025	0.00001993	4.578E-06
10	0.022	0.0319	0.0114
11	0.02	0.003	0.169
12	0.02	0.0072	0.0028

Entonces los periodos fundamentales son:

Tabla 22. Periodos fundamentales de vibración.

Periodo	Concreto estructural	Concreto celular
<i>Txx</i> (s)	0.096	0.104
<i>Tyy</i> (s)	0.067	0.073

Fuente: Elaboración propia.

3.2.4.5. Efectos de torsión

De acuerdo con lo descrito en la NTE E-030 2014, en el numeral 4.6.5 se ha considerado en el análisis dinámico una excentricidad accidental perpendicular a la dirección del sismo e igual a 0.05 veces la longitud del edificio en planta, correspondiente a la dirección del sismo analizado. La Figura 11 muestra la opción del ETABS 2015 para incluir la torsión accidental.

Load Case Nam Load Case Type Notes. Exclude Objects in I Not Applicable Mass Source Previous (MASAS) Scale Facto Function E-030MDL Modal Load Cas MODELO coc ☐ Include Rigid Re Penodic - Raid Type Directional Combination Type COC3 Constant at 0.05 0.05 for All Diaphragms ОК Cancel

Figura 11. Ventana de ETABS 2015 donde se incluye la torsión accidental.

3.2.4.6. Desplazamientos laterales

Según lo estipulado en la NTE E-030 2014, en el numeral 5.1 se calcularon los desplazamientos y derivas máximas:

De la Tabla 23 vemos que la máxima deriva se da en el 4to piso y es 0.004038. La deriva permitida por la norma para MDL es 0.005.

0.004038<0.005 cumple.

De la Tabla 24 vemos que la máxima deriva se da en el 4to piso y es 0.004869. La deriva permitida por la norma para MDL es 0.005.

0.004869<0.005 cumple.

Tabla 23. Derivas máximas del análisis dinámico (Concreto estructural)

Piso	Caso de	Ítem	Deriva	X	Υ	Z	Deriva*0.75*R	
P150	carga	item	Denva	m	m	m	Deriva 0.75 K	
Piso 4	EQ XX Max	Max Drift X	0.0013	8.15	20.65	10.6	0.004038	correcto
Piso 4	EQ XX Max	Max Drift Y	0.0004	5.15	20.65	10.6	0.001212	correcto
Piso 4	EQ YY Max	Max Drift X	0.0013	8.15	20.65	10.6	0.004038	correcto
Piso 4	EQ YY Max	Max Drift Y	0.0004	5.15	20.65	10.6	0.001212	correcto
Piso 3	EQ XX Max	Max Drift X	0.0012	6.65	0	8.4	0.003732	correcto
Piso 3	EQ XX Max	Max Drift Y	0.0006	0	11.45	8.4	0.001674	correcto
Piso 3	EQ YY Max	Max Drift X	0.0012	6.65	0	8.4	0.003732	correcto
Piso 3	EQ YY Max	Max Drift Y	0.0006	0	11.45	8.4	0.001674	correcto
Piso 2	EQ XX Max	Max Drift X	0.0012	6.65	0	5.6	0.003576	correcto
Piso 2	EQ XX Max	Max Drift Y	0.0006	0	11.45	5.6	0.001665	correcto
Piso 2	EQ YY Max	Max Drift X	0.0012	6.65	0	5.6	0.003576	correcto
Piso 2	EQ YY Max	Max Drift Y	0.0006	0	11.45	5.6	0.001665	correcto
Piso 1	EQ XX Max	Max Drift X	0.0006	6.65	0	2.8	0.001929	correcto
Piso 1	EQ XX Max	Max Drift Y	0.0003	0	11.45	2.8	0.00096	correcto
Piso 1	EQ YY Max	Max Drift X	0.0006	6.65	0	2.8	0.001929	correcto
Piso 1	EQ YY Max	Max Drift Y	0.0003	0	11.45	2.8	0.00096	correcto

Tabla 24. Derivas máximas del análisis dinámico (Concreto celular)

Diag	Caso de	Ítama	Dorivo	Х	Y	Z	Danis *0.75*D	
Piso	carga	Ítem	Deriva	m	m	m	Deriva*0.75*R	
Piso 4	EQ XX Max	Max Drift X	0.0016	8.15	20.65	10.6	2006-869	correcto
Piso 4	EQ XX Max	Max Drift Y	0.0005	5.15	20.65	10.6	0.001443	correcto
Piso 4	EQ YY Max	Max Drift X	0.0016	8.15	20.65	10.6	0.004869	correcto
Piso 4	EQ YY Max	Max Drift Y	0.0005	5.15	20.65	10.6	0.001443	correcto
Piso 3	EQ XX Max	Max Drift X	0.0014	6.65	0	8.4	0.004257	correcto
Piso 3	EQ XX Max	Max Drift Y	0.0007	0	11.45	8.4	0.002007	correcto
Piso 3	EQ YY Max	Max Drift X	0.0014	6.65	0	8.4	0.004257	correcto
Piso 3	EQ YY Max	Max Drift Y	0.0007	0	11.45	8.4	0.002007	correcto
Piso 2	EQ XX Max	Max Drift X	0.0014	6.65	0	5.6	0.004101	correcto
Piso 2	EQ XX Max	Max Drift Y	0.0007	0	11.45	5.6	0.001965	correcto
Piso 2	EQ YY Max	Max Drift X	0.0014	6.65	0	5.6	0.004101	correcto
Piso 2	EQ YY Max	Max Drift Y	0.0007	0	11.45	5.6	0.001965	correcto
Piso 1	EQ XX Max	Max Drift X	0.0008	6.65	0	2.8	0.002262	correcto
Piso 1	EQ XX Max	Max Drift Y	0.0004	0	11.45	2.8	0.001128	correcto
Piso 1	EQ YY Max	Max Drift X	0.0008	6.65	0	2.8	0.002262	correcto
Piso 1	EQ YY Max	Max Drift Y	0.0004	0	11.45	2.8	0.001128	correcto

3.2.4.7. Fuerzas internas.

La Tabla 25 y 26, muestra como ejemplo las fuerzas internas del Muro M18 para los casos de carga de sismo en la dirección longitudinal X y sismo en la dirección transversal Y, del 1er. al 3er piso.

Figura 12. Muro M18 de ductilidad limitada analizado por fuerzas internas dinámicas.

Fuente: Elaboración propia

Tabla 25. Fuerzas internas del muro M18 (Concreto estructural)

Piso	Muro	Caso de	Р	V2	V3	M2	M3
- 130	WIGHT	carga	ton	ton	ton	ton-m	ton-m
Piso 3	M18	EQ XX Max	10.3967	7.6754	18.9766	3275.279	1495.714
Piso 3	M18	EQ YY Max	10.3967	7.6754	18.9766	3275.279	1495.714
Piso 2	M18	EQ XX Max	21.7917	12.7388	33.5549	10191.975	3920.606
Piso 2	M18	EQ YY Max	21.7917	12.7388	33.5549	10191.975	3920.606
Piso 1	M18	EQ XX Max	29.9087	23.1369	37.9253	18836.689	8907.29
Piso 1	M18	EQ YY Max	29.9087	23.1369	37.9253	18836.689	8907.29

Tabla 26. Fuerzas internas del muro M18 (Concreto celular)

Piso	Muro	Caso de	P	V2	V3	M2	M3
	Mulo	carga-	ton	ton	ton	ton-m	ton-m
Piso 3	M18	EQ XX Max	8.3966	6.2545	14.9008	25.5743	12.0073
Piso 3	M18	EQ YY Max	8.3966	6.2545	14.9008	25.5743	12.0073
Piso 2	M18	EQ XX Max	17.6459	10.3177	26.9652	81.4228	32.855
Piso 2	M18	EQ YY Max	17.6459	10.3177	26.9652	81.4228	32.855
Piso 1	M18	EQ XX Max	24.2822	19.1648	32.2549	155.5614	73.2289
Piso 1	M18	EQ YY Max	24.2822	19.1648	32.2549	155.5614	73.2289

3.3. Diseño

3.3.1. Generalidades del diseño

La NTE E-060, señala que los elementos estructurales, deberán diseñarse para obtener en todas sus secciones, resistencias por lo menos iguales a las requeridas calculadas para las cargas amplificadas en las combinaciones que se estipulan en esta norma

3.3.1.1. Resistencia requerida

También llamado diseño por resistencia, este método consiste en dotar a la sección una capacidad (resistencia), igual o mayor a la resistencia demandada (requerida).

La resistencia de diseño se define como la resistencia nominal de la sección en análisis multiplicada por los factores de reducción de resistencia (menores a la unidad). Por otro lado, la resistencia requerida es la que se obtiene al multiplicar las combinaciones de carga por los factores de amplificación.

$$U = 1.4CM + 1.7CV$$

$$U = 1.25(CM + CV) \pm CS$$

$$U = 0.9CM + CS$$

3.3.1.2. Resistencia de diseño

El factor de reducción de resistencia ϕ es:

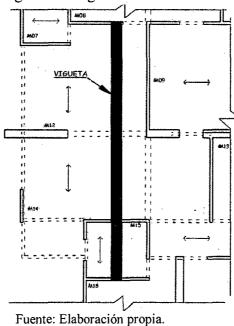
• Flexión $\phi = 0.90$

• Cortante $\phi = 0.85$

• Carga axial $\phi = 0.70$

Para las diferentes solicitaciones las resistencias nominales que deben satisfacerse son:

• Flexión $\phi Mn \ge Mu$


• Cortante $\phi Vn \ge Vu$

• Carga axial $\phi Pn \ge Pu$

3.3.2. Diseño de losa aligerada

Se va a diseñar la vigueta de la Figura 13.

Figura 13. Vigueta a diseñar.

En la Figura 14, 15, 16 y 17 se muestran el diagrama de momentos flectores y cortantes de la vigueta, considerando las restricciones de los diafragmas superior e inferior de la vigueta en análisis.

Figura 15. DMF de la vigueta a diseñar (Concreto estructural)

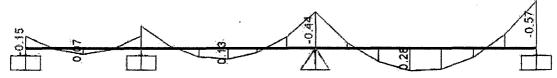


Figura 14. DMF de la vigueta a diseñar (Concreto celular)

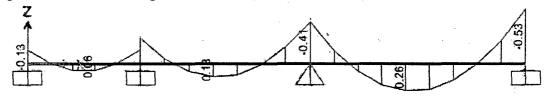


Figura 16. DFC de la vigueta a diseñar (Concreto estructural)

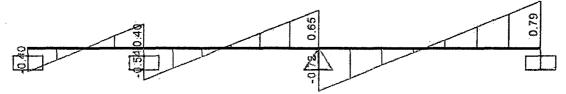
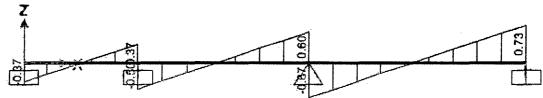



Figura 17. DFC de la vigueta a diseñar (Concreto celular)

Fuente: Elaboración propia.

3.3.2.1 Diseño por flexión

Calculamos los momentos resistentes positivos y negativos con la siguiente formula.

$$Mr = \phi \omega b d^2 f' c (1 - 0.59\omega)$$

Donde:

$$f'c = 175 kg/cm^2$$
$$fy = 4200 kg/cm^2$$
$$w = 0.3188$$

Tabla 27. Momentos resistentes en vigueta.

	Mr (+) Kg-m	Mr (-) Kg-m
Concreto estructural	4993.682	1248.42
Concreto celular	4993.682	1248.42

Fuente: Elaboración propia

Observamos que los Mr > Mu del análisis estructural por lo que procedemos al cálculo del acero en flexión, Calculamos acero mínimo con la formula siguiente.

$$A_{min} = 0.0018bd$$

Tabla 28. Área de aceros mínimos en vigueta.

	A _{min} (+) cm ²	A _{min} (-) cm ²
Concreto estructural	1.26	0.315
Concreto celular	1.26	0.315

Fuente: Elaboración propia

Obtenemos el área de acero requerido para los momentos máximos con la siguiente formula:

$$A_S = \frac{M}{\phi f y (d - \frac{a}{2})}$$

Para la primera aproximación de a consideramos como a = d/5.

Tabla 29. Acero negativo en vigueta (Concreto estructural).

Mu - (tn-m)	As (cm ²)	As elegido
0.57	0.938	1Ø1/2"
0.44	0.708	1Ø3/8"
0.27	0.423	1Ø3/8"
0.15	0.224	1Ø3/8"(ver *)

Fuente: Elaboración propia

Tabla 30. Acero positivo en vigueta (Concreto estructural).

Mu + (tn-m)	As (cm ²)	As elegido
0.28	0.427	1Ø1/2"(ver *)
0.13	0.205	1Ø1/2"(ver *)
0.07	0.110	1Ø1/2"(ver *)

Fuente: Elaboración propia

Tabla 31. Acero negativo en vigueta (Concreto celular).

•	Mu – (tn-m)	As (cm ²)	As elegido
•	0.53	0.860	1Ø1/2"
	0.41	0.647	1Ø3/8"
	0.24	0.389	1ø3/8"
	0.13	0.206	1Ø3/8"(ver *)

Fuente: Elaboración propia

Tabla 32. Acero positivo en vigueta (Concreto celular).

Mu + (tn-m)	As (cm ²)	As elegido
0.26	0.400	1Ø1/2"(ver *)
0.13	0.192	1Ø1/2"(ver *)
0.06	0.089	1Ø1/2"(ver *)

Fuente: Elaboración propia

3.3.2.2. Diseño por corte

Toda la fuerza cortante debe ser resistida por el concreto del alma de las viguetas, para que ésta no lleve estribos.

$$\phi = 0.85 f'c = 175kg/cm^2 b = 10cm d = 17.5cm$$

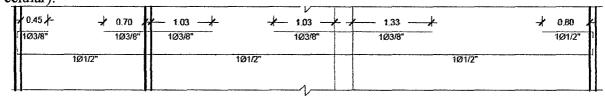
$$\phi Vc = \phi 0.53 \sqrt{f'c}bd = 1.2 \text{tn}$$

Vumax(a d de la cara) = 0.72tn

 $\phi Vc \geq Vumax \ \mathbf{Ok}$

^{*}se colocó acero mínimo calculado en la Tabla 28.

Para el caso del concreto celular se le afecto por 0.85 al factor $\sqrt{f'c}$ tal como lo indica la NTE -E060 en su capítulo 11.2 concreto liviano (acápite 11.2.1.2)

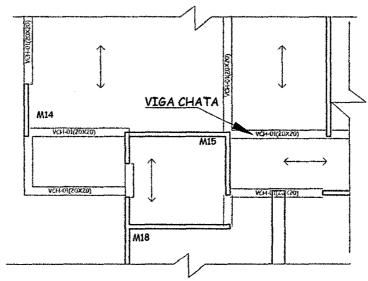

$$\phi = 0.85 \ f'c = 175kg/cm^2 \ b = 10cm \ d = 17.5cm$$

$$\phi Vc = \phi 0.53 \cdot 0.85 \cdot \sqrt{f'c}bd = 1.04tn$$

$$Vumax(a \ d \ de \ la \ cara) = 0.67tn$$

$$\phi Vc \ge Vumax \ \mathbf{0k}$$

Figura 18. Distribución de refuerzo en losa aligerada (Concreto estructural y concreto celular).


Fuente: Elaboración propia.

3.3.3. Diseño de vigas chatas

3.3.3.1. Diseño por flexión

La Figura 19, muestra la viga chata VCH-01 (20X20) ubicada en el eje C solicitada principalmente por carga vertical

Figura 19. Viga chata VCH-01 (20x20) a diseñar.

Fuente: Elaboración propia.

En las Figuras 20 y 21, mostramos el DMF de la envolvente. Hemos escogido los DMF más representativos de los 3 pisos.

Figura 20. Envolvente de los DMF en VCH-01(20x20) (Concreto estructural).

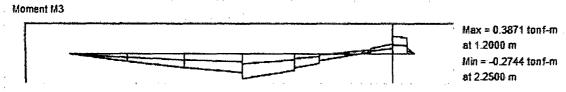
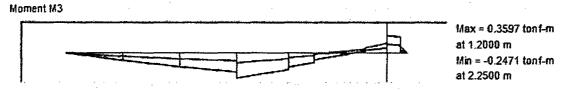



Figura 21. Envolvente de los DMF en VCH-01(20x20) (Concreto celular).

Fuente: Elaboración propia.

Con los Mu positivo y negativo de la envolvente hallamos el acero de refuerzo teniendo en cuenta el As min y As max:

$$0.77cm^2(min) < As elegido < 4.64cm^2(max)$$

Tabla 33. Acero en flexión en VCH-01(20x20) (Concreto estructural).

Momento (tn-m)	Acero (cm ²)	Acero elegido
0.37	0.60	2Ø3/8"(Sup) (ver*)
0.27	0.42	203/8''(Inf) (ver*)

Fuente: Elaboración propia

Tabla 34. Acero en flexión en VCH-01(20x20) (Concreto celular).

Momento (tn-m)	Acero (cm ²)	Acero elegido
0.36	0.56	2Ø3/8"(Sup) (ver*)
0.25	0.38	203/8''(Inf) (ver*)

Fuente: Elaboración propia

3.3.3.2. Diseño por cortante

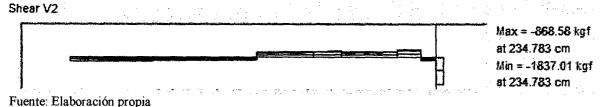

La figura 22 y 23, muestran la envolvente de los Diagramas de fuerzas cortantes más representativo de los 3 pisos.

Figura 22. Envolvente de DMF en VCH-01(20x20) (Concreto estructural).

^{*} Se eligió el acero en relación con el acero mínimo.

Figura 23. Envolvente de DMF en VCH-01(20x20) (Concreto celular).

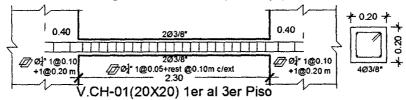
La resistencia al corte del concreto es:

$$\phi = 0.85 \, f'c = 175 \, kg/cm^2 \, b = 20 \, cm \, d = 17.5 \, cm$$

$$\phi Vc = \phi * 0.53 * \sqrt{f'c} * b * d = 0.85 * 0.53 * \sqrt{175} * 20 * 17.5 = 2085.84 Kg$$

Para concreto estructural se tiene que:

$$\phi Vc = 2085.84Kg \ge Vu = 501.27Kg (a "d" de la cara)$$


$$\phi Vc = \phi * 0.53 * \sqrt{f'c} * 0.85 * b * d = 0.85 * 0.53 * \sqrt{175} * 20 * 17.5 * 0.85$$
$$= 1772.97 \, Kg$$

Y para el concreto celular:

$$\phi Vc = 1772.97Kg \ge Vu = 474.47Kg (a "d" de la cara)$$

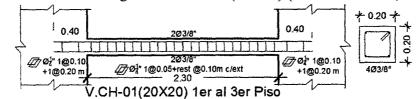
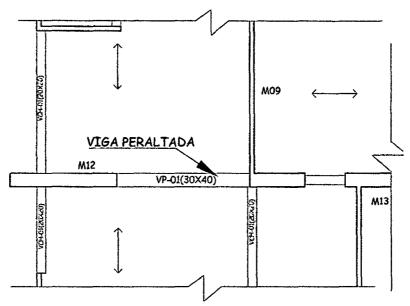

En ambos casos no es necesario colocar estribos, sin embargo se colocará estribos por montaje y también para mejorar la ductilidad del elemento.

Figura 24. Diseño de viga chata VCH-01(20X20) (Concreto estructural).

Fuente: Elaboración propia.

Figura 25. Diseño de viga chata VCH-01(20X20) (Concreto celular).

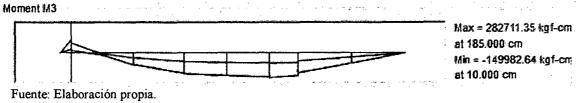


3.3.4 Diseño de vigas peraltadas

3.3.4.1. Diseño por flexión

La Figura 26, muestra la ubicación en planta del tramo intermedio de la viga peraltada VP-01(30x40) del piso típico.

Figura 26. Viga peraltada VP-01 (30x40) a diseñar.


Fuente: Elaboración propia

La figura 27 y 28, muestran la envolvente de los diagramas de momentos flectores más exigente de los 3 pisos, para la viga peraltada VP-01 (30x40).

Figura 27. Envolvente de los DMF en VP-01 (30x40) (Concreto estructural).

Figura 28. Envolvente de los DMF en VP-01(30x40) (Concreto celular).

Con Mu positivo y negativo de la envolvente y teniendo en cuenta el As min y As max hallamos el acero de refuerzo:

$$2.48cm^2(min) < As elegido < 14.94cm^2(max)$$

Tabla 35. Acero en flexión en VP-01 (30x40) (Concreto estructural)

Momento (tn-m)	Acero (cm ²)	Acero elegido
-1.62	1.16	2Ø1/2"(Sup) (ver*)
3.11	2.25	201/2''(Inf) (ver*)

Tabla 36. Acero en flexión en VP-01 (30x40) (Concreto celular)

Momento (tn-m)	Acero (cm ²)	Acero elegido
-1.50	1.07	2Ø1/2"(Sup) (ver*)
2.83	2.05	$201/2''(Inf) (ver^*)$

Fuente: Elaboración propia

3.3.4.2 Diseño por cortante

Para elementos que resisten fuerzas de sismo la NTE E-060 (2009) en su artículo 13.7.1.2, nos dice que Vu diseño deberá determinarse a partir de la suma de las fuerzas cortantes asociadas con el desarrollo de las resistencias nominales en flexión (Mn) en los extremos de la luz libre del elemento y la fuerza cortante isostática calculada para cargas permanentes.

Mostramos en la figura 29 y 30 la envolvente de los diagramas de fuerzas cortantes más exigente de los 3 pisos.

Figura 29. Envolvente de los DFC en VP-01(30x40) (Concreto estructural).

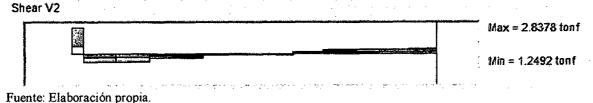


Figura 30. Envolvente de los DFC en VP-01(30x40) (Concreto celular).

Fuente: Elaboración propia.

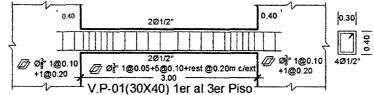
Se calcula el refuerzo transversal:

$$\phi Vc = 0.85*0.53*\sqrt{f'c}*b*d = 0.85*0.53*\sqrt{175}*30*37.5 = 6.7tn$$

Para concreto estructural se tiene que:

^{*} Se eligió el acero en relación con el acero mínimo.

$$\phi Vc = 6700.0Kg \ge Vu = 2837.81Kg$$


$$\phi Vc = 0.85 * 0.53 * \sqrt{f'c} * 0.85 * b * d = 5.7tn$$

Y para el concreto celular:

$$\phi Vc = 5700.00. Kg \ge Vu = 2552.07 Kg$$

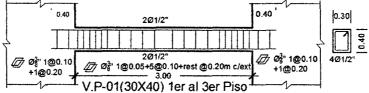

En ambos casos no es necesario colocar estribos, sin embargo se colocará estribos por montaje y también para mejorar la ductilidad del elemento.

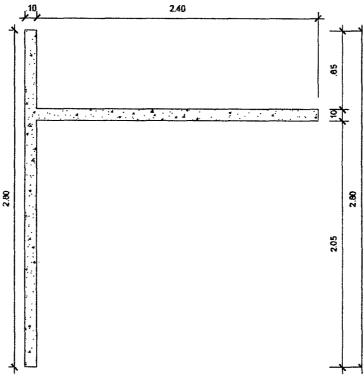
Figura 31. Diseño de viga peraltada VP-01(30X40) (Concreto estructural).

Fuente: Elaboración propia

Figura 32. Diseño de viga peraltada VP-01(30X40) (Concreto celular).

Fuente: Elaboración propia

3.3.5. Diseño de muros


3.3.5.1. Estructura de concreto estructural

3.3.5.1.1. Diseño por flexocompresión

El objetivo en el diseño por flexo compresión consiste en proporcionar a la sección del muro, un refuerzo tal, que éste pueda resistir las fuerzas de flexión y compresión actuando simultáneamente. Esto se puede desarrollar usando los diagramas de interacción.

El refuerzo vertical debe ser distribuido a lo largo del muro, debiéndose concentrar mayor refuerzo en los extremos ya que en estas zonas hay esfuerzos elevados de compresión y tracción. A continuación se detalla un ejemplo de Diseño por Flexo compresión del muro M18.

Figura 33. Muro M18 a diseñar.

De acuerdo al análisis estructural, los resultados se presentan en la Tabla 37 en donde se muestran las fuerzas axiales, fuerzas cortantes y momentos flectores correspondientes a los casos de carga muerta, viva, sismo en la dirección X y sismo en la dirección Y.

Tabla 37. Fuerzas internas en el muro M18 de concreto estructural.

PISO	MURO	CARGA	P(ton)	Vx(ton)	Vy(ton)	Mx(ton-m)	My(ton-m)
Piso 1	M18	CM	-20.36	0.0551	0.124	34.023	-17.269
Piso 1	M18	CV	-4.088	0.0408	0.059	19.055	-3.065
Piso 1	M18	EQ XX Max	29.91	23.1369	37.93	18836.689	8907.29
Piso 1	M18	EQ YY Max	29.91	23.1369	37.93	18836.689	8907.29

Fuente: Elaboración propia.

Para continuar con el diseño se procede a aplicar las combinaciones de cargas amplificadas que señala la NTE E-060 las cuales se muestran en las Tablas 38 y 39 para ambas direcciones con las cuales se diseñará el muro para resistir las solicitaciones de flexo compresión y cortante.

Tabla 38. Cargas amplificadas en la dirección X.

 		<u> </u>			
PISO	MURO	COMBO	P(ton)	Vx(ton)	Mx(ton-m)
Piso 1	M18	1.4CM+1.7CV	35.46	0.147	-0.8003
Piso 1	M18	1.25(CM+CV)+SX	26.99	1.409	16.8331
Piso 1	M18	1.25(CM+CV)+SY	29.27	2.526	3.7252
Piso 1	M18	0.9CM+SX	14.75	1.339	17.1903
Piso 1	M18	0.9CM+SY	17.03	2.456	4.0824

Tabla 39. Cargas amplificadas en la dirección Y.

PISO	MURO	COMBO	P(ton)	Vy(ton)	My(ton-m)
Piso 1	M18	1.4CM+1.7CV	35.46	0.272	-0.2939
Piso 1	M18	1.25(CM+CV)+SX	26.99	-3.248	7.8451
Piso 1	M18	1.25(CM+CV)+SY	29.27	-0.386	9.2262
Piso 1	M18	0.9CM+SX	14.75	-3.364	7.9439
Piso 1	M18	0.9CM+SY	17.03	-0.502	9.325

Fuente: Elaboración propia.

Una vez obtenidas las cargas últimas provenientes de las combinaciones de la NTE E-060 (2009) se procede a calcular el aporte del concreto a la resistencia a fuerza cortante ϕVc . De esta manera se podrá obtener una primera aproximación del refuerzo distribuido en el alma.

A continuación se muestra la memoria del cálculo para el diseño del muro M18 para el primer piso:

Empezamos con el cálculo del refuerzo vertical del muro:

hm = 8.4 m (altura total del muro)

Para la dirección X.

 $lm_x = 2.4 m (longitud del muro)$

$$\left(\frac{hm}{lm}\right)_x = \frac{8.4}{2.4} = 3.5 > 2.0,$$

Entonces: $\alpha = 0.5$

$$\phi V c_x = \phi \cdot Ac \cdot \alpha \cdot \sqrt{f'c} = 0.85 \cdot (0.85x240x10) \cdot \sqrt{175} \cdot \left(\frac{1ton}{1000ka}\right) = 12.16 \ tn$$

$$\frac{\phi V c_x}{2} = 6.08 \ tn$$

$$Vu_x = 23.14 \ tn$$

Podemos apreciar que: $Vu_x = 23.14 > \frac{\phi Vc_x}{2} = 6.08$ entonces $\rho_v = 0.0025$ El área de acero que necesitamos seria:

$$As_x = \rho_v \cdot Ac = 2.5 \ cm^2/m \rightarrow 103/8@0.30m$$

$$As_x colocado = 2.84 cm^2/m$$

• Para la dirección Y.

$$lm_Y = 2.8 m (longitud del muro)$$

$$\left(\frac{hm}{lm}\right)_{v} = \frac{8.4}{2.8} = 3 > 2.0,$$

Entonces: $\alpha = 0.5$

$$\phi V c_y = \phi \cdot Ac \cdot \alpha \cdot \sqrt{f'c} = 0.85 \cdot (0.85x280x10) \cdot \sqrt{175} \cdot \left(\frac{1ton}{1000kg}\right) = 14.18 tn$$

$$\frac{\phi V c_y}{2} = 7.09 tn$$

$$Vu_{\nu} = 37.93 \ tn$$

Podemos apreciar que: $Vu_y = 37.93 > \frac{\phi V c_x}{2} = 7.09$ entonces $\rho_v = 0.0025$

El área de acero que necesitamos seria:

$$As_x = \rho_v \cdot Ac = 2.5 \ cm^2/m \rightarrow 103/8@0.30m$$

$$As_x colocado = 2.84 cm^2/m$$

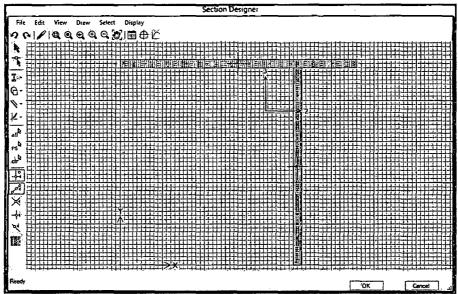
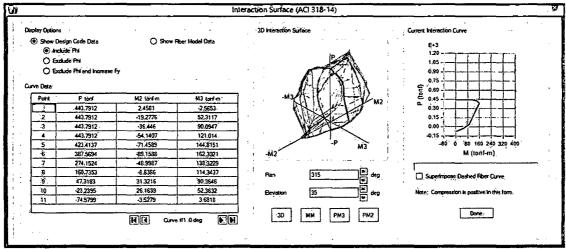
Tabla 40. Acero vertical colocado en el muro M18 de concreto estructural.

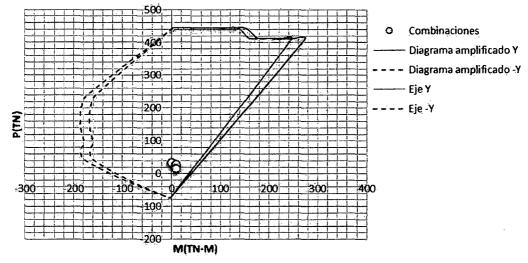
-	Acero vertical
X-X	1Ø3/8@0.30m
Y-Y	1Ø3/8@0.30m

Fuente: Elaboración propia.

Con el refuerzo vertical distribuido calculado en las direcciones X (1\psi3/8\pi0.30m) e Y (1\psi3/8\pi0.30m), procedimos a utilizar la aplicación section designer del programa ETABS para obtener el diagrama de interacción (Figura 34 y 35), luego se exportaron estos datos a una hoja de cálculo donde se agregaron los puntos correspondientes a las cargas últimas amplificadas provenientes de las combinaciones (Figura 36 para la dirección X y Figura 37 para la dirección Y)

Figura 35. Distribución de acero para el muro M18 e la aplicación section designer.


Figura 34. Diagrama de interacción para el muro M18 en la aplicación section designer.

| 100 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 100 | 200 | 100 | 100 | 200 | 100

Figura 37. Diagrama de interacción para el muro M18 de en la dirección X.

Fuente: Elaboración propia.

Con esta distribución de acero, el diseño por flexo compresión quedaría completo.

Una vez que el diseño por flexo compresión se ha cumplido la norma nos indica que se debe verificar las especificaciones en cuanto al momento de agrietamiento.

a) Verificación del momento de agrietamiento.

• Para la dirección X:

Calculamos el momento de agrietamiento con las propiedades del muro M18.

$$Area = 0.5m^2 \qquad I_x = 0.4m^4 \qquad x = 1.72m \qquad S = 0.249m^3$$

$$M_{cr} = s\left(2\sqrt{f'c} + \frac{P}{A}\right) = 0.249\left(2\sqrt{175} + \frac{35.46}{0.52}\right) = 23,567\ tn - m$$

$$1.2M_{cr} = 28.28\ tn - m$$

Del diagrama de interacción amplificado obtenemos el momento nominal.

$$P_u = 35.46 \ tn \qquad \rightarrow Mn = 66.69 \ tn - m$$

Procedemos a comparar.

$$M_n = 66.969 \ tm - m > 1.2 M_{cr} = 28.28 \ tn - m \rightarrow Ok$$

Para la dirección Y:

Calculamos el momento de agrietamiento con las propiedades del muro M18.

Area =
$$0.5m^2$$
 $I_x = 0.4m^4$ $y = 1.87m$ $S = 0.30m^3$

$$M_{cr} = s \left(2\sqrt{f'c} + \frac{P}{A} \right) = 0.30 \left(2\sqrt{175} + \frac{35.46}{0.52} \right) = 20.457tn - m$$

$$1.2M_{cr} = 24.55 \ tn - m$$

Del diagrama de interacción amplificado obtenemos el momento nominal.

$$P_u = 35.46 \ tn$$
 $\rightarrow Mn = 59.62 \ tn - m$

Procedemos a comparar.

$$M_n = 59.62 \ tm - m > 1.2 M_{cr} = 24.55 \ tn - m \rightarrow \mathbf{0k}$$

3.3.5.1.2. Diseño por corte

Una vez culminado el diseño por flexo compresión, se procede a diseñar el muro para la solicitación por cortante. El procedimiento de diseño para ambas direcciones se muestra a continuación.

Para la dirección X:

Calculamos la fuerza de cortante ultima de diseño.

 M_n =66.97 tn-m (Intersección del diagrama de interacción con Pu)

$$M_u$$
=17.19 tn-m
$$\left(\frac{M_n}{M_u}\right)_x = 3.89$$

Vu=2.52 tn Mayor valor de la Tabla 38

$$Vu_{ax} = V_u \left(\frac{M_n}{M_u}\right)_x = 9.84 \ tn$$

Ahora calculamos el valor máximo de la resistencia nominal.

$$\phi V_{umax} = \phi \cdot Ac \cdot 2.7 \sqrt{f'c} = 58.29 \ tn$$

 ϕV_c =12.16 tn (Resistencia nominal al cortante proporcionada por el concreto

Entonces la resistencia nominal al cortante proporcionada por el refuerzo seria:

$$V_s = \frac{Vu - \phi Vc}{\phi} = -11.33 \ tn$$

Pero también sabemos:

$$\rho_h = \frac{Vs}{Acfv} = -0.0014$$

Colocamos acero mínimo, como $\rho_v = 0.0025 \rightarrow \rho_h = 0.025$

Por lo tanto el refuerzo en la dirección X seria:

$$As_h = \rho_h \cdot 100 \cdot e = 2.5 \; cm^2/m \; \rightarrow \; \emptyset 3/8@0.30m$$

$$As_h colocado = 2.36 \; cm^2/m$$

• Para la dirección Y:

Calculamos la fuerza de cortante ultima de diseño.

 M_n =59.61 tn-m (Intersección del diagrama de interacción con Pu)

 M_u =9.325 tn-m $\left(\frac{M_n}{M_u}\right)$

Vu=0.50 tn Mayor valor de la Tabla 39.

 $Vu_{max} = V_u \left(\frac{M_n}{M_u}\right)_x = 9.84 \ tn$

Ahora calculamos el valor máximo de la resistencia nominal.

$$\phi V_{umax} = \phi \cdot Ac \cdot 2.7 \sqrt{f'c} = 68.006 \ tn$$

 ϕV_c =14.18 tn (Resistencia nominal al cortante proporcionada por el concreto

Entonces la resistencia nominal al cortante proporcionada por el refuerzo seria:

$$V_s = \frac{Vu - \phi Vc}{\phi} = -16.10 \ tn$$

Pero también sabemos:

$$\rho_h = \frac{V_S}{Acfy} = -0.0017$$

Colocamos acero mínimo, como $\rho_v = 0.0025 \rightarrow \rho_h = 0.025$

Por lo tanto el refuerzo en la dirección Y sería:

$$As_h = \rho_h \cdot 100 \cdot e = 2.5 \ cm^2/m \rightarrow \emptyset 3/8@0.30m$$

$$As_b colocado = 2.36 cm^2/m$$

3.3.5.1.3. Diseño por corte fricción

Además del diseño de cortante del muro, el cual conlleva a la obtención del refuerzo distribuido horizontalmente en el muro, también se debe verificar el diseño por cortante por fricción.

Con el refuerzo vertical distribuido uniformemente que se colocó en el alma para generar el diagrama de interacción, se debe verificar que la resistencia al cortante por fricción sea mayor que la cortante última. A continuación se muestra el procedimiento de diseño para ambas direcciones.

• Para la dirección X:

Calculamos la resistencia nominal.

$$Nu = 0.90Nw = 18.327 tn$$

Comparamos con el cortante último según la Tabla 38.

$$Vu_x = 2.52 tn$$

 $Vu_x = 2.53 tn < \phi Vu = 15.43 tn \rightarrow \mathbf{Ok}$

• Para la dirección Y:

Calculamos la resistencia nominal.

$$Nu = 0.90Nw = 31.91 tn$$

$$Av = 2.84 \ cm^2$$

Ø3/8@0.30m

$$\phi Vu = \phi \cdot \mu \cdot (Nu + Av \cdot fy) = 22.36 \ tn$$

Comparamos con el cortante último según la Tabla 39.

$$Vu_{\nu} = 0.502 \ tn$$

$$Vu_y = 0.502 \ tn < \phi Vu = 22.36 \ tn \rightarrow \mathbf{Ok}$$

3.3.5.2. Estructura de concreto celular

3.3.5.2.1. Diseño por flexocompresión

A continuación se detalla un ejemplo de diseño por flexo compresión del muro M18.

De acuerdo al análisis estructural, los resultados se presentan en la Tabla 41 en donde se muestran las fuerzas axiales, fuerzas cortantes y momentos flectores correspondientes a los casos de carga muerta, viva, sismo en la dirección X y sismo en la dirección Y.

Tabla 41. Fuerzas internas en el muro M18 de concreto celular.

PISO	MURO	CARGA	P(ton)	Vx(ton)	Vy(ton)	Mx(ton-m)	My(ton-m)
Piso 1	M18	CM	-16.72	0.066	0.154	0.5564	-0.0905
Piso 1	M18	CV	-4.085	0.044	0.064	0.191	-0.0195
Piso 1	M18	EQ XX Max	24.28	19.16	32.25	155.5614	73.2289
Piso 1	M18	EQ YY Max	24.28	19.16	32.25	155.5614	73.2289

Fuente: Elaboración propia.

Para continuar con el diseño se procede a aplicar las combinaciones de cargas amplificadas que señala la NTE E-060 las cuales se muestran en las Tablas 42 y 43 para ambas direcciones con las cuales se diseñará el muro para resistir las solicitaciones de flexo compresión y cortante.

Tabla 42. Cargas amplificadas en la dirección X.

PISO	MURO	COMBO	P(ton)	Vx(ton)	Mx(ton-m)
Piso 1	M18	1.4CM+1.7CV	30.35	0.167	-1.1036
Piso 1	M18	1.25(CM+CV)+SX	23.08	1.127	-13.8489
Piso 1	M18	1.25(CM+CV)+SY	24.98	2.12	-2.6356
Piso 1	M18	0.9CM+SX	12.12	1.048	-14.2823
Piso 1	M18	0.9CM+SY	14.02	2.042	-3.0691
	Piso 1 Piso 1 Piso 1 Piso 1	Piso 1 M18 Piso 1 M18 Piso 1 M18 Piso 1 M18	Piso 1 M18 1.4CM+1.7CV Piso 1 M18 1.25(CM+CV)+SX Piso 1 M18 1.25(CM+CV)+SY Piso 1 M18 0.9CM+SX	Piso 1 M18 1.4CM+1.7CV 30.35 Piso 1 M18 1.25(CM+CV)+SX 23.08 Piso 1 M18 1.25(CM+CV)+SY 24.98 Piso 1 M18 0.9CM+SX 12:12	Piso 1 M18 1.4CM+1.7CV 30.35 0.167 Piso 1 M18 1.25(CM+CV)+SX 23.08 1.127 Piso 1 M18 1.25(CM+CV)+SY 24.98 2.12 Piso 1 M18 0.9CM+SX 12.12 1.048

Tabla 43. Cargas amplificadas en la dirección Y.

PISO	MURO	COMBO	P(ton)	Vy(ton)	My(ton-m)
Piso 1	M18	1.4CM+1.7CV	30.35	0.324	-0.1599
Piso 1	M18	1.25(CM+CV)+SX	23.08	-2.723	6.2857
Piso 1	M18	1.25(CM+CV)+SY	24.98	-0.264	7.6592
Piso 1	M18	0.9CM+SX	12.12	-2.856	6.3417
Piso 1	M18	0.9CM+SY	14.02	-0.398	7.7152

Fuente: Elaboración propia.

Una vez obtenidas las cargas últimas provenientes de las combinaciones de la NTE E-060 (2009) se procede a calcular el aporte del concreto a la resistencia a fuerza cortante ϕVc . De esta manera se podrá obtener una primera aproximación del refuerzo distribuido en el alma.

A continuación se muestra la memoria del cálculo para el diseño del muro M18 para el primer piso:

Empezamos con el cálculo del refuerzo vertical del muro:

hm = 8.4 m (altura total del muro)

• Para la dirección X.

$$lm_x = 2.4 m \text{ (longitud del muro)}$$

 $\left(\frac{hm}{lm}\right)_x = \frac{8.4}{2.4} = 3.5 > 2.0,$
Entonces: $\alpha = 0.53$

Se multiplicara por 0.85 a todos los valores de $\sqrt{f'c}$ según lo estipulado en el artículo 11.2.1.2 de la NTE E-060 2009 referente a concretos livianos

$$\phi V c_x = \phi \cdot Ac \cdot \alpha \cdot \sqrt{f'c} = 0.85 \cdot 0.85 \cdot (0.85x240x10) \cdot \sqrt{175} \cdot \left(\frac{1ton}{1000kg}\right) = 9.73 tn$$

$$\frac{\phi V c_x}{2} = 4.86 tn$$

$$V u_x = 19.16 tn$$

Podemos apreciar que: $Vu_x = 19.86 > \frac{\phi Vc_x}{2} = 4.86$ entonces $\rho_v = 0.0025$ El área de acero que necesitamos seria:

 $As_x = \rho_v \cdot Ac = 2.5 \ cm^2/m \rightarrow 103/8@0.30m$

$$As_r colocado = 2.84 cm^2/m$$

• Para la dirección Y.

 $lm_Y = 2.8 m (longitud del muro)$

$$\left(\frac{hm}{lm}\right)_{v} = \frac{8.4}{2.8} = 3 > 2.0,$$

Entonces: $\alpha = 0.53$

Se multiplicara por 0.85 a todos los valores de $\sqrt{f'c}$ según lo estipulado en el artículo 11.2.1.2 de la NTE E-060 2009 referente a concreto livianos

$$\phi V c_y = \phi \cdot Ac \cdot \alpha \cdot \sqrt{f'c} = 0.85 \cdot 0.85 \cdot (0.85x280x10) \cdot \sqrt{175} \cdot \left(\frac{1ton}{1000kg}\right) = 11.35 tn$$

$$\frac{\phi V c_y}{2} = 5.67 tn$$

$$V u_y = 32.25 tn$$

Podemos apreciar que: $vu_y = 32.25 > \frac{\phi V c_x}{2} = 5.67$ entonces $\rho_v = 0.0025$ El área de acero que necesitamos seria:

$$As_x = \rho_v \cdot Ac = 2.5 \ cm^2/m \rightarrow 103/8@0.30m$$

$$As_r colocado = 2.84 cm^2/m$$

Tabla 44. Acero vertical colocado en el muro M18 de concreto celular.

Acero vertical				
X-X	1Ø3/8@0.30m			
Y-Y	1Ø3/8@0.30m			

Fuente: Elaboración propia.

Con el refuerzo vertical distribuido calculado en las direcciones X (1 \emptyset 3/8 \emptyset 0.30m) e Y (1 \emptyset 3/8 \emptyset 0.30m), procedimos a utilizar la aplicación section designer del programa ETABS para obtener el diagrama de interacción (Figura 38 y 39), luego se exportaron estos datos a una hoja de cálculo donde se agregaron los puntos correspondientes a las cargas últimas amplificadas provenientes de las combinaciones (Figura 40 para la dirección X y Figura 41 para la dirección Y)

Figura 38. Distribución de acero para el muro M18 e la aplicación section designer.

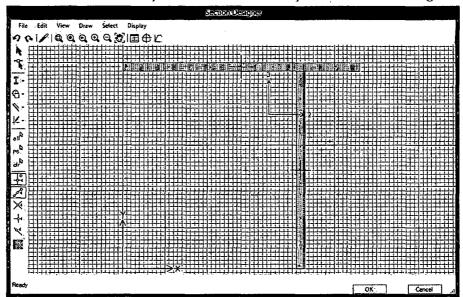


Figura 39. Diagrama de interacción para el muro M18 en la aplicación section designer.



Figura 41. Diagrama de interacción para el muro M18 en la dirección X.

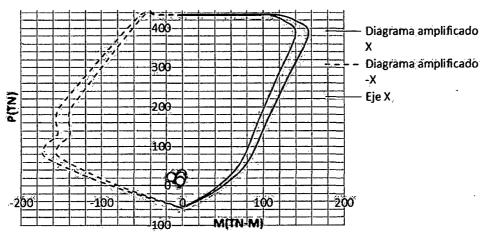
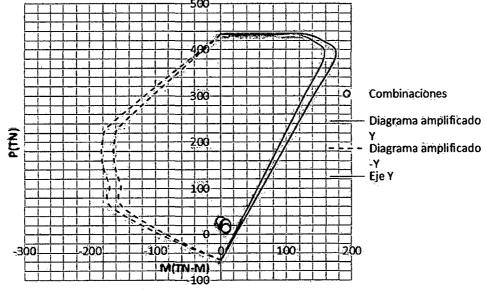



Figura 40. Diagrama de interacción para el muro M18 en la dirección Y.

Fuente: Elaboración propia.

Con esta distribución de acero, el diseño por flexo compresión quedaría completo.

Una vez que el diseño por flexo compresión se ha cumplido la norma nos indica que se debe verificar las especificaciones en cuanto al momento de agrietamiento.

a) Verificación del momento de agrietamiento.

• Para la dirección X:

Calculamos el momento de agrietamiento con las propiedades del muro M18.

$$Area = 0.5m^2 \quad I_x = 0.4m^4 \quad x = 1.72m \quad S = 0.249m^3$$

$$M_{cr} = s\left(2\sqrt{f'c} + \frac{P}{A}\right) = 0.249\left(2\sqrt{175} + \frac{30.35}{0.52}\right) = 21,12 \ tn - m$$

$$1.2M_{cr} = 25.30 \ tn - m$$

Del diagrama de interacción amplificado obtenemos el momento nominal.

$$P_u = 30.35 tn \qquad \rightarrow Mn = 58.32 tn - m$$

Procedemos a comparar.

$$M_n = 58.319 \ tm - m > 1.2 M_{cr} = 25.35 \ tn - m \rightarrow \mathbf{0k}$$

• Para la dirección Y:

Calculamos el momento de agrietamiento con las propiedades del muro M18.

$$Area = 0.5m^2$$
 $I_x = 0.4m^4$ $y = 1.87m$ $S = 0.30m^3$ $M_{cr} = s\left(2\sqrt{f'c} + \frac{P}{4}\right) = 0.30\left(2\sqrt{175} + \frac{30.35}{0.52}\right) = 17.51tn - m$

$$M_{cr} = S\left(2\sqrt{f'c} + \frac{\pi}{A}\right) = 0.30\left(2\sqrt{1/5} + \frac{\pi}{0.52}\right) = 17.51tn - n$$

$$1.2M_{cr} = 21.01 \, tn - m$$

Del diagrama de interacción amplificado obtenemos el momento nominal.

$$P_u = 30.35 tn \qquad \rightarrow Mn = 34.91 tn - m$$

Procedemos a comparar.

$$M_n = 34.91 \ tm - m > 1.2 M_{cr} = 21.01 \ tn - m \rightarrow Ok$$

3.3.5.2.2. Diseño por corte

Una vez culminado el diseño por flexo compresión, se procede a diseñar el muro para la solicitación por cortante. El procedimiento de diseño para ambas direcciones se muestra a continuación.

• Para la dirección X:

Calculamos la fuerza de cortante ultima de diseño.

M_n=58.32 tn-m (Intersección del diagrama de interacción con Pu)

$$M_u$$
=14.28 tn-m
$$\left(\frac{M_n}{M_u}\right)_x = 4.083$$

Vu=2.12 tn Mayor valor de la Tabla 42.

$$Vu_{max} = V_u \left(\frac{M_n}{M_u}\right)_x = 8.66 \ tn$$

Ahora calculamos el valor máximo de la resistencia nominal.

$$\phi V_{umax} = \phi \cdot Ac \cdot 2.7 \cdot 0.85 \sqrt{f'c} = 49.55 tn$$

 ϕV_c =9.73 tn (Resistencia nominal al cortante proporcionada por el concreto

Entonces la resistencia nominal al cortante proporcionada por el refuerzo seria:

$$V_s = \frac{Vu - \phi Vc}{\phi} = -8.95 \ tn$$

Pero también sabemos:

$$\rho_h = \frac{Vs}{Acfy} = -0.0011$$

Colocamos acero mínimo, como $\rho_v = 0.0025 \rightarrow \rho_h = 0.025$

Por lo tanto el refuerzo en la dirección X seria:

$$As_h = \rho_h \cdot 100 \cdot e = 2.5 \ cm^2/m \rightarrow \emptyset 3/8@0.30m$$

$$As_h colocado = 2.84 cm^2/m$$

• Para la dirección Y:

Calculamos la fuerza de cortante ultima de diseño.

 M_n =34.91 tn-m (Intersección del diagrama de interacción con Pu)

$$M_u$$
=7.72 tn-m
$$\left(\frac{M_n}{M_u}\right)_x = 4.525$$

Vu=2.85 tn Mayor valor de la Tabla 43.

$$Vu_{ax} = V_u \left(\frac{M_n}{M_u}\right)_x = 12.92 \ tn$$

Ahora calculamos el valor máximo de la resistencia nominal.

$$\phi V_{umax} = \phi \cdot Ac \cdot 2.7 \sqrt{f'c} \cdot 0.85 = 57.81 \ tn$$

 ϕV_c =11.35 tn (Resistencia nominal al cortante proporcionada por el concreto)

Entonces la resistencia nominal al cortante proporcionada por el refuerzo seria:

$$V_s = \frac{Vu - \phi Vc}{\phi} = -9.99 \ tn$$

Pero también sabemos:

$$\rho_h = \frac{V_S}{Acfy} = -0.0011$$

Colocamos acero mínimo, como $\rho_v = 0.0025 \rightarrow \rho_h = 0.025$

Por lo tanto el refuerzo en la dirección Y sería:

$$As_h = \rho_h \cdot 100 \cdot e = 2.5 \ cm^2/m \rightarrow \emptyset 3/8@0.30m$$

$$As_h colocado = 2.36 cm^2/m$$

3.3.5.2.3. Diseño por corte fricción

Además del diseño de cortante del muro, el cual conlleva a la obtención del refuerzo distribuido horizontalmente en el muro, también se debe verificar el diseño por cortante por fricción.

Con el refuerzo vertical distribuido uniformemente que se colocó en el alma para generar el diagrama de interacción, se debe verificar que la resistencia al cortante por fricción sea mayor que la cortante última. A continuación se muestra el procedimiento de diseño para ambas direcciones.

• Para la dirección X:

Calculamos la resistencia nominal.

$$Nu = 0.90Nw = 15.05 tn$$

$$Av = 2.84 \ cm^2$$
 103/8@0.30m

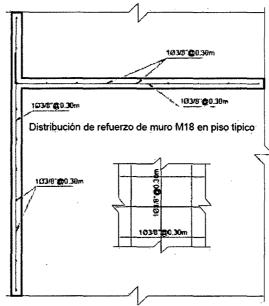
$$\phi Vu = \phi \cdot \mu \cdot (Nu + Av \cdot fy) = 13.76 \ tn$$

Comparamos con el cortante último según la Tabla 42.

$$Vu_x = 2.10 \ tn$$

 $Vu_x = 2.12 \ tn < \phi Vu = 13.76 \ tn \rightarrow \mathbf{Ok}$

• Para la dirección Y:


Calculamos la resistencia nominal.

 $Vu_{\gamma} = 0.40 \ tn < \phi Vu = 20.01 \ tn$

$$Nu = 0.90Nw = 27.31 \ tn$$

 $Av = 2.84 \ cm^2$ Ø3/8@0.30 m
 $\phi Vu = \phi \cdot \mu \cdot (Nu + Av \cdot fy) = 20.01 \ tn$
Comparamos con el cortante último según la Tabla 43.
 $Vu_y = 0.40 \ tn$

Figura 42. Detalle de refuerzo de muro M18 (concreto celular y concreto estructural)

 $\rightarrow Ok$

Fuente: Elaboración propia.

3.3.6. Diseño de escaleras

3.3.6.1. Diseño por flexión

Para el cálculo de los momentos actuantes en los tramos de escaleras se asignó a cada tramo, una carga distribuida $Wu = 1.39tn/m^2$ para el tramo inclinado y $Wu = 0.984tn/m^2$ para el descanso.

La Figura 43 muestra la sección del tramo típico. Se consideró los apoyos sobre las vigas chatas.

Figura 43. Sección de la escalera - 3er tramo típico.

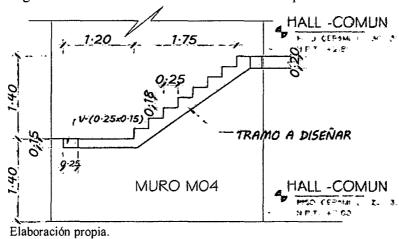


Figura 44. Diagrama de momentos flectores -3er tramo típico. (Concreto estructural).

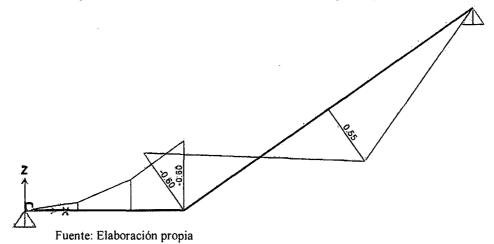


Figura 45. Diagrama de momentos flectores -3er tramo típico. (Concreto celular).

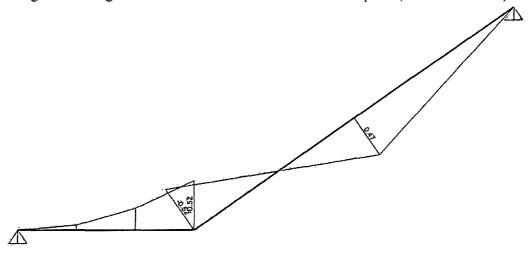
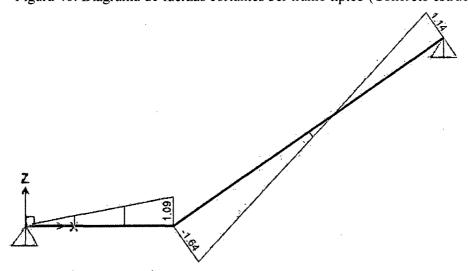


Tabla 45. Diseño de acero por flexión en escalera (Concreto estructural).

Descripción	M (tn-m)	Acero (cm ²)	Acero	As Colocado (cm²)
Acero longitudinal	0.55	1.815	3/8''@0.25m	2.65 (Ver*)
	-0.60	1.660	3/8''@0.25m	2.65 (ver*)
Acero Transversal de temperatura		1.32	1/4''@0.20m	1.32 (ver*)

Tabla 46. Diseño de acero por flexión en escalera (Concreto celular).


Descripción	M (tn-m)	Acero (cm ²)	Acero	As Colocado (cm²)
Acero longitudinal	0.47	1.039	3/8"@0.25m	2.65 (Ver*)
	-0.52	1.15	3/8''@0.25m	2.65 (ver*)
Acero Transversal de temperatura		1.32	1/4''@0.20m	1.32 (ver*)

Fuente: Elaboración Propia.

3.3.6.2. Diseño por corte

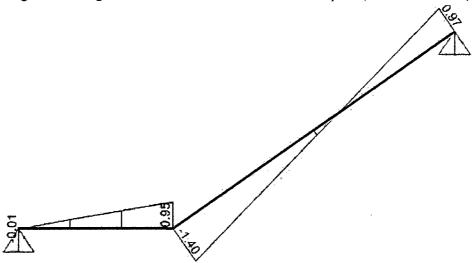

Las Figuras 46 y 47 muestran las fuerzas cortantes presentes en el 3er tramo típico de la escalera a diseñar.

Figura 46. Diagrama de fuerzas cortantes 3er tramo típico (Concreto estructural)

^{*} Se colocó acero mínimo $0.0018bd = 2.65cm^2$

Figura 47. Diagrama de fuerzas cortantes 3er tramo típico (Concreto celular)

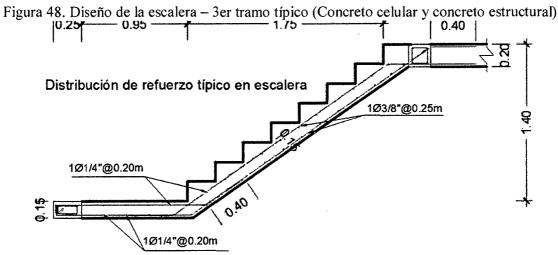
Se comprueba que la aportación de resistencia del concreto es suficiente. No se necesita acero por cortante.

$$\phi Vc = 0.85 \cdot 0.53 \cdot \sqrt{175} \cdot 100 \cdot (15 - 3) \cdot \frac{1}{1000} = 7.151 \text{ ton}$$

$$Vu = 1.64 \text{ ton}$$

Vu = 1.64 toEntonces:

$$\phi Vc = 7.151 \ ton > Vu = 1.64 \ ton \ \rightarrow \textbf{Ok}$$


Para el concreto celular se le afectara el factor 0.85 a $\sqrt{f'c}$

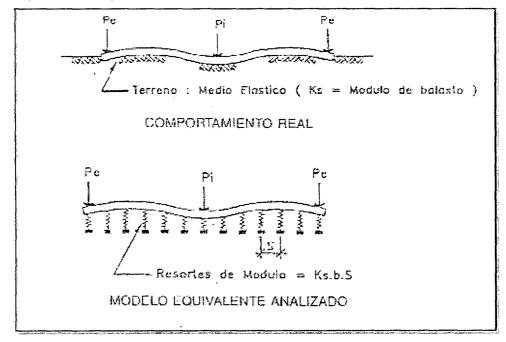
$$\phi Vc = 0.85 \cdot 0.53 \cdot \sqrt{175} \cdot 0.85 \cdot 100 \cdot (15 - 3) \cdot \frac{1}{1000} = 6.078 \text{ ton}$$

Vu = 1.40 ton

Entonces:

$$\phi Vc = 6.078 \ ton > Vu = 1.40 \ ton \rightarrow \mathbf{Ok}$$

3.3.7. Diseño de cimentación


Los tipos de cimentación usados comúnmente en edificios conformados por muros portantes, ya sea de albañilería o de concreto armado, son cimientos corridos y losas de cimentación superficiales. En el caso particular del presente proyecto, se ha optado por la solución de la losa o platea de cimentación.

3.3.7.1. Consideraciones para el diseño de cimentación

3.3.7.1.1. Comportamiento e idealización de la losa de cimentación

El comportamiento de la losa de cimentación consiste en una losa flexible apoyada sobre resortes con una rigidez igual al módulo de reacción de subrasante. La cual se deforma ante la acción de las cargas provenientes de los muros. Las presiones generadas sobre el terreno tienen una distribución no lineal. La Figura 49 muestra la imagen del comportamiento de la platea así como la idealización del mismo.

Figura 49. Comportamiento de la losa e idealización del suelo.

Fuente: Rivera, J. Plateas de cimentación para edificios en base a muros portantes.

Para el análisis de la cimentación se utilizó el programa SAFE versión 14. Dicho programa emplea el método de elementos finitos para la obtención de las presiones actuantes en el terreno y los esfuerzos internos en la platea de cimentación. El programa no toma en cuenta las tracciones en el suelo.

El suelo sobre el cual se va a cimentar la estructura se considera dentro del modelo de la losa como un conjunto de resortes distribuidos uniformemente bajo toda la superficie. La rigidez de los resortes (k) es igual al módulo de reacción de la subrasante, o más comúnmente llamado módulo de balasto. Para una presión admisible de 0.75 kg/cm2, el del programa SAFE recomienda usar un valor de "k" igual a 1.5 kg/cm3 propuestos por TERZAGHI.

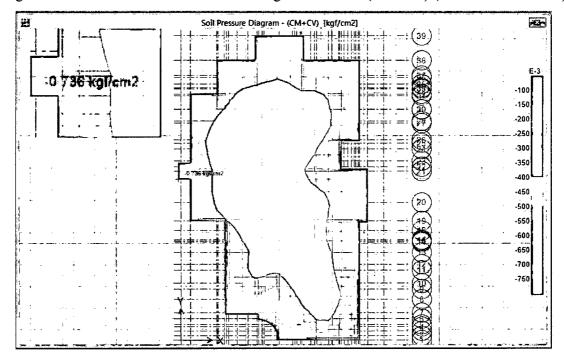
La Figura 50 muestra la imagen del modelo estructural usado para el análisis de la losa de cimentación superficial.

Figura 50. Modelo estructural de la losa de cimentación.

Fuente: Elaboración propia.

3.3.7.1.2. Esfuerzos actuantes en el suelo

El ensayo de mecánica de suelos nos indica una presión máxima admisible de 0.75 kg/cm². Dicha presión no debe ser excedida por las presiones provenientes de los casos de carga sin contar las acciones sísmicas.


La presión admisible del suelo puede incrementare en 30% según indica la NTE E-060. Esto aplica sólo para los casos de carga que incluyan los efectos sísmicos. Entonces, la presión admisible del suelo se considerará igual a 0.975 kg/cm² en los casos donde participen las cargas provenientes del sismo.

Las presiones actuantes en el terreno se verificaran por cargas de servicio:

CM +CV

Las Figuras 51 y 52 muestran la distribución de presiones en el suelo debido a las cargas de servicio.

Figura 51. Presiones en el suelo debido a cargas de servicio (CM+CV) (Concreto estructural)

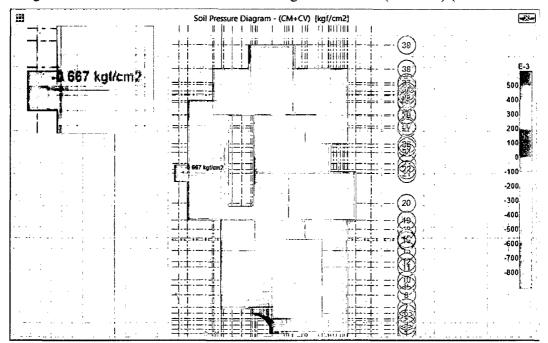


Figura 52. Presiones en el suelo debido a cargas de servicio (CM+CV) (Concreto celular)

En ambos modelos se observa que las presiones en suelo no sobrepasan los $0.75 \, \mathrm{kg/cm^2}$

3.3.7.1.3. Diseño por flexión de losa de cimentación

Las consideraciones de flexión y cortante son las mismas que para el diseño de losas macizas. Esto se debe a que, después de todo, la losa de cimentación es también una losa de concreto armado que trabaja en dos direcciones.

Las figuras N° 53 y 54 muestran la distribución de momentos flectores y fuerzas cortantes en la platea en ambas direcciones para las combinaciones de gravedad.

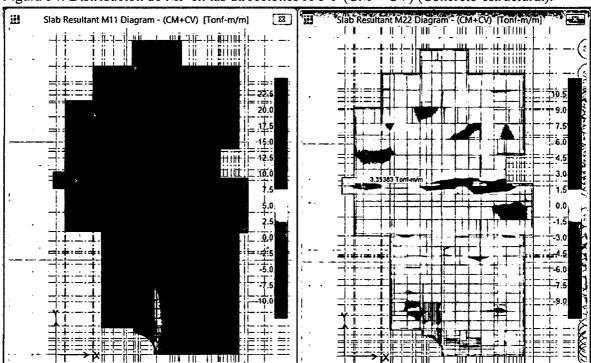
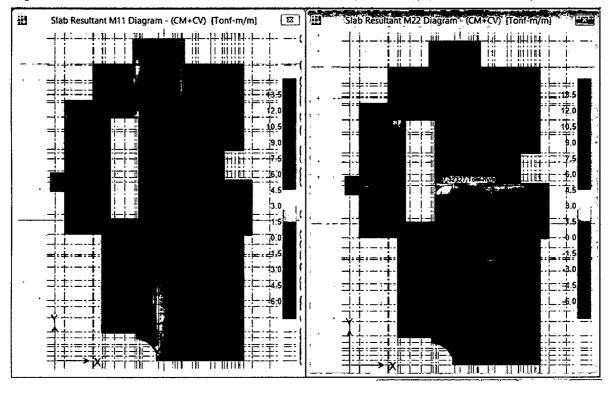



Figura 54. Distribución de MF en las direcciones X e Y (CM + CV) (Concreto estructural).

Figura 53. Distribución de MF en las direcciones X e Y (CM + CV) (Concreto celular).

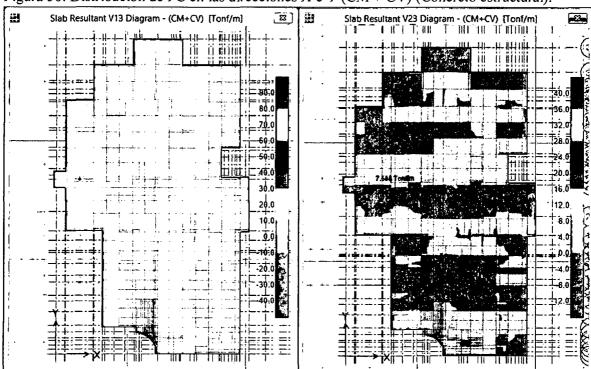
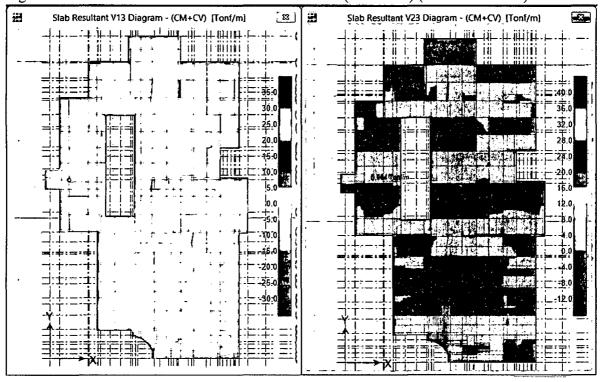



Figura 56. Distribución de FC en las direcciones X e Y (CM + CV) (Concreto estructural).

Figura 55. Distribución de FC en las direcciones X e Y (CM + CV) (Concreto celular).

3.3.7.1.4. Ejemplo de diseño de losa de cimentación

Se presenta a continuación el procedimiento de diseño para los puntos críticos. La Tabla 47 muestra los momentos últimos obtenidos en ambas direcciones, así como el área de acero requerido y el refuerzo colocado.

Tabla 47. Diseño de refuerzo en losa de cimentación (Concreto estructural).

Direc	eción X	Dirección Y				
Mu neg. (ton-m)	Mu pos. (ton-m)	Mu neg. (ton-m)	Mu pos. (ton-m)			
4.30	5.93	5.29	5.19			
As neg. (cm2)	As pos. (cm2)	As neg. (cm2)	As pos. (cm2)			
5.51	6.51	5.78	5.67			
As colocado	As colocado positivo	As colocado	As colocado positivo			
negativo		negativo				
$\emptyset 1/2'' @0.25m$	01/2''@0.25m	$\emptyset 1/2'' @0.25m$	$\emptyset 1/2'' @0.25m$			

Fuente: Elaboración propia.

Tabla 48. Diseño de refuerzo en losa de cimentación (Concreto celular).

Direct	eión X	Dirección Y			
Mu neg. (ton-m)	Mu pos. (ton-m)	Mu neg. (ton-m)	Mu pos. (ton-m)		
3.04	3.44	3.79	3.47		
As neg. (cm2)	As pos. (cm2)	As neg. (cm2)	As pos. (cm2)		
4.41	4.70	5.20	4.75		
As colocado negativo	As colocado positivo	As colocado negativo	As colocado positivo		
01/2'' @ 0.30m	Ø1/2''@0.30m	Ø1/2''@0.30m	Ø1/2''@0.30m		

Fuente: Elaboración propia.

Se consideró colocar una malla corrida superior e inferior de manera que se cumpla los requisitos de contracción y temperatura.

El diseño por fuerza cortante también se verificó en la losa de cimentación. El procedimiento de diseño se detalla a continuación.

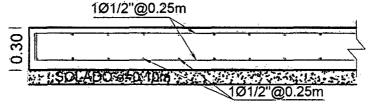
Vux = 3.81ton

Vuy = 7.58ton

 $\phi Vc = 0.85 \cdot 0.53 \cdot \sqrt{175} \cdot 100 \cdot 25 = 14.9ton$

 $Vu < \phi Vc$ (En las dos direcciones)

Para el concreto celular se le afectara el factor 0.85 a $\sqrt{f'c}$


Vux = 7.84ton

Vuy = 5.66ton

 $\phi Vc = 0.85 \cdot 0.53 \cdot \sqrt{175} \cdot 0.85 \cdot 100 \cdot 20 = 10.13ton$

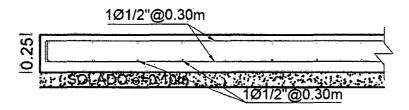

 $Vu < \phi Vc$ (En las dos direcciones)

Figura 57. Distribución de refuerzo en losa de cimentación (Concreto estructural).

Fuente: Elaboración propia.

Figura 58. Distribución de refuerzo en losa de cimentación (Concreto celular).

3.4. Análisis económico

3.4.1. EMDL concreto estructural

3.4.1.1. Planilla de metrados

Se determinaron las partidas necesarias para la construcción de la edificación, respetando los lineamientos del Reglamento de Metrados para Obras de Edificación, sólo se analizaran las partidas de Estructuras, es decir, a nivel de cascarón estructural. No se incluyen, instalaciones sanitarias, eléctricas, pintura, carpintería de madera, vidrios, cerrajería, etc., ya que representan costos fijos e igual proceso constructivo en ambos casos, por lo que su incidencia es mínima en los resultados finales de la investigación. En la Tabla 49 se presenta el resumen de la planilla de metrados.

Tabla 49. Resumen de metrados de la estructura de concreto estructural.

RESUMEN DE METRADOS ESTRUCTURAS

PROYECTO:

VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

Provincia: CHACHAPOYAS

FECHA

: Setiembre 2015

HECHO POR:

GONGORA ROJAS HITLER PEDRO. REVISADO POR: Ing. John Hilmer Saldaña Núñez

Región: AMAZONAS

HUAMAN MAS FERNANDO

UBICACIÓN: Distrito: CHACHAPOYAS

PARTIDA		DESCRIPCIÓN	UNID.	TOTAL
1.00.00	TRABAJOS PRELIMINARES			

1.00.00	TRABAJOS PRELIMINARES		
1.01.01	Limpieza de terreno manual	m²	525.00
1.02.00	Trazo y replanteo preliminar	m²	525.00
2.00.00	MOVIMIENTO DE TIERRAS		
2.01.00	Excavaciones		
2.01.01	Excavación manual p/losa de cimentación	m³	89.42
2.01.02	Excavación manual de zanjas p/Vigas de borde	m³	11.73
2.01.03	Relleno compactado con material propio bordes de platea de cimentación	m³	11.30
2.01.04	Eliminación de material - manual distancia promedio = 30 m.	m³	89.84
2.01.05	Eliminación de material -con volquete dist. promedio =5km	m³	89.84
3.00.00	CONCRETO SIMPLE		
3.01.00	Solado e=0.10 m. C:H, 1:12 p/vigas de borde	m²	58.65
3.02.00	Solado e=0.10 m. C:H, 1:12 p/ Losa de cimentación	m²	136.63
3.05.00	Dado de concreto fc' = 175 Kg/cm2	m³	80.0

Tabla 49. Resumen de metrados (Continuación)

RESUMEN DE METRADOS ESTRUCTURAS

PROYECTO:

VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

FECHA

: Setiembre 2015

HECHO POR:

GONGORA ROJAS HITLER PEDRO. REVISADO POR: Ing. John Hilmer Saldaña Núñez

HUAMAN MAS FERNANDO

UBICACIÓN	I: Distrito: CHACHAPOYAS	Provincia: CHACHAPOYAS	Región: AMA.	ZONAS
PARTIDA		DESCRIPCIÓN	UNID.	TOTAL
4.00.00	CONCRETO ARMADO			
4.01.00	Vigas de Borde			
4.01.01	Concreto Fc' = 175 Kg/cm2 para vig	as de borde	m³	35.19
4.01.02	Acero Fy'= 4200 Kg/cm2, grado 60		Kg	654.58
4.02.00	Losa de Cimentación			
4.02.01	Concreto fc' = 175 Kg/cm2 para Los	sa de cimentación	m³	45.09
4.02.02	Encofrado y Desencofrado de Losa	de cimentación	m²	20.69
4.02.03	Acero Fy= 4200 Kg/cm2 , grado 60		Kg	3128.72
4.03.00	Muro de Ductilidad limitada			
4.03.01	Concreto fc' = 175 Kg/cm2 de Muro	s	m³	148.72
4.03.02	Encofrado y desencofrado de muro	S	m²	1931.37
4.03.03	Acero Fy'= 4200 Kg/cm2, grado 60		Kg	6188.09
4.04.00	Vigas			
4.04.01	Concreto fc' = 175 Kg/cm2 de vigas		m³	7.51
4.04.02	Encofrado y desencofrado de vigas		m²	19.72
4.04.03	Acero Fy'= 4200 Kg/cm2, grado 60		Kg	974.58
4.05.00	Losa Aligerada			
4.05.01	Concreto fc' = 175 Kg/cm2 en Losa	aligerada	m³	39.50
4.05.02	Encofrado y desencofrado normal o	de losa aligerada	m²	493.80
4.05.03	Acero Fy= 4200 Kg/cm2, grado 60		Kg	2153.70
4.05.04	Ladrillo hueco de arcilla 15x30x30 d	cm - Losa aligerada	Und	4607.15
4.06.00	Escalera			
4.06.01	Concreto Fc' = 175 Kg/cm2 de Esc	alera	m³	2.27
4.06.02	Encofrado y desencofrado normal o	de Escalera	m²	44.70
4.06.03	Acero Fy'= 4200 Kg/cm2, grado 60	1	Kg	409.43

3.4.1.2. Análisis de gastos generales

Los gastos generales (Fijos y variables) se evaluaron según el tiempo requerido para la ejecución de la obra, personal administrativo y técnico requerido. En la Página 96 se presenta el desagregado de gastos generales.

3.4.1.3. Presupuesto de obra

Se realizaron los presupuestos para las partidas de estructuras. Nótese que sólo está presupuestada la estructura (casco) puesto que las instalaciones sanitarias, eléctricas y acabados no inciden en el análisis comparativo final de la investigación. En la Página 98 se presenta el presupuesto total de obra.

3.4.1.4. Programación de obra

Se determinó la presente actividad partiendo de los lineamientos básicos de programación. Para el caso de los encofrados metálicos se hizo uso del generador de precios proporcionada por la empresa CYPE ingenieros S.A. en su página web www.peru.generadordeprecios.info por ser éste un sistema nuevo en nuestro medio y al no contar con rendimientos establecidos en algunas de sus actividades. Además se logró una adecuada planificación y seguimiento de sus tareas. En la Página 97 se presenta la programación de obra.

3.4.1.5. Análisis de costos unitarios

Se realizaron los análisis de costos unitarios tomando en cuenta las cantidades establecidas en el libro Costos y Presupuestos en edificación de la cámara peruana de la construcción (CAPECO). Cabe indicar que para obtener precios actualizados se realizó una cotización en los principales proveedores del sector construcción en la ciudad de Chachapoyas.

Los análisis de costos unitarios del sistema de muros de ductilidad limitada con concreto estructural se presentan en el Anexo.

Gastos generales

Presupuesto

0301012

VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA DE

CONCRETO ESTRUCTURAL CHACHAPOYAS

Fecha

05/09/2015

Moneda

01 NUEVOS SOLES

GASTOS VARIABLES

56,180.00

RELACIONADOS CON EL TIEMPO DE LA EJECUCION DE LA OBRA

Código	Descripción	Unidad	Cantidad	Tiempo	Costo	Parcial	
21001	Ing. Residente	mes	1.00	3.00	6,000.00	18,000.00	
21002	Maestro de Obra	mes	1.00	3.00	2,500.00	7,500.00	
21003	Administrador	mes	1.00	3.00	1,800.00	5,400.00	
21004	Almacenero	mes	1.00	3.00	1,800.00	5,400.00	
21005	Chofer	mes	1.00	3.00	1,200.00	3,600.00	
21006	Gastos de Ensayos Tecnicos	mes	3.00	3.00	120.00	1,080.00	
21007	Seguro por Accidentes	mes	1.00	1.00	2,000.00	2,000.00	
21008	Costos de Agua y Luz	mes	1.00	3.00	200.00	600.00	
21010	Camioneta Pick UP 4x4	mes	1.00	3.00	3,000.00	9,000.00	
21011	Guardian	mes	1.00	3.00	1,200.00	3,600.00	

Subtotal

56,180.00

GASTOS FIJOS

1,100.00

NO RELACIONADOS POR EL TIEMPO DE EJECUCION DE OBRA

Código	Descripción	Unidad	Cantidad	Tiempo	Costo	Parcial	
22001	Alquiler de local	mes	1.00	3.00	250.00	750.00	
22002	Papeleria y utiles de oficina	glb	1.00	1.00	350.00	350.00	

Subtotal

1,100.00

Total

57,280.00

	Descripción Partida	Duración	Inicio	Fin		1 49 148			1 00	1 50	1	1	,
Ð		-	i		30 ago 15	13 sep '15 V M S X	27 sep 15	11 oct '15 / M S X	25 oct '15	08 nov 15 V M S X	22 nov '15 D	06 dic '15 V M S X	0 1
Y	PROYECTO: VIVIENDA MULTIFAMILIAR	95 dias	lun 14/09/15	vie 18/12/15	<u> </u>				<u> </u>	<u>V I W I 3 I A .</u>	<u> </u>	V I W I S I A	1 2
	TRABAJOS PRELIMINARES	4 dlas	lun 14/09/15	vie 18/09/15									
III	LIMPIEZA DE TERRENO MANUAL	3 dias	lun 14/09/15	jue 17/09/15		3 dias							1
	TRAZO, NIVELES Y REPLANTEO	1 día	jue 17/09/15	vie 18/09/15		1 día				Į.			1
5	MOVIMIENTO DE TIERRAS	21.88 di	vie 18/09/15	vie 09/10/15	{				1	{	ļ	1	1
	EXCAVACION MANUAL P/LOSA DE	4 dias	vie 18/09/15	mar 22/09/15		4 dias							
	EXCAVACION MANUAL DE ZANJAS	1 día	sáb 19/09/15	dom 20/09/15		→ 1 día							1 .
	RELLENO COMPACTADO CON	1 dia?	jue 08/10/15	vie 09/10/15		' "	. u 1	dia?					1
9 🔠	ELIMINACIÓN DE MATERIAL - MANUAL	15,88 dias	sáb 19/09/15	dom 04/10/15			715.88 dias		\	1	1		1
	ELIMINACION DE MATERIAL -CON	1 día?	dom 04/10/15	dom 04/10/15			ge dia?						
	CONCRETO SIMPLE	1 día?	dom 04/10/15	tun 05/10/15			"				1		
	SOLADO E=0.10 M. C:H. 1:12 P/VIGAS	1 dia?	dom 04/10/15	lun 05/10/15			1 día?			!		1	
	SOLADO E=0.10 M. C:H, 1:12 P/ LOSA	1 dia	dom 04/10/15	lun 05/10/15	}		r idia		1	1	S	!	1
1	CONCRETO ARMADO	75 dias?	dom 04/10/15	jue 17/12/15			 						1
5	VIGAS DE BORDE	3 días	mar 06/10/15	jue 08/10/15	1						1		
	CONCRETO FC' = 175 KG/CM2	1 dia	mié 07/10/15	jue 08/10/15			1 d	ia				i	1
7 111	. ACERO FY'= 4200 KG/CM2 , GRADO	2 días	mar 06/10/15	mié 07/10/15	1		2 dia	s		1		\	1
3	LOSA DE CIMENTACION	5 dias	dom 04/10/15	jue 08/10/15			│ │ ┃ ┃						
9 🛅	CONCRETO FC' = 175 KG/CM2	1 día	mié 07/10/15	jue 08/10/15			∟∎/1⊲	ia			İ	}	ł
0	ENCOFRADO Y DESENCOFRADO	1 día	miė 07/10/15	mié 07/10/15			x a dia						
1 🛅	ACERO FY= 4200 KG/CM2 , GRADO	4 dias	dom 04/10/15	mié 07/10/15	}		dia	3	}	1	1	\	1
2	MURO DE DUCTILIDAD LIMITADA	48 días	mar 06/10/15	dom 22/11/15			 		 		41		
3 🕮	CONCRETO FC' = 175 KG/CM2 DE	41 días	lun 12/10/15	dom 22/11/15			l ,	→			41 días		1
4 🖽	ENCOFRADO Y DESENCOFRADO	46 días	mié 07/10/15	sáb 21/11/15							46 dias		
5 🔣	ACERO FY'= 4200 KG/CM2 , GRADO	46 días	mar 06/10/15	vie 20/11/15			→ 333 . 27					\	1
6	VIGAS	35 dias?	vie 16/10/15	jue 19/11/15					 		1		1 .
7 🔢	CONCRETO FC' = 175 KG/CM2 DE	31 días?	mar 20/10/15	jue 19/11/15		ļ				31	dias?	i	
8 🕮	ENCOFRADO Y DESENCOFRADO	31 dias	vie 16/10/15	dom 15/11/15									
	ACERO FY'= 4200 KG/CM2 , GRADO	31 días	sáb 17/10/15	lun 16/11/15							1	\	1
0	LOSA ALIGERADA	63 dias	vie 16/10/15	jue 17/12/15	1				 			 	i
1 🖼	CONCRETO FC' = 175 KG/CM2 EN	37 días	mar 20/10/15	mié 25/11/15				₩	} ≡	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , 🚐 37 dias		1
	ENCOFRADO Y DESENCOFRADO	63 dias	vie 16/10/15	jue 17/12/15								63	dias
	LADRILLO HUECO DE ARCILLA DE	37 dias	lun 19/10/15	mar 24/11/15	1			\ \ 		ļ.,., ., ,,,,	, 🗰 37 dias	}	1
	ACERO FY= 4200 KG/CM2 , GRADO	38 días	dom 18/10/15	mar 24/11/15	1							1	
1=	ESCALERA	34 dias?	sab 17/10/15	jue 19/11/15	ĺ			P	 	 	1		
6 📠	CONCRETO FC' = 175 KG/CM2 DE	31 dias?	mar 20/10/15	jue 19/11/15				┌──> ₩	J.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31	dias?		
擂	ENCOFRADO Y DESENCOFRADO	32 días	dom 18/10/15	mié 18/11/15		1				32 d	as	\ \	1
8 🖽	ACERO FY'= 4200 KG/CM2 , GRADO	31 dias			1		1					1	

Tarea Progreso resumido External Milestone Informe de resumen manual Hito externo Hito inactivo Hito Tareas externas Resumen manual Progreso Proyecto: VIVIENDA MULTIFAMILIAR Fecha: dom 22/11/15 Resumen del proyecto Resumen inactivo solo el comienzo Deadline Resumen Tarea manual solo fin Tarea resumida División \Diamond Hito resumido División resumida solo duración Tareas externas Página 1

PRESUPUESTO

PROYECTO

VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA DE CONCRETO ESTRUCTURAL

CHACHAPOYAS

SUBPRESUPUESTO:

ESTRUCTURAS

HECHO POR

GONGORA ROJAS HITLER PEDRO.

FECHA

: Setiembre 2015

HUAMAN MAS FERNANDO

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

	N: Distrito: CHACHAPOYAS Provincia: CHACHAPOYAS	<u></u>	Negion	: AMAZONA	10
ltem	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	TRABAJOS PRELIMINARES				3,097.5
01.01	LIMPIEZA DE TERRENO MANUAL	m2	525.00	2.38	1,249.5
01.02	TRAZO, NIVELES Y REPLANTEO PRELIMINAR	m2	525.00	3.52	1,848.0
02	MOVIMIENTO DE TIERRAS				7,807.7
02.01	EXCAVACION MANUAL P/LOSA DE CIMENTACION	m³	89.42	35.82	3,203.0
02.02	EXCAVACION MANUAL DE ZANJAS PIVIGAS DE BORDE	m³	11.73	35.82	420.1
02.03	RELLENO COMPACTADO CON MATERIAL PROPIO BORDES DE PLATEA DE CIMENTACION	m³	11.30	29.56	334.0
02.04	ELIMINACIÓN DE MATERIAL - MANUAL DISTANCIA PROMEDIO = 30 M.	m³	89.84	23.41	2,103.1
02.05	ELIMINACION DE MATERIAL -CON VOLQUETE DIST.PROMEDIO =5KM	M ₂	89.84	19.45	1,747.3
03	CONCRETO SIMPLE				6,856.2
03.01	SOLADO E=0.10 M. C:H, 1:12 P/VIGAS DE BORDE	m²	58.65	35.11	2,059.2
03.02	SOLADO E=0.10 M. C:H, 1:12 P/ LOSA DE CIMENTACION	m²	136.63	35.11	4,797.0
04	CONCRETO ARMADO				313,487.1
04.01	VIGAS DE BORDE				17,170.4
04.01.01	CONCRETO FC' = 175 KG/CM2 PARA VIGAS DE BORDE	m³	35.19	373.35	13,138.19
04.01.02	ACERO FY'= 4200 KG/CM2 , GRADO 60	Kg	654.58	6.16	4,032.2
04.02	LOSA DE CIMENTACION				36,141.9
04.02.01	CONCRETO FC' = 175 KG/CM2 PARA LOSA DE CIMENTACION	m³	45.09	353.54	15,941.12
04.02.02	ENCOFRADO Y DESENCOFRADO DE LOSA DE CIMENTACION	m²	20.69	44.85	927.9
04.02.03	ACERO FY= 4200 KG/CM2 , GRADO 60	Kg	3,128.72	6.16	19,272.9
04.03	MURO DE DUCTILIDAD LIMITADA				174,461.1
04.03.01	CONCRETO FC' = 175 KG/CM2 DE MUROS	m³	148.72	493.15	73,341.2
04.03.02	ENCOFRADO Y DESENCOFRADO DE MUROS	m2	1,931.37	32.62	63,001.2
04.03.03	ACERO FY'= 4200 KG/CM2 , GRADO 60	Kg	6,188.09	6.16	38,118.6
04.04	VIGAS				10,512.1
04.04.01	CONCRETO FC' = 175 KG/CM2 DE VIGAS	m³	7.51	402.03	3,019.2
04.04.02	ENCOFRADO Y DESENCOFRADO DE VIGAS	m²	19.72	75.53	1,489.4
04.04.03	ACERO FY'= 4200 KG/CM2 , GRADO 60	Kg	974.58	6.16	6,003.4
04.05	LOSA ALIGERADA				66,939.6
04.05.01	CONCRETO FC' = 175 KG/CM2 EN LOSA ALIGERADA	m³	39.50	395.09	15,606.0
04.05.02	ENCOFRADO Y DESENCOFRADO NORMAL DE LOSA ALIGERADA	m²	493.80	57.03	28,161.4
04.05.03	LADRILLO HUECO DE ARCILLA DE 15X30X30 CM-LOSA ALIGERADA	und	4,607.15	2.15	9,905.3
04.05.04	ACERO FY= 4200 KG/CM2 , GRADO 60	Kg	2,153.70	6.16	13,266.7
04.06	ESCALERA				8,261.8
04,06.01	CONCRETO FC' = 175 KG/CM2 DE ESCALERA	m³	2.27	502.04	1,139.6
04.06.02	ENCOFRADO Y DESENCOFRADO NORMAL DE ESCALERA	m²	44.70	102.91	4,600.0
04.06.03	ACERO FY'= 4200 KG/CM2 , GRADO 60	Kg	409.43	6.16	2,522.0
	COSTO DIRECTO				331,248.6
	GASTOS GENERALES				57,303.0
	UTILIDAD (5%)				16,562.43
	SUB TOTAL				405,114.13
	IGV (18%)				72,920.5
	100 (100)				. 1,525.0

SON: CUATROCIENTOS SETENTIOCHO MIL TRENTICUATRO Y 67/100 NUEVOS SOLES

3.4.2. EMDL concreto celular

3.4.2.1. Planilla de metrados

Se determinaron las partidas necesarias para la construcción de la edificación, respetando los lineamientos del Reglamento de Metrados para Obras de Edificación, sólo se analizaran las partidas de Estructuras, es decir, a nivel de cascarón estructural. No se incluyen, instalaciones sanitarias, eléctricas, pintura, carpintería de madera; vidrios, cerrajería, etc., ya que representan costos fijos e igual proceso constructivo en ambos casos, por lo que su incidencia es mínima en los resultados finales de la investigación. En la Tabla 50 se presenta el resumen de la planilla de metrados.

Tabla 50. Resumen de metrados de la estructura de concreto celular.

RESUMEN DE METRADOS ESTRUCTURAS

PROYECTO:

VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

EECHA

: Setiembre 2015

HECHO POR:

GONGORA ROJAS HITLER PEDRO.

REVISADO POR: Ing. John Hilmer Saldaña Núñez

HUAMAN MAS FERNANDO

UBICACIÓN: Distrito: CHACHAPOYAS

Provincia: CHACHAPOYAS

Región: AMAZONAS

PARTIDA	DESCRIPCIÓN	UNID.	TOTAL
1.00.00	TRABAJOS PRELIMINARES		
1.01.01	Limpieza de terreno manual	m²	525.00
1.02.00	Trazo y replanteo preliminar	m²	525.00
2.00.00	MOVIMIENTO DE TIERRAS		
2.01.00	Excavaciones		
2.01.01	Excavación manual p/losa de cimentación	m³	74.94
2.01.02	Excavación manual de zanjas p/Vigas de borde	m³	8.80
2.01.03	Relleno compactado con material propio bordes de platea de cimentación	m³	9.92
2.01.04	Eliminación de material - manual distancia promedio = 30 m.	m³	73.81
2.01.05	Eliminación de material -con volquete dist. promedio =5km	m³	73.81
3.00.00	CONCRETO SIMPLE		
3.01.00	Solado e=0.10 m. C:H, 1:12 p/vigas de borde	m²	58.65
3.02.00	Solado e=0.10 m. C:H, 1:12 p/ Losa de cimentación	m²	127.11
3.04.00	Falso piso e= 4" (Mezcla 1:10 Cemento: Hormigón)	m²	9.72
3.05.00	Dado de concreto fc' = 210 Kg/cm2	m³	0.08

Figura 50. Resumen de metrados (Continuación).

RESUMEN DE METRADOS ESTRUCTURAS

PROYECTO:

VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

FECHA

: Setiembre 2015

HECHO POR:

GONGORA ROJAS HITLER PEDRO.

REVISADO POR: Ing. John Hilmer Saldaña Núñez

HUAMAN MAS FERNANDO

UBICACIÓN: Distrito: CHACHAPOYAS

Provincia: CHACHAPOYAS

Región: AMAZONAS

PARTIDA	DESCRIPCIÓN	UNID.	TOTAL
4.00.00	CONCRETO ARMADO		
4.01.00	Vigas de Borde		
4.01.01	Concreto Fc' = 175 Kg/cm2 para vigas de borde	m³	29.33
4.01.02	Acero Fy'= 4200 Kg/cm2, grado 60	Kg	613.50
4.02.00	Losa de Cimentación		
4.02.01	Concreto fc' = 175 Kg/cm2 para Losa de cimentación	m³	34.96
4.02.02	Encofrado y Desencofrado de Losa de cimentación	m²	17.29
4.02.03	Acero Fy= 4200 Kg/cm2, grado 60	Kg	2471.87
4.03.00	Muro de Ductilidad limitada		
4.03.01	Concreto fc' = 175 Kg/cm2 de Muros	m³	148.72
4.03.02	Encofrado y desencofrado de muros	m²	1931.37
4.03.03	Acero Fy'= 4200 Kg/cm2, grado 60	Kg	6188.09
4.04.00	Vigas		
4.04.01	Concreto fc' = 210 Kg/cm2 de vigas chatas	m³	7.51
4.04.02	Encofrado y desencofrado de vigas	m²	19.72
4.04.03	Acero Fy'= 4200 Kg/cm2, grado 60	Kg	974.58
4.05.00	Losa Aligerada		
4.05.01	Concreto fc' = 175 Kg/cm2 en Losa aligerada	m³	39.50
4.05.02	Encofrado y desencofrado normal de losa aligerada	m²	493.80
4.05.03	Ladrillo hueco de arcilla 15x30x30 cm - Losa aligerada	Und	4607.15
4.05.03	Acero Fy= 4200 Kg/cm2, grado 60	· Kg	2153.70
4.06.00	Escalera		
4.06.01	Concreto Fc' = 175 Kg/cm2 de Escalera	m³	2.27
4.06.02	Encofrado y desencofrado normal de Escalera	m²	44.70
4.06.03	Acero Fy'= 4200 Kg/cm2, grado 60	Kg	409.43

3.4.2.2. Análisis de gastos generales

Los gastos generales (Fijos y variables) se evaluaron según el tiempo requerido para la ejecución de la obra, personal administrativo y técnico requerido. En la Página 102 se presenta en el desagregado de gastos generales.

3.4.2.3. Presupuesto de obra

Se realizaron los presupuestos para las partidas de estructuras. Nótese que sólo está presupuestada la estructura (**casco**) puesto que las instalaciones sanitarias, eléctricas y acabados no inciden en el análisis comparativo final de la investigación. En la Página 104 se presenta el presupuesto total de obra.

3.4.2.4. Programación de obra

Se determinó la presente actividad partiendo de los lineamientos básicos de programación. Para el caso de los encofrados metálicos se hizo uso del generador de precios proporcionada por la empresa CYPE ingenieros S.A. en su página web www.peru.generadordeprecios.info por ser éste un sistema nuevo en nuestro medio y al no contar con rendimientos establecidos en algunas de sus actividades. Además se logró una adecuada planificación y seguimiento de sus tareas. En la Página 103 se presenta la programación de obra.

3.4.2.5. Análisis de costos unitarios

Se realizaron los análisis de costos unitarios tomando en cuenta las cantidades establecidas en el libro costos y presupuestos en edificación de la cámara peruana de la construcción (CAPECO). Cabe indicar que para obtener precios actualizados se realizó una cotización en los principales proveedores del sector construcción en la ciudad de Chachapoyas.

Los análisis de costos unitarios del sistema de muros de ductilidad limitada con concreto celular se presentan en el Anexo.

Gastos generales

Presupuesto

0301013 VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA DE

CONCRETO CELULAR CHACHAPOYAS

Fecha

05/09/2015

01 NUEVOS SOLES Moneda

GASTOS VARIABLES

56,180.00

RELACIONADOS CON EL TIEMPO DE LA EJECUCION DE LA OBRA

Código	Descripción	Unidad	Cantidad	Tiempo	Costo	Parcial	
21001	Ing. Residente	mes	1.00	3.00	6,000.00	18,000.00	
21002	Maestro de Obra	mes	1.00	3.00	2,500.00	7,500.00	
21003	Administrador	mes	1.00	3.00	1,800.00	5,400.00	
21004	Almacenero	mes	1.00	3.00	1,800.00	5,400.00	
21005	Chofer	mes	1.00	3.00	1,200.00	3,600.00	
21006	Gastos de Ensayos Tecnicos	mes	3.00	3.00	120.00	1,080.00	
21007	Seguro por Accidentes	mes	1.00	1.00	2,000.00	2,000.00	
21008	Costos de Agua y Luz	mes	1.00	3.00	200.00	600.00	
21010	Camioneta Pick UP 4x4	mes	1.00	3.00	3,000.00	9,000.00	
21011	Guardian	mes	1.00	3.00	1,200.00	3,600.00	

Subtotal

56,180.00

GASTOS FIJOS

1,100.00

NO RELACIONADOS POR EL TIEMPO DE EJECUCION DE OBRA

Código Descrip	ción	Unidad	Cantidad	Tiempo	Costo	Parcial	
22001 Alquiler	de local	mes	1.00	3.00	250.00	750.00	
22002 Papeler	ia y utiles de oficina	glb	1.00	1.00	350.00	350.00	
				Subtotal			1,100.00

Total

57,280.00

MYSERCA NATE PERMITTING DE MUNICIPA DE 1977 1 1 1 1 1 1 1 1 1	1 1	Descripción Partida	Duración	Inicio	Fin lgu	30 and 15 13 and 16 27 and 15 14 and 16 25 and 15 28 and 16 28 and	90.45-1
WOMERON AND DE MATERIAL CON	0					30 ago '15	x D J
TRAZON NUMERIA OF TERRENO MANUAL 3 daw No 1400/15 No 1700/15							7
MOVINEED OF ETRANS 10 10 10 10 10 10 10 1						\rightarrow	
MONIMENTO DE TIERRAS 20.88 dil. viv 1809/15 per 081/1015							1 1
SEXAMACION MANUAL PRASADE 4 diss vie 1809/115 m 2000/115 m 2						i iii dia	1 1
RELIAND COMPACTADO CON 1 dia 581 109/15 581 109/1	5		20.88 di			<u>+ </u>	
ELIMINACION DE MATERIAL. MANUAL (5.80 das state) 1999/15 dem O4/10715 Dem E4/10715 Dem			1 dia			->	1 1
ELMMACION DE MATERIAL, CON		RELLENO COMPACTADO CON	1 dia?	mié 07/10/15	jue 08/10/15 13		- 1
CONCRETO SIMPLE		ELIMINACIÓN DE MATERIAL - MANUAL	15.88 dias			├────────────────────────────────────	1 1
SOLADO E-0.10 M. CH. 1:12 PAJGAS 1 dia? do-mo4/1015 lin 05/1015 1 dia						z≼ 1 dia?	
SOLADO E-0.10 M. CH. 1:12 PILOSA 1 dial dom 04/01/15 Int 05/01/15 Int							
CONCRETO FIC # 375 KG/CM2 3 dias 1 dia 1 dias 1 d							
VIGAS DE BORDE 3 dias lun 05/10/15 mis 07/10/15/13 CONCRETO FC" = 175 KGICM2 dia mar 06/10/15 mis 07/10/15/13 ACERO FY= 4200 KGICM2 , GRADO 2 dias lun 05/10/15 mar 06/10/15 is CONCRETO FC" = 175 KGICM2 dia mar 06/10/15 mis 07/10/15/13 ENCOFRADO Y DESENCOFRADO 1 dia mar 06/10/15 mar 06/10/15/13 ACERO FY= 4200 KGICM2 , GRADO 3 dias lun 05/10/15 mar 06/10/15/13 MURO DE DUCTILIDAD LIMITADA 48 dias lun 05/10/15 mar 06/10/15/13 abd dias lun 05/10/15 mar 06/10/15/13 CONCRETO FC" = 175 KGICM2 DE 41 dias dom 04/10/15 mar 06/10/15/13 abd dias lun 05/10/15 mar 06/10/15/13 CONCRETO FC" = 175 KGICM2 DE 31 dias lun 05/10/15 mis 16/11/15/13 dias lun 05/10/15 dias							1
CONCRETO FC'=175 KGCM2							
ACERO FY- #200 KG/CM2, GRADO 2 diss un 05/10/15 mile 07/10/15/13							[. [
LOSA DE CIMENTACION							
□ CONCRETO FC' = 175 KG(CNZ 1 dia mar 061/01/5 mid 071/01/5 13 mid 071/01/5 13 mid 071/01/5 mar 061/01/5 m						 	
ET ENCOFRADO Y DESENCOFRADO 1 dia mar 06/10/15 mar 06/10/15 13 ACERO FY= 4200 KG/CM2, GRADO 3 dias dom 04/10/15 mar 06/10/15 13 CONCRETO FC = 175 KG/CM2 DE 41 dias lun 05/10/15 sab 2/11/15/15 13 ENCOFRADO Y DESENCOFRADO 46 dias lun 05/10/15 sab 2/11/15/15 13 ACERO FY= 4200 KG/CM2, GRADO 46 dias lun 05/10/15 sab 2/11/15/15 13 ENCOFRADO Y DESENCOFRADO 46 dias lun 05/10/15 sab 2/11/15/15 13 ENCOFRADO Y DESENCOFRADO 46 dias lun 05/10/15 jus 19/11/15/15 13 ENCOFRADO Y DESENCOFRADO 31 dias lun 05/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 31 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 40 dias lun 05/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 50 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 50 ENCOFRADO Y DESENCOFRADO 50 dias lun 19/10/15 mile 18/11/15/15 13 51 dias? 51 ENCOFRADO Y DESENCOFRADO 52 dias sab 17/10/15 mile 18/11/15/15 13 52 dias 53 dias 54 T/70/15 mile 18/11/15/15 13 54 dias 55 ENCOFRADO Y DESENCOFRADO 57 dias dias dias lun 19/10/15 mile 18/11/15/15 13 58 dias dias dias dias dias lun 19/10/15 mile 18/11/15/15 13 50 dias dias dias dias dias dias dias dias							
ACERO FY= 4200 KG/CMZ, GRADO 3 dias dim 04/10/15 mar 08/10/15 13						\ _ y \ ¹ did	
MURO DE DUCTILIDAD LIMITADA 48 dias lun 05/10/15 sab 21/11/15						147 dia	
CONCRETO FC = 175 KG/CM2 DE 41 dias dom 11/10/15 sáb 21/11/15 13 41 dias dom 11/10/15 sáb 21/11/15 13 42 dias						V≱ ass -3 dias	
ENCOFRADO Y DESENCOFRADO 46 dias mar 06/10/15 vie 20/11/15/13 ACERO FY= 4200 KG/CM2, GRADO 46 dias lun 05/10/15 jue 19/11/15/13 VIGAS 35 dias7 jue 15/10/15 mid 18/11/15/13 ENCOFRADO Y DESENCOFRADO 31 dias7 lun 19/10/15 mid 18/11/15/13 ACERO FY= 4200 KG/CM2, GRADO 31 dias jue 15/10/15 mid 18/11/15/13 LOSA ALIGERADA 63 dias jue 15/10/15 mid 18/12/15/13 ENCOFRADO Y DESENCOFRADO 63 dias jue 15/10/15 lun 23/11/15/13 ENCOFRADO Y DESENCOFRADO 38 dias såb 17/10/15 lun 23/11/15/13 ACERO FY= 4200 KG/CM2, GRADO 38 dias såb 17/10/15 lun 23/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias såb 17/10/15 mid 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias såb 17/10/15 mrid 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias såb 17/10/15 mrid 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias såb 17/10/15 mrid 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias såb 17/10/15 mrid 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias såb 17/10/15 mrid 18/11/15/13							
ACERO FY= 4200 KG/CM2 , GRADO 46 días lun 05/10/15 jue 19/11/15 ji3 v/GAS 35 días? jue 15/10/15 mie 18/11/15 ji3 jue 15/10/15 mie 18/11/15 ji3						, ■ 41 dias	1 1
VKGAS 35 dias? jue 15/10/15 mié 18/11/15							
CONCRETO FC' = 175 KG/CM2 DE 31 dias? tun 19/10/15 mié 18/11/15/13 ENCOFRADO Y DESENCOFRADO 31 dias jue 15/10/15 dom 15/11/15/13 ACERO FY' = 4200 KG/CM2, GRADO 31 dias vie 16/10/15 dom 15/11/15/13 LOSA ALIGERADA 63 dias jue 15/10/15 mié 18/12/15/15 ENCOFRADO Y DESENCOFRADO 63 dias jue 15/10/15 mié 16/12/15/13 ENCOFRADO Y DESENCOFRADO 63 dias jue 15/10/15 mié 16/12/15/13 ENCOFRADO Y DESENCOFRADO 63 dias jue 15/10/15 mié 16/12/15/13 ENCOFRADO Y DESENCOFRADO 38 dias jue 15/10/15 mié 18/10/15/13 ESCALERA 34 dias? vie 16/10/15 mié 18/11/15/13 ESCALERA 34 dias? tun 19/10/15 mié 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mié 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mié 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mié 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mié 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 dias sáb 17/10/15 mie 1						↓ 46 dias	
ENCOFRADO Y DESENCOFRADO 31 dias jue 15/10/15 sáb 14/11/15 13							
ACERO FY'= 4200 KG/CM2 , GRADO 31 días vie 16/10/15 dom 15/11/15 13 LOSA ALIGERADA 63 días jue 15/10/15 mía 16/12/15 CONCRETO FC' = 175 KG/CM2 EN 37 días lun 19/10/15 mía 16/12/15 13 ENCOFRADO Y DESENCOFRADO 63 días jue 15/10/15 mía 16/12/15 13 LADRILLO HUECO DE ARCILLA DE 37 días dom 18/10/15 lun 23/11/15 13 ACERO FY = 4200 KG/CM2 , GRADO 38 días sáb 17/10/15 mía 16/11/15 13 ESCALERA 34 días vie 16/10/15 mía 18/11/15 13 CONCRETO FC' = 175 KG/CM2 DE 31 días? vie 16/10/15 mía 18/11/15 31 ENCOFRADO Y DESENCOFRADO 32 días sáb 17/10/15 mía 18/11/15 31 ENCOFRADO Y DESENCOFRADO 32 días sáb 17/10/15 mía 18/11/15 31							
LOSA ALIGERADA 63 días jue 15/10/15 mié 16/12/15 CONCRETO FC' = 175 KG/CM2 EN 37 días lun 19/10/15 mar 24/11/15/13 ENCOFRADO Y DESENCOFRADO 63 días jue 15/10/15 mié 16/12/15/13 LADRILLO HUECO DE ARCILLA DE 37 días dom 18/10/15 lun 23/11/15/13 ACERO FY = 4200 KG/CM2 GRADO 38 días sáb 17/10/15 lun 23/11/15/13 ESCALERA 34 días? vie 16/10/15 mié 18/11/15/5 ESCALERA 34 días? vie 16/10/15 mié 18/11/15/5 ENCOFRADO Y DESENCOFRADO 32 días sáb 17/10/15 mié 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 días sáb 17/10/15 mié 18/11/15/13							į į
回 CONCRETO FC' = 175 KG/CM2 EN 37 días lun 19/10/15 mar 24/11/15 l 3 回 ENCOFRADO Y DESENCOFRADO 63 días jue 15/10/15 mié 16/12/15 l 3 同 LADRILLO HUECO DE ARCILLA DE 37 días dom 18/10/15 lun 23/11/15 l 3 日 ACERO FY = 4200 KG/CM2, GRADO 38 días sáb 17/10/15 lun 23/11/15 l 3 日 CONCRETO FC' = 175 KG/CM2 DE 31 días? vie 16/10/15 mié 18/11/15 l 3 日 CONCRETO FC' = 175 KG/CM2 DE 31 días? lun 19/10/15 mié 18/11/15 l 3 日 ENCOFRADO Y DESENCOFRADO 32 días sáb 17/10/15 mar 17/11/15 l 3						□ □ ■	i i
ENCOFRADO Y DESENCOFRADO 63 días jue 15/10/15 mie 16/12/15/13 jue 15/10/15 mie 16/12/15/13 jue 15/10/15 mie 16/12/15/13 jue 15/10/15 mie 18/10/15 mie 1							
3団 LADRILLO HUECO DE ARCILLA DE 37 días dom 18/10/15 lun 23/11/15 13 4団 ACERO FY= 4200 KG/CM2 , GRADO 38 días sáb 17/10/15 mié 18/11/15 13 5 ESCALERA 34 días? vie 18/10/15 mié 18/11/15 13 6団 CONCRETO FC' = 175 KG/CM2 DE 31 días? tun 19/10/15 mié 18/11/15/13 7団 ENCOFRADO Y DESENCOFRADO 32 días sáb 17/10/15 mar 17/11/15 13							
4 ☐ ACERO FY= 4200 KG/CM2 , GRADO 38 dias sáb 17/10/15 lm 23/11/15/13						**************************************	63 dias
5 ESCALERA 34 días? vie 18/10/15 mié 18/11/15 6 CONCRETO FC' = 175 KG/CM2 DE 31 días? lun 19/10/15 mié 18/11/15/13 7 ENCOFRADO Y DESENCOFRADO 32 días sáb 17/10/15 mar 17/11/15/13						——★■	i I
EM CONCRETO FC' = 175 KG/CM2 DE 31 días? tun 19/10/15 mie 18/11/15/13 ENCOFRADO Y DESENCOFRADO 32 días sáb 17/10/15 mar 17/11/15/13			1			→ 1	
TEST ENCOFRADO Y DESENCOFRADO 32 días sáb 17/10/15 mar 17/11/15 13			1				1 1
8 MES ACERO FY'= 4200 KG/CM2, GRADO 31 dias vie 16/10/15 dom 15/11/15 13 YM,							1 1
	BEE	ACERO FY'= 4200 KG/CM2 , GRADO	31 días	vie 16/10/15	dom 15/11/15[13	→■ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			÷				

	Tarea		Progreso resumido		External Milestone	•	Informe de resumen manual		Hito externo	
	Hito	•	Tareas externas		Hito inactivo		Resumen manual	1	Progreso	
yecto: VIVIENDA MULTIFAMILIAR tha: dom 22/11/15	Resumen		Resumen del proyecto	[]	Resumen inactivo	11111111111111111111	solo el comienzo		Deadline	Ŷ
3110. 0011122711110	Tarea resumida		División	***************************************	Tarea manual	1 1	solo fin	T	▼	
	Hito resumido	\diamond	División resumida	***************	solo duración		Tareas externas	•		
					Página 1					

PRESUPUESTO

PROYECTO : VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA DE CONCRETO CELULAR CHACHAPOYAS

SUBPRESUPUESTO: ESTRUCTURAS

FECHA

: Setiembre 2015

HECHO POR

GONGORA ROJAS HITLER PEDRO.

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

HUAMAN MAS FERNANDO

UBICACIÓN: Distrito: CHACHAPOYAS

Provincia: CHACHAPOYAS

Región: AMAZONAS

Item	Descripción	Und.	Metrado	Precio S/.	Parcial Si.
01	TRABAJOS PRELIMINARES				3,097.50
01.01	LIMPIEZA DE TERRENO MANUAL	m2	525.00	2.38	1,249.50
01.02	TRAZO, NIVELES Y REPLANTEO PRELIMINAR	m2	525.00	3.52	1,848.00
02	MOVIMIENTO DE TIERRAS				6,456.30
02.01	EXCAVACION MANUAL P/LOSA DE CIMENTACION	m³	74.94	35.82	2,684.35
02.02	EXCAVACION MANUAL DE ZANJAS PIVIGAS DE BORDE	m³	8.80	35.82	315.22
02.03 02.04	RELLENO COMPACTADO CON MATERIAL PROPIO BORDES DE PLATEA DE CIMENTACION ELIMINACIÓN DE MATERIAL - MANUAL DISTANCIA PROMEDIO = 30 M.	m³	9.92	29.56	293.24
02.05	ELIMINACION DE MATERIAL - MANDAL DISTANCIA PROMEDIO - 30 M. ELIMINACION DE MATERIAL - CON VOLQUETE DIST. PROMEDIO = 5KM	m³	73.81 73.81	23.41 19.45	1,727.89 1,435.60
		111	73.01	10.40	·
03	CONCRETO SIMPLE		50.05	05.44	6,856.28
03.01 03.02	SOLADO E=0.10 M. C.H. 1:12 P/VIGAS DE BORDE	m² m²	58.65 136.63	35.11 35.11	2,059.20
	SOLADO E=0.10 M. C:H, 1:12 P/ LOSA DE CIMENTACION	III-	130.03	35.11	4,797.08
04	CONCRETO ARMADO				298,018.63
04.01	VIGAS DE BORDE	_			14,346.17
04.01.01	CONCRETO FC' = 175 KG/CM2 PARA VIGAS DE BORDE	m³	29.33	360.28	10,567.01
04.01.02	ACERO FY'= 4200 KG/CM2 , GRADO 60	Kg	613.50	6.16	3,779.16
04.02	LOSA DE CIMENTACION				28,004.30
04.02.01	CONCRETO FC' = 175 KG/CM2 PARA LOSA DE CIMENTACION	m³	34.96	343.31	12,002.12
04.02.02	ENCOFRADO Y DESENCOFRADO DE LOSA DE CIMENTACION	m²	17.29	44.85	775.46
04.02.03	ACERO FY= 4200 KG/CM2 , GRADO 60	Kg	2,471.87	6.16	
04.03	MURO DE DUCTILIDAD LIMITADA	_			170,476.98
04.03.01	CONCRETO FC' = 175 KG/CM2 DE MUROS	m³	148.72	466.36	69,357.06
04.03.02	ENCOFRADO Y DESENCOFRADO DE MUROS	m2	1,931.37	32.62	•
04.03.03	ACERO FY'= 4200 KG/CM2, GRADO 60	Kg	6,188.09	6.16	•
04.04	VIGAS				10,413.95
04.04.01	CONCRETO FC' = 175 KG/CM2 DE VIGAS	m³	7.51	388.96	
04.04.02 04.04.03	ENCOFRADO Y DESENCOFRADO DE VIGAS ACERO FY'= 4200 KG/CM2 , GRADO 60	m²	19.72 974.58	75.53 6.16	1,489.45 6,003.41
04.05	LOSA ALIGERADA	Kg	374.30	0.10	66,535.54
04.05.01	CONCRETO FC' = 175 KG/CM2 EN LOSA ALIGERADA	m³	39.50	384.86	
04.05.02	ENCOFRADO Y DESENCOFRADO NORMAL DE LOSA ALIGERADA	m²	493.80	57.03	28,161.41
04.05.03	LADRILLO HUECO DE ARCILLA DE 15X30X30 CM-LOSA ALIGERADA	und	4,607.15	2.15	
04.05.04	ACERO FY= 4200 KG/CM2 , GRADO 60	Kg	2,153.70	6.16	13,266.79
04.06	ESCALERA				8,241.69
04.06.01	CONCRETO FC' = 175 KG/CM2 DE ESCALERA	m³	2.27	493.18	1,119.52
04.06.02	ENCOFRADO Y DESENCOFRADO NORMAL DE ESCALERA	m²	44.70	102.91	4,600.08
04.06.03	ACERO FY'= 4200 KG/CM2, GRADO 60	Kg	409.43	6.16	2,522.09
	COSTO DIRECTO				314,428.71
	GASTOS GENERALES				57,280.11
	UTILIDAD (5%)				15,721.44
	SUBTOTAL			****	387,430.26
	IGV (18%)				69,737.45
	COSTO TOTAL			****	457,167.71

SON: CUATROCIENTOS CINCUENTISIETE MIL CIENTO SESENTISIETE Y 71/100 NUEVOS SOLES

3.5. Análisis comparativo

3.5.1. Comportamiento sísmico

3.5.1.1. Análisis estático

En la Figura 51 se muestran los parámetros sísmicos de ambas estructuras y las figuras 62 y 63 muestran el peso de las edificaciones y la distribución de masas respectivamente.

Tabla 51. Parámetros sísmicos.

Factor	Concreto Estructural	Concreto celular
Z	2(0.25)	2(0.25)
S	S2(1.2)	S2(1.2)
T_{P}	0.6	0.6
$T_{ m L}$	0.2	0.2
U	1	1
R_{O}	4	4
I _a	· 1	1
$I_{\mathbf{p}}$	1	1
R	4	4
Т	0.176	0.176
C	2.5	2.5

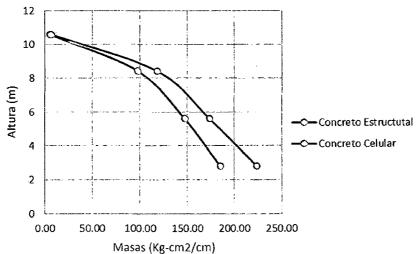

Fuente: Elaboración propia.

Tabla 52. Peso de la edificación.

Factor	Concreto Estructural	Concreto celular
Masa (Kg-cm2/m)	52255.26	43561.86
Peso (Tn)	512.62	427.34

Fuente: Elaboración propia.

Figura 59. Distribución de masas en la edificación.

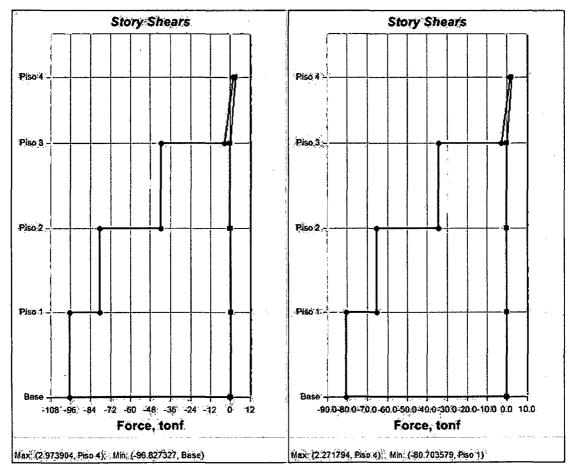

La Tabla 53 y la Figura 60 muestran la cortante estática en la base y la distribución por piso respectivamente.

Tabla 53. Fuerza cortante estática en la base.

	Concreto Estructural	Concreto celular
Sismo X (Tn)	96.8273	80.7036
Sismo Y (Tn)	96.8273	80.7036

Fuente: Elaboración propia.

Figura 60. Cortante basal (Concreto estructural (Izquierda) Concreto celular (Derecha)).

Fuente: Elaboración propia.

Las derivas máximas con ambos materiales se muestran en la Tabla 54.

Tabla 54. Derivas máximas del análisis estático.

	Concreto Estructural	Concreto celular
Sismo X	0.000498	0.00579
Sismo Y	0.000162	0.000189
Promedio X	0.000221	0.000279
Promedio Y	0.000085	0.000097

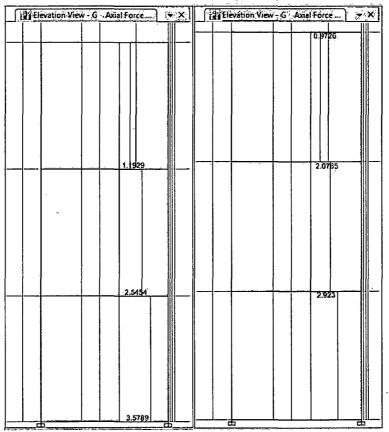

La Tabla 55 y la Figura 61 muestran las fuerzas internas estáticas en el muro M18 diseñado en capítulos anteriores.

Tabla 55. Fuerzas internas estáticas del muro M18 en el piso 01.

	Concreto E	structural	Concreto	celular
	Sismo X	Sismo Y	Sismo X	Sismo Y
P ton	3.5789	1.2994	2.923	1.0278
V2 ton	1.2893	2.4061	0.9891	1.9824
V3 ton	-3.4753	-0.613	-2.9947	-0.5363
M2 ton-m	-2.0254	-1.587	-1.6755	-1.3196
M3 ton-m	-17.4965	-4.3887	-14.7831	-3.5699

Fuente: Elaboración propia.

Figura 61. Fuerzas axial M18 (Concreto estructural (Izquierda) Concreto celular (Derecha)).

Fuente: Elaboración propia.

3.5.1.2. Análisis dinámico

El valor del cortante dinámico en la base de la estructura de concreto estructural, en las direcciones de análisis es: Vxx = 757.369 ton y Vyy = 757.369 ton (Tabla 56), mientras que con concreto celular estos son: Vxx = 630.914 ton y Vyy = 630.914 ton, los cuales son mayores al 80% del cortante estático basal, cuyos valores son: Vxx = 630.914 ton,

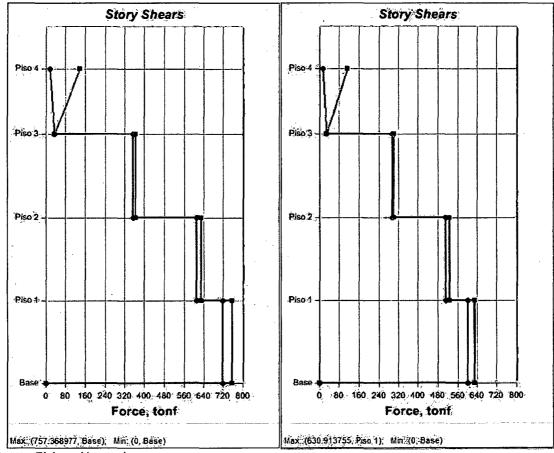

Vyy = 96.827 ton y Vxx = Vyy = 80.704 ton (Tabla 53) para concreto estructural y concreto celular respectivamente; motivo por el cual no se tuvo que amplificar las fuerzas internas (fuerza axial, cortante y momentos) para el diseño de los elementos estructurales de acuerdo a la NTE E-030 2014 (numeral 4.6.4).

Tabla 56. Fuerza cortante dinámica en la base.

	Concreto Estructural	Concreto celular
Sismo X (Tn)	757.369	630.9138
Sismo Y (Tn)	757.369	630.9138

Fuente: Elaboración propia.

Figura 62. Cortante basal (Concreto estructural (Izquierda) Concreto celular (Derecha)).

Fuente: Elaboración propia.

El periodo fundamental de vibración de la estructura (T) de concreto estructural es Tx = 0.096s y la masa participante en el segundo modo de vibración es en XX = 73.74% mientras que en la estructura de concreto celular el periodo fundamental es Tx = 0.104s y la masa participante en el segundo modo de vibración es en XX = 74.21% (Tabla 37). De lo anterior se concluye que en el caso del concreto estructural la

estructura es mucho más rígida que de concreto celular (periodo 8.30% menor al de concreto celular) y que el porcentaje de la masa que se convierte con la aceleración en fuerza cortante (V) en el segundo modo de vibración es menor en la estructura de concreto estructural (0.47% menor al de concreto celular). Además se puede notar que tanto para concreto estructural como para concreto celular la dirección XX es la más flexible.

Tabla 57. Periodos fundamentales de vibración.

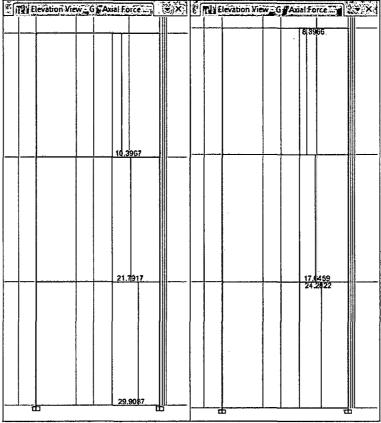
Periodo	Concreto estructural	Concreto celular
Txx (s)	0.096	0.104
<i>Tyy</i> (s)	0.067	0.073

Fuente: Elaboración propia.

Las derivas máximas de entrepiso en la estructura analizada de concreto estructural son dxx = 0.004038 y dyy = 0.004038 cm, mientras que para la estructura con concreto celular son dxx = 0.004869 cm y dyy = 0.004869 cm (Tabla 58), valores que son menores al permisible dmax = 0.005 para ambos casos; esto quiere decir que en el caso del concreto estructural la dxx y la dyy son el 80.70% del permisible para ambas direcciones, asimismo, para el caso del concreto celular la dxx y la dyy son 97.38 del permisible para ambas direcciones. De lo anterior se concluye que los desplazamientos laterales máximos de entrepiso de la estructura de concreto estructural son menores en un 16.68 % a los de la estructura de concreto celular para ambas direcciones, indicándose así que la rigidez lateral de la estructura de concreto estructural es mayor a la de concreto celular.

Tabla 58. Derivas dinámicas máximas.

	Concreto Estructural	Concreto celular
Sismo X	0.004038	0.004869
Sismo Y	0.004038	0.004869
Promedio X	0.00234	0.00275
Promedio Y	0.00234	0.00275


Fuente: Elaboración propia.

La Tabla 59 y la Figura 63 muestran las fuerzas internas dinámicas en el Muro M18 diseñado en capítulos anteriores.

Tabla 59. Fuerzas internas dinámicas del muro M18 en el Piso 01.

	Concreto I	Estructural	Concreto celular		
	Sismo X	Sismo Y	Sismo X	Sismo Y	
P ton	29.9087	29.9087	24.2822	24.2822	
V2 ton	23.1369	23.1369	19.1648	19.1648	
V3 ton	37.9253	37.9253	32.2549	32.2549	
M2 ton-m	18836.689	18836.689	155.5614	155.5614	
M3 ton-m	8907.29	8907.29	73.2289	73.2289	

Figura 63. Fuerzas axial M18 (Concreto estructural (Izquierda) Concreto celular (Derecha)).

Fuente: Elaboración propia.

3.5.1.3. Diseño estructural

Para la losa aligerada los momentos máximos para la estructura de concreto estructural en el tramo diseñado en capitulo III son Mmax (+) = 0.28 ton-m y Mmax (-) = 0.57 ton-m y para el concreto celular son Mmax (+) = 0.26 ton-m y Mmax (-) = 0.53 ton-m, siendo estos menores en 7.14 % y 7.01 % que el de concreto estructural respectivamente; para ambos casos se utilizó la misma sección de diseño lo que nos limita a colocar un acero mínimo de Asmin(-) = 0.315cm² Asmin(+) = 1.26 cm² siendo estos mayores que la mayoría de los obtenidos con los momentos que se muestran en

la Tabla 60 por lo que se colocó la misma cantidad de acero para los dos diferentes tipos de materiales.

Tabla 60. Momentos últimos y área de acero en losa aligerada diseñada el capítulo III.

	Concreto Estructural					Concreto Celular		
	Mu (tn-m)	As (cm2)	As min (cm2)	Acero Coloc.	Mu (tn-m)	As (cm2)	As min (cm2) Acero Coloc.
	0.57	0.938		1Ø1/2"	0.53	0.860		1Ø1/2"
ξį	0.44	0.708	0.245	1ø3/8"	0.41	0.647	0.245	1ø3/8"
Negativo	0.27	0.423	0.315	1Ø3/8"	0.24	0.389	0.315	1ø3/8"
z	0.15	0.224		1ø3/8"	0.13	0.206		1ø3/8"
0	0.28	0.427		1Ø1/2"	0.26	0.400		1Ø1/2"
Positivo	0.13	0.205	1.260	1Ø1/2"	0.13	0.192	1.260	1Ø1/2"
Pos	0.07	0.110		1Ø1/2"	0.06	0.089		1Ø1/2"

Fuente: Elaboración propia.

En el caso de las vigas chata (V.CH-01(20x20)) los momentos máximos para la estructura de concreto estructural para las secciones diseñadas en capitulo III son Mmax (+) = 0.27 ton-m y Mmax (-) = 0.37 ton-m y para el concreto celular son Mmax (+) = 0.25 ton-m y Mmax (-) = 0.36 ton-m, siendo estos menores en 7.40 % y 2.70% que el de concreto estructural respectivamente; Por las limitaciones respecto a la cortante ultima establecidas en el artículo 14.4.3 de la NTE E-060 para vigas entre muros, y habiendo hecho las verificaciones respectivas se consideró la misma sección para ambos casos, el acero mínimo requerido para dicha sección es Asmin = 0.77cm² siendo este mayor a los calculados con los momentos indicados anteriormente por lo que se colocó la misma cantidad de acero para los dos diferentes tipos de materiales. Los valores se muestran en la Tabla 61

Tabla 61. Momentos últimos y área de acero en viga chata V.CH 01(0.20X0.20).

	Concreto Estructural					Concre	to Ceiular	
	Mu (tn-m)	As (cm2)	As min (cm2)	Acero Coloc.	Mu (tn-m)	As (cm2)	As min (cm2)	Acero Coloc.
Negativo	0.37	0.6	0.77	2Ø3/8"	0.36	0.56.	0.77	2Ø3/8"
Positivo	0.27	0.42	0.77	2Ø3/8"	0.25	0.38	0.77	2Ø3/8"

Fuente: Elaboración propia.

Para la viga peraltada (V.P-01(30x40)) los momentos máximos para la estructura de concreto estructural para las secciones diseñadas en capitulo III son Mmax (+) = 3.11 ton-m y Mmax (-) = 1.62 ton-m y para el concreto celular son Mmax (+) = 2.83 ton-m y Mmax (-) = 1.07 ton-m (Tabla 62), siendo estos menores en 9.00 % y 7.75% que el de concreto estructural respectivamente; Por las limitaciones respecto a la cortante ultima establecidas en el artículo 14.4.3 de la norma E-0.60 para vigas entre muros, y habiendo hecho las verificaciones respectivas se consideró la misma sección para ambos casos, el acero mínimo requerido para dicha sección es Asmin = 2.48 cm2

siendo este mayor a los calculados con los momentos indicados anteriormente por lo que se colocó la misma cantidad de acero para los dos diferentes tipos de materiales.

Tabla 62. Momentos últimos y área de acero en viga peraltada V.P 01(0.30X0.40).

	Concreto Estructural					Concret	o Celular	
	Mu (tn-m)	As (cm2)	As min (cm2)	Acero Coloc.	Mu (tn-m)	As (cm2)	As min (cm2)	Acero Coloc.
Negativo	1.62	1.16	2.48	2Ø1/2"	1.5	1.07	2.48	2Ø1/2"
Positivo	3.11	2.25	2.40	2Ø1/2"	2.83	2.05	2.40	2Ø1/2"

Fuente: Elaboración propia.

En los muros de ductilidad limitada para ambos materiales después de haber realizado las verificaciones respectivas de acuerdo a los parámetros exigidos por la NTE E-060, prevaleció la cuantía mínima tanto vertical como horizontal, por lo que no hubo diferencia alguna en los aceros colocados en la estructura para ambos materiales los resultados se muestran en la Tabla 63.

Tabla 63. Momentos últimos, cortante ultima, momento de agrietamiento y área de acero en muro M18.

	Concreto	Estructural	Concreto Celular		
	Direccion X	Direccion Y	Direccion X	Direccion Y	
Vu tn	23.14	37.93	19.16	32.25	
$Vc\ tn$	12.16	14.18	9.73	11.35	
$Asv\ cm^2$	103/8"@0.30m	103/8"@0.30m	1Ø3/8"@0.30m	1Ø3/8"@0.30m	
1.2Mcrtn.m	28.28	24.55	25.3	21.01	
Mn tn.m	66.966	59.62	58.319	34.91	
$Ash\ cm^2$	1Ø3/8"@0.30m	1Ø3/8"@0.30m	1Ø3/8"@0.30m	1Ø3/8"@0.30m	

Fuente: Elaboración propia.

Para la escalera los momentos máximos para la estructura de concreto estructural en el tramo típico diseñado en capitulo III son Mmax (+) = 0.55 ton-m y Mmax (-) = 0.60 ton-m y para el concreto celular son Mmax (+) = 0.47 ton-m y Mmax (-) = 0.52 ton-m (Tabla 65), siendo estos menores en 14.54 % y 13.33 % que el de concreto estructural respectivamente; para ambos casos se utilizó la misma sección de diseño lo que nos limita a colocar un acero mínimo de Asmin = 0.265 cm2/m siendo estos mayores que la mayoría de los obtenidos con los momentos indicados anteriormente por lo que se colocó la misma cantidad de acero para los dos diferentes tipos de materiales.

Tabla 64. Momentos últimos y área de acero en escalera diseñada en el capítulo III.

Concreto Estructural				Concret	to Celular		
Mu (tn-m)	As (cm2)	As min (cm2)	Acero Coloc.	Mu (tn-m)	As (cm2)	As min (cm2)	Acero Coloc.
0.55	1.815	2.65	1Ø3/8"@0.25m	0.47	1.039	2.65	1Ø3/8"@0.25m
-0.6	1.66	2.65	103/8"@ $0.25m$	-0.52	1.15	2.65	103/8"@ $0.25m$

Para la losa de cimentación se realizó un proceso iterativo de los espesores, partiendo de un espesor de 25 cm como mínimo para ambos tipos de materiales; considerando 30cm de espesor y un área de 233.54 m2 para concreto estructural y 25cm de espesor y un área de 214 m2 para concreto celular obteniendo con estos presiones máximas de 0.736 Kg/cm2 y 0.667 kg/cm2 en el suelo respectivamente. Como se ve estas son menores a la presión máxima admisible indicadas en el estudio de suelos (0.75 kg/cm2). De los momentos máximos obtenidos (Tabla 64) en el análisis se calculó una distribución de acero de 101/2" 0.25m para la estructura de concreto estructural y 101/2" 0.30m para la estructura de concreto celular en ambas direcciones.

Tabla 65. Momentos últimos, cortantes últimos y área de acero en losa de cimentación.

	Concreto	Estructural	Concreto Celular		
	Direccion X	Direccion Y	Direccion X	Direccion Y	
Mu(-) $tn.m$	4.3	5.29	3.04	3.79	
$As(-) cm^2$	5.51	5.78	4.41	5.2	
As colocado	1Ø1/2"@0.25m	$1\emptyset 1/2"@0.25m$	1Ø1/2"@0.30m	1Ø1/2"@0.30 <i>m</i>	
Mu(+) tn.m	5.93	5.19	3.44	3.47	
$As(+) cm^2$	6.51	5.67	4.7	4.76	
As colocado	1Ø1/2"@0.25m	$1\emptyset 1/2"@0.25m$	1Ø1/2"@0.30m	1Ø1/2"@0.30m	
Vu tn	3.81	7.58	7.84	5.66	

Fuente: Elaboración propia.

3.5.2. Análisis económico

El costo directo total de la estructura de concreto estructural es de S/.331,248.66 mientras que para la de concreto celular es de S/. 314,428.71, es decir el costo directo promedio del m2 de construcción del cascarón estructural incluyendo la cimentación es de S/. 1,418.38 para el sistema de concreto estructural, y de S/. 1,346.35 para el concreto celular. Entonces se puede concluir que el metro cuadrado en cascarón estructural de la estructura de concreto celular es de 5.07% menor al de concreto estructural, La figura 64 muestra la incidencia de partidas y la figura 66 los costos.

Figura 64. Incidencia de partidas de concreto armado en la edificación (Concreto estructural (Derecha) Concreto celular (Izquierda)).

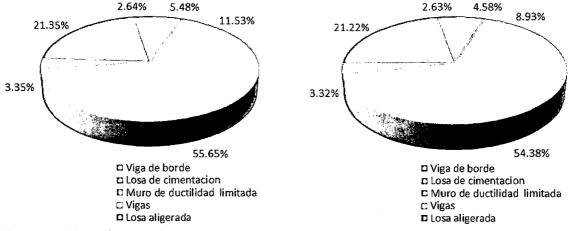


Figura 65. Costo de partidas de concreto armado en la edificación.

Fuente: Elaboración propia.

Los gastos generales en la estructura de concreto estructural alcanzan un porcentaje de incidencia con respecto al costo directo total de 17.30% (S/.57,280.11), mientras que para la de concreto celular este porcentaje es de 18.20% (S/.57,280.11) (Figura 65). De lo anterior se concluye que los gastos generales son iguales.

Figura 67. Resumen de presupuesto.

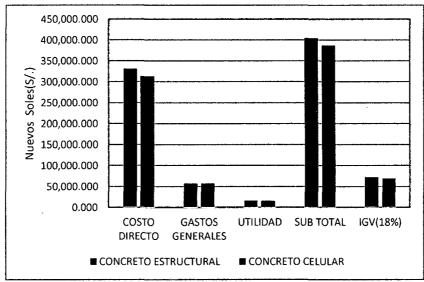
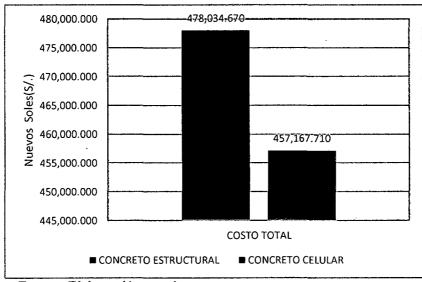



Figura 66. Costo total de proyecto.

IV. DISCUSIONES

- Almada, Yeomans, Nungaray y Elizondo (2006) indican El concreto elaborado con espuma preformada es más económico que el concreto de peso normal y los otros tipos de concretos ligeros ofreciendo además mayor ligereza y resistencia térmica, ellos encontraron que el concreto celular es un 13.05% menor que el concreto estructural. Con el diseño de mezcla con el aditivo Sika ligherete resulto que este es un 2.89% menor que el de concreto estructural para un metro cubico de mezcla. Existiendo considerable diferencia debido a la diferencia de esfuerzos de comprensión consideradas.
- La NTE E-030 2014 indica que la máxima deriva de entrepiso no será mayor a 0.005 en el sistema de edificaciones de ductilidad limitada. Para la estructura de concreto estructural la máxima deriva de entrepiso fue de 0.004038 y para la estructura de concreto celular la máxima deriva de entrepiso fue de 0.004869 por lo que podemos afirmar que con ambos materiales se alcanza estar bajo los lineamientos establecidos en la norma antes mencionada.
- La NTE E-030 2014 también indica que la cortante dinámica en la base debe ser mayor al 80% del cortante estático para estructuras regulares y 90% para estructuras irregulares. Para la estructura de concreto estructural la cortante dinámica en la base fue de 757.369 ton y la cortante estática en la base de 96.827 ton, para la estructura de concreto celular la cortante dinámica en la base fue de 630.914 ton y la cortante estática en la base de 80.704 ton, por lo que no fue necesario en ninguno de los casos amplificar las fuerzas internas para el diseño de los elementos estructurales.
- La NTE E-060 2009 indica que para la resistencia a cortante y torsión los valores de $\sqrt{f'c}$ deben multiplicarse por 0.75 para concreto liviano en todos sus componentes, y por 0.85 para concretos livianos con arena de peso normal. Se permite usar una interpolación lineal cuando la arena se sustituya parcialmente. Para el concreto celular utilizado en la presente tesis se consideró multiplicar el factor $\sqrt{f'c}$ por 0.85 por contener solo arena de peso normal en su composición.

V. CONCLUSIONES

Habiendo cumplido con los objetivos planteados en ésta investigación, es decir, realizar el análisis y diseño estructural, la evaluación económica (vivienda multifamiliar de tres niveles) con el sistema de muros de ductilidad limitada con ambos materiales (concreto estructural y concreto celular); se concluye que:

- Los desplazamientos laterales máximos de entrepiso de la estructura de concreto estructural son menores en un 16.68 % a los de la estructura de concreto celular para ambas direcciones, indicándose así que la rigidez lateral de la estructura de concreto estructural es mayor a la de concreto celular.
- En los elementos estructurales para ambos materiales después de haber realizado las verificaciones respectivas de acuerdo a los parámetros exigidos por la NTE E-060, y sin necesidad de modificar dimensiones, prevaleció la cuantía mínima, por lo que no hubo diferencia significativa en la cantidad de acero colocado en cada uno de los elementos para ambas estructuras.
- Se puede también afirmar que el metro cuadrado en cascarón estructural de la estructura de concreto celular es de 5.07% menor al de concreto estructural.
- En lo correspondiente al plazo de ejecución, no se encontraron diferencias significativas entre ambos materiales.

VI. RECOMENDACIONES.

- Se debe realizar un estudio de suelo completo para determinar el tipo de suelo, su capacidad admisible y de ser el caso, detallar como mejorarlo; también se debe descartar la presencia de sulfatos y otras sales que puedan causar daños a la cimentación.
- Por presentarse en los muros de concreto problemas de fisuración por contracción de fragua, es recomendable una buena configuración estructural, limitar la longitud de los muros a través de juntas; las cuales deben ser consideradas por el especialista y no en la construcción, ya que se estaría disminuyendo inapropiadamente su rigidez.
- Se recomienda la utilización de software de ingeniería tales como REVIT, ETABS, SAFE, S10 y MS PROYECT en el diseño, calculo y demás actividades; ya que estos optimizan la elaboración de proyectos.
- Es recomendable utilizar losas aligeradas para distribuir adecuadamente las cargas de gravedad y de sismo, así como para compatibilizar los desplazamientos laterales y por su comportamiento acústico y su facilidad para la instalación de redes sanitarias por su espesor.
- Realizar una correcta distribución del tanto del refuerzo vertical como del horizontal en el muro, además de ser requerido, se proveerá de acero adicional por corte fricción, ya que la principal falla se da en la unión muro losa (talón traccionado).
- Para la fabricación del concreto celular se sugiere realizar un adecuado diseño de mezcla y control de calidad y cantidad de materiales en obra, asimismo la utilización de un aditivo en cantidades recomendadas por el fabricante.
- Se recomienda no utilizar agregado grueso para la fabricación de concreto celular por ser susceptible a segregación.
- En el proceso constructivo de la losa de cimentación se debe tener cuidado con la armadura de refuerzo y los separadores o espaciadores para garantizar un adecuado recubrimiento.
- El procedimiento de vaciado del concreto en los muros que se realiza desde una altura de 2.4m debe mejorarse, ya que ésta es una de las causas que genera la segregación de

los agregados y el debilitamiento en la base de los muros, ello implica la necesidad de vibrar el concreto.

- Se deben curar los muros y losas después del desencofrado. El curado por vía húmeda es el más eficiente; el uso de membranas selladoras es necesario para evitar pérdidas de humedad.
- A las entidades públicas y organismos comprometidos con el desarrollo urbano de nuestra ciudad, a plantear políticas que generen y faciliten el empleo tanto del sistema de muros de ductilidad limitada como el uso del concreto celular, para así generar una mayor accesibilidad a un amplio sector de la población en la obtención de una vivienda y a la vez generar ahorros en la construcción.
- A las universidades en la promoción de la investigación científica en nuevos sistemas constructivos y en el estudio de nuevos materiales, para así contar con mejores mecanismos que nos permitan solucionar las deficiencias en la construcción de edificaciones.
- A los estudiantes de la carrera de ingeniería civil realizar investigaciones que permitan el descubrimiento de nuevos materiales con mejores características técnicas y económicas y a su vez el estudio de las nuevas tecnologías aplicadas a nuestro entorno.
- A los estudiantes de la carrera de ingeniería civil realizar el estudio del concreto celular fabricado con agregados de la zona y diversas formas de curado.
- A los ingenieros civiles en la utilización del concreto celular en la elaboración de proyectos de inversión pública y privada por sus diversas ventajas y versatilidad en el proceso constructivo.
- A la población a la construcción de viviendas con el sistema de muros de ductilidad limitada, ya que estas ofrecen seguridad, calidad y costos asequibles, características esenciales las cuales están avaladas por el RNE del Perú.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Hilton Joe Maco Sarmiento. (2014). Análisis y diseño de una edificación multifamiliar de siete pisos con muros de ductilidad limitada. Pontificia Universidad Católica del Perú, Lima. NTE E-030. (2014). Diseño Sismorresistente. Perú.
- Rodolfo Valentino Granados Sáenz y Jorge Junior López Wong. (2012). Diseño de un edificio de muros de ductilidad limitada de cinco niveles. Pontificia Universidad Católica del Perú, Lima.
- Reglamento Nacional de Edificaciones. (2012). Perú.
- Miguel Ernesto Rodríguez Núñez. (2011). Comportamiento a fuerza cortante de muros de concreto de ductilidad limitada con 8 cm de espesor. Pontificia Universidad Católica del Perú, Lima.
- Cesar Miguel Villegas Gonzales. (2010). Diseño de un edificio de seis pisos con muros de concreto armado. Pontificia Universidad Católica del Perú, Lima.
- CAPECO. (2009) Costos y presupuestos en edificaciones. Perú.
- Luis Alfredo Zavaleta Chumbiauca. (2009). Análisis y diseño Estructural comparativo entre el sistema de muros de Ductilidad Limitada y Albañilería Confinada de una vivienda multifamiliar en la ciudad de Trujillo. Universidad Privada Antenor Orrego, Trujillo.
- Alejandro Cervantes Abarca. (2008). Nuevas tecnologías en concretos: Concreto celularconcreto reforzado con fibra-concreto ligero estructural, México.
- Juan José Ramírez Zamora. (2007). Comportamiento de muros de concreto celular con diferentes cuantías de acero de refuerzo. Universidad Nacional Autónoma de México, México D. F.
- Delma V. Almada Navarro, Francisco S. Yeomans Reyna, Carlos Nungaray Pérez y Adolfo Elizondo Fósil (2006).Caracterización de concreto celular a base de espuma preformada. Sociedad Mexicana de Ingeniería Estructural, Jalisco.

Raúl Javier Delgado Ehni y Catalina Peña Rodriguez-Larrain (2006). Edificios peruanos con muros de concreto de ductilidad limitada. Pontificia Universidad Católica del Perú, Lima.

Javier E. Luzardo M. y Rafael A. Arraga G. (2004). Análisis del concreto celular y sus aplicaciones en la fabricación de paneles livianos. Universidad Rafael Urdeneta, Maracaibo.

ETABS version 15.0.0. Computers and Structures Inc. Copyright 1984-2015.

SAP2000 version 17.3.0. Computers and Structures Inc. Copyright 1976-2015.

SAFE version 14.1.1. Computers and Structures Inc. Copyright 1978-2015.

REVIT version 14.1.1. Autodesk. Copyright 1993-2014.

VIII. ANEXOS

ANEXO 01: ESTUDIO DE MECÁN	ICA DE SUELOS

GEOTESTEIRL



GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS, LICENCIA MUNICIPAL Nº 001120 – R U.C. Nº 20479750000 - RNP C 39872.

INFORME GEOTECNICO LABORATORIO DE SUELOS

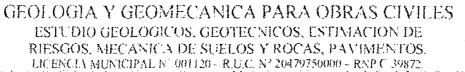
PROYECTO: "ANALISIS Y DISEÑO COMPARATIVO DE UNA VIVIENDAD DE MUROS DE DUCTILIDAD LIMITADA DE CONCRETO CELULAR Y CONCRETO ESRUCTURAL EN CHACHAPOYAS 2015".

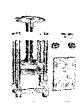
LOCALIZACION: DISTRITO DE CHACHAPOYAS – PROVINCIA CHACHAPOYAS – REGION AMAZONAS.

SOLICITANTE: Bach. HITLER PEDRO GONGORA ROJAS Bach. FERNANDO HUAMAN MÁS

DISTRIRO DE CHACHAPOYAS PROVINCIA DE CHACHAPOYAS REGION AMAZONAS.

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES


ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS. LICENCIA MUNICIPAL Nº 001120 - R.U.C. Nº 20479750000 - RNP C 39872.



SUMARIO

INTRODUCCION

- 1. GEOLOGIA
- 2. DESCRIPCCION DEL PROYECTO
- 3. CONDICIONES DE LOTE EN ESTUDIO
- 4. LOCALIZACION DEL PROYECTO
 - 4.1 CONDICIONES CLIMATICAS DE LA ZONA
 - 4.2 ALTITUD DE LA ZONA
- 5. INVESTIGACION Y PRUEBAS AL SUB SUELO EN ESTUDIO
- 6. ENSAYO Y ANÁLISIS DE LABORATORIO
 - 6.1 CONDICIONES DEL SUELO
- 7. ANÁLISIS DE CIMENTACION
 - 7.1 PRUFUNDIDAD DE CIMENTACION
 - 7.2 TIPO DE CIMENTACION
 - 7.3 CLCULO DE LA CAPACIDAD PORTANTE
 - 7.3.1 FALLA DE LOS SUELOS.
- 8. ASENTAMIENTO
- 9. AGRESIVIDAD QUIMICA DEL SUELO A LA CIMENTACION
- 10. RIESGO SISMICO
- 11. CONCLUSIONES Y RECOMENDACIONES PARA LA CIMENTACION
- 12. BIBLIOGRAFIA

- REGLAMENTO NACIONAL DE EDIFICACIONES
- MECANICA DE SUELOS Y CIMENTACION CRESPO VILLALAZ
- NORMA TÉCNICA DE EDIFICACIONES E 050, SUELOS Y CIMENTACIONES
- PROPIEDADES GEOFISICAS DE LOS SUELOS JOSEPH
 BOWLES
- PRINCIPIO DE CIMENTACION BRAJA M DAZ
- INGENIERIA DE CIMENTACIONES, MANUEL DELGADO VARGAS.

GFOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS. LICENCIA MUNICIPAL Nº 001120 - R.U.C. Nº 20479750000 - RNP C 39872.

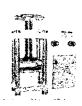
INTRODUCCION

El proyecto de "Análisis y Diseño comparativo de una Vivienda de Muros de Ductilidad Limitada de Concreto Celular y Concreto Estructural en Chachapoyas 2015". Nace con la idea de mitigar los efectos del constante crecimiento de la población urbana en el Perú ofreciendo una alternativa en cuanto se refiere a la construcción de edificaciones. La urbanización trae consigo una continua demanda por viviendas, generalmente para familias de bajos recursos. A lo largo de los últimos treinta años, ante la falta de acceso a los servicios financieros y un insuficiente proceso de desarrollo territorial, los medios predominantes que han utilizado las familias pobres para obtener vivienda han sido las invasiones de tierras y la autoconstrucción de viviendas con bajo estándar. Como resultado, más de 3 millones de unidades están sobre pobladas, y han sido construidas con materiales de baja calidad y carecen de uno o más servicios básicos. Un estimado de 68 por ciento de la población vive en tugurios.

Se estima que en todo Perú existe una demanda promedio anual de 250.000 viviendas, ello representa un escenario alentador para el crecimiento del mercado hipotecario. Sin embargo, a pesar de la gran necesidad de vivienda que hay en Perú, el financiamiento de la vivienda mediante el crédito hipotecario no se ha desarrollado lo suficiente como para permitir que los diversos sectores de la población accedan a una vivienda. Ello ha provocado que una gran parte de la población, en particular los sectores de menores ingresos, no tengan posibilidades concretas de lograr una solución habitacional apropiada.

Se pretende plantear reformas que provean a la sociedad de experiencias útiles e instrumentos que pueden ser extendidos y amplificados en los siguientes años para mejorar más rápidamente las condiciones de vida de la población actual y futura.

1. GEOLOGIA


La región amazonas posee un conjunto de lito estratigráfico formado por rocas sedimentarias, volcánicas e intrusivas cuyas edades se encuentran entre el precámbrico y el cuaternario.

Las rocas predominantes en esta zona son las calizas cuyos estratos de gran potencia cubren en forma casi continua la totalidad del territorio amazonense.

La orogenia andina ha ocasionado en toda la región un profundo fracturamiento y fallecimiento intenso, así como plegamientos, creando puntos de debilidad al magmatismo terciario en donde se han producido amplias zonas métalogenéticas como las que se observa en las provincias de BONGARA - CHACHAPOYAS y LUYA,

GEOTESTEIRE.

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS. LICENCIA MUNICIPAL Nº 001120 -- R.U.C. Nº 20479750000 -- RNP C 59872.

2. DESCRIPCION DE PROYECTO

El presente estudio geotécnico, se apoyó en Pruebas y Ensayos de Laboratorio de suelos, las cuales fueron realizadas a las muestras del material tomadas de la perforación (a cielo abierto), hasta una profundidad de 2.00mts. Seleccionado arbitrariamente.

Así mismo, se establecerán las recomendaciones y parámetros para los diseños de las fundaciones.

Para confinar la estructura monoliticamente debe realizarse en concreto reforzado de 3000

PSI y acero de 60000 PSI. De igual modo se realizan análisis y recomendaciones geotécnicas, las cuales denotan las propiedades mecánicas del subsuelo, referente al su comportamiento y capacidad de soporte cuando esté sometido a las cargas, indicando el tipo de cimentación con base a la clase de terreno.

3. CONDICIONES DE LOTE EN ESTUDIO

Se presenta una Topografía regular, relativamente plana con muy leves ondulaciones, denotándose curvas de nivel parejas. Por otra parte hay sectores compuestos por algunos rellenos de material de corte de la rasante en estado suelto.

4. LOCALIZACION DEL PROYECTO

El proyecto "Análisis y Diseño comparativo de una Vivienda de Muros de Ductilidad Limitada de Concreto Celular y Concreto Estructural en Chachapoyas 2015" se halla ubicado en el sector del cerro colorado - distrito de Chachapoyas - Provincia de Chachapoyas.

4.1 Condiciones climáticas de la zona

La temperatura promedio es de 18.1°C a 28.5°C, baja de nudo en épocas de invierno hasta 15°C. En la zona las precipitaciones son muy frecuentes, con precipitaciones altas en los meses de diciembre y abril.

4.2 Altitud de la Zona

La zona en estudio, se encuentra entre las coordenadas 6°13' 01.01" S y 77° 52' 43.94" O sobre la cota Promedio de 2460.00 metros sobre el nivel del mar aproximadamente.

5. INVESTIGACION Y PRUEBAS AL SUBSUELO EN ESTUDIO.

Los trabajos ejecutados en la zona del proyecto, han contado con dos (2) perforación hasta una profundidad de (2.00) metros, mediante sondeos con equipos manuales de perforación a cielo abierto, para obtener muestras alteradas e inalteradas in situ, con las

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACIÓN DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS. LICENCIA MUNICIPAL Nº 001120 - R.U.C. Nº 20479750000 - RNP C 39872.

cuales se realizaron diferentes ensayos y estudios de laboratorio de suelos. Asimismo, se determinó el Perfil Estratigráfico para determinar las características del suelo.

CUADRO DE PROFUNDIDAD DE CALICATAS.

CALICATA	PROFUNDIDA D
N°	mis
C-01	2.00
C - 03	2.90

Para determinar la profundidad en cada punto de sondaje se ha tomado como referencia el capítulo II, artículo 2.3 inciso 2.3.2 (c) del Reglamento Nacional de Construcción. Profundidad mínima a alcanzar en cada punto: cimentaciones superficiales.

Se determinar de la siguiente manera:

Edificio sin sótano:

$$P - DI + Z$$
.

Donde:

D1 = Es la distancia vertical desde la superficie del terreno hasta el fondo de la cimentación.

Z = 1.5B, siendo B el ancho de la cimentación prevista de mayor área.

6. ENSAYOS Y ANÁLISIS DE LABORATORIO.

Una vez obtenidas las muestras In-Situ, manteniéndolas en estado inalterado, se realizaron los diferentes ensayos de laboratorio de acuerdo con las normas que se indican en el REGLAMENTO NACIONAL DE EDIFICACION – E – 030 Tabla N° 2.25. Consistentes en determinar: Granulometrías, Límites de Atterberg (Líquido y Plástico), Densidades, Humedades, Clasificación de los suelos y Capacidad Portante del suelo.

CUADRO DE DATOS DE HUMEDADES DEL SONDEO

SONDEO	PROFUNDIDAD	HUMEDAD
N°	mts	%
C - 01	0.40 - 2.00	10.36
	0.40 - 1.60	11.40
C - 02	1.60 - 2.00	5.63

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACIÓN DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS, LICENCIA MUNICIPAL, Nº 001120-- R.U.C. Nº 20479750000 - RNP C 39873

6.1. CONDICIONES DEL SUBSUELO

El área de exploración, mediante sondeo de calicatas C-01 y C-02 a una profundidad de 2.00mts respectivamente, exhibe del tipo CH y CL según la clasificación, de color blanquecina según la profundidad.

	CALICATA Nº 01	CALICATA Nº 02	
PROPIEDA DES	RELACION (%)	RELACION (%)	RFLACION (%)
Profundidad	0.40 - 2.00	0.40 - 1.60	1.60 - 2.00
Humedad Natural	10.36%	11.40%	5.63%
% Que Pasa el Tamiz# 200	80.89%	48.63%	59.88%
Limite Líquido	57.90%	38.60%	34.20%
ludice de plasticidad	27.45%	16.10%	13.70%
Clasificación SUCS	CH	SC:	CI.
Clasificación AASHTO	A - 7 - 6 (25) Arcilla înorgânica de	A - 6 (5) Arena arcillosa de	A - 6 (6) Arcilla inorgánica
Descripción	alta plasticidad de color blanquecina con manchas rojizas.	mediana plasticidad de color marrón claro con manchas rojizas.	

7. ANALISIS DE LA CIMENTACION

7.1 PROFUNDIDAD DE CIMENTACION

Según la NORMA E.050 Suelos y Cimentaciones – Cap. IV Cimentación Superficiales, la profundidad de cimentación mínima será de 0.80m.

Así mismo, la presión admisible del terreno aumenta a mayor profundidad de desplante, también los costos de construcción, por lo tanto es necesario adoptar una profundidad de desplante que satisfaga los requerimientos de economía y resistencia aceptable. En este caso además del factor resistente se requiere una profundidad de desplante que garantice seguridad contra los cambios de humedad del terreno, heladas, etc.

7.2 TIPO DE CIMENTACION.

Debido a la naturaleza del estrato donde se va a desplantar la cimentación se recomienda utilizar cimentación aislada unida con viga de cimentación.

7.3 CALCULO DE LA CAPACIDAD PORTANTE.

7.3.1 Falla de los suelos.

El problema consiste en encontrar el esfuerzo que produce la falla del suelo, por experimentos y observaciones, se ha determinado que la falla por capacidad de carga ocurre como producto de una rotura por cortante de un suelo.

Son tres los tipos de falla de los suelos, bajo las cimentaciones:

- a) Falla por corte general.
- b) Falla por punzonamiento.

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS, LICENCIA MUNICIPAL N° 001120 - R.U.C. N° 20479750000 - RNP C 39872.

c) Falla por corte local.

Formulas para calcular numéricamente la resistencia del suelo.

Debido a la naturaleza del estrato donde ira apoyado la sub. Estructura se ha utilizado para el cálculo de la resistencia admisible del terreno, las expresiones de TERZAGHI para la falla local tanto para cimentación continua y aislada.

Zapata Continua: $qd = cNc + \gamma 1 Df Nq + 0.5 \gamma 2 BN\gamma$.

Zapata Cuadrada: $qds = 1.2 \text{ eNc} + \gamma 1 \text{ D} f \text{ Nq} + 0.5 \gamma 2 \text{ BN} \gamma$.

Donde:

C = cohesión

Df = Profundidad de cimentación B = Ancho de la cimentación

γ 1 = Peso especifico del suelo situado encima de la zapata.
 γ 2 = Peso especifico del suelo situado por debajo de la zapata.

Nc, Nq y N γ = Factores de capacidad de carga.

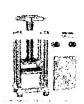
 $Nc = \cot g \Phi (Nq - 1)$

 $Nq = e^{\pi t g \phi} t g^2 (45 + \frac{\phi}{2})$

 $N\gamma = 2tg\Phi (Nq + 1)$

Calculo de la capacidad admisible:

Qadm = qd/FS.


Factor de seguridad (FS): FS = 3

CUADRO DE CAPACIDAD PORTANTE

CALICATA	PROFUNDIDAD	Φ	C Kg/Cm²	Y Kg/Cm³	Qd Kg/Cm²
C-1	1.30	7.7	0.42	1.74	0.75
C - 2	1.30	8.6	0.44	1.78	0.81

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS. MECANICA DE SUELOS Y ROCAS. PAVIMENTOS. LICENCIA MUNICIPAL Nº 001120 - R.U.C. Nº 20479750000 - RNP.C 39872.

8. ASENTAMIENTO

Para el análisis de cimentación tenemos los llamados asentamientos totales y asentamientos diferenciales, de los cuales los asentamientos diferenciales son los que podrían comprometer la seguridad de la estructura si sobrepasa una pulgada (1"), que es el asentamiento máxima permisible para la estructura del tipo convencional.

El asentamiento de la cimentación de calculara en base a la teoría de la elasticidad, considerando dos tipos de cimentación superficial recomendado. Se asume que el esfuerzo neto transmitido es uniforme en ambos casos.

El asentamiento elástico inicial será:

 $S = Aqs B (I-u^2) \frac{tf}{Es}$

Donde:

S = Asentamiento (cm).

 $\Delta qs = Esfuerzo neto transmisible (kg/cm²)$

B = Ancho de cimentación (cm)

Es = Modulo de elasticidad

U = Relación de poisson

Lf = Factor de influencia que depende de la forma de rigidez de la cimentación.

Las propiedades elásticas de la cimentación fueron asumidas a partir de tablas publicadas con valores para el tipo de suelo existente donde ira desplantada la cimentación.

METODO ELASTICO PARA EL CÁLCULO DE ASENTAMIENTO INMEDIATO

CUADROS AUXILIARES

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS. LICENCIA MUNICIPAL Nº 001120 - R.U.C. Nº 20479750000 - RNP C 59872

TIPO DE SUELO	Es (ton/m²)
ARCILLA MUY BLANDA	30 - 300
ARCILLA BLANDA	200400
ARCILLA MEDIA	450 - 900
ARCILLA DURA	700 - 2000
ARCILLA ARENOSA	3000 - 4250
SUELOS GRACIARES	1000 - 16000
LOESS	1500 - 6000
ARENA LIMOSA	500 - 2000
ARENA SUELTA	1000 - 2500
ARENA DENSA	5000 - 10000
GRAVA ARENOSA DENSA	8000 - 20000
GRAVA ARENOSA SUELTA	5000 - 14000
ARCILLA ESQUISTO	14000 - 140000
LIMOS	200 - 2000

ARCILLA SATURADA ARCILLA NO SATURA ARCILLA ARENOSA LIMO 0.3 - 0.35 ARENA DENSA ARENA DE GRANO GRI ARENA DE GRANO FIN COCA LOESS 0.1 - 0.4 LOESS 0.16 CONCRETO 0.15 0.4 - 0.5 0.1 - 0.3 0.36 0.15	TIPO DE SUELO	μ(-)
ARCILLA ARENOSA 0.2 - 0.3 LIMO 0.3 - 0.35 ARENA DENSA 0.20 - 0.40 ARENA DE GRANO GRI 0.15 ARENA DE GRANO FIN 0.25 ROCA 0.1 - 0.4 LOESS 0.1 - 0.3 HIELO 0.36	ARCILLA SATURADA	0.4 - 0.5
LIMO 0.3 - 0.35 ARENA DENSA 0.20 - 0.40 ARENA DE GRANO GRI 0.15 ARENA DE GRANO FIN 0.25 ROCA 0.1 - 0.4 LOESS 0.1 - 0.3 HIELO 0.36	ARCILLA NO SATURA	0.1 - 0.3
ARENA DENSA 0.20 - 0.40 ARENA DE GRANO GRI 0.15 ARENA DE GRANO FIN 0.25 ROCA 0.1 - 0.4 LOESS 0.1 - 0.3 HIELO 0.36	ARCILLA ARENOSA	0.2 - 0.3
ARENA DE GRANO GRI 0.15 ARENA DE GRANO FIN 0.25 ROCA 0.1 - 0.4 LOESS 0.1 - 0.3 HIELO 0.36	LIMO	0.3 - 0.35
ARENA DE GRANO FIN 0.25 ROCA 0.1 - 0.4 LOESS 0.1 - 0.3 HIELO 0.36	ARENA DENSA	0.20 - 0.40
ROCA 0.1 - 0.4 LOESS 0.1 - 0.3 HIELO 0.36	ARENA DE GRANO GRI	0.15
LOESS 0.1 - 0.3 HIELO 0.36	ARENA DE GRANO FIN	0.25
HIELO 0.36	ROCA	0.1 - 0.4
***************************************	LOESS	0.1 - 0.3
CONCRETO 0.15	HIELO	0.36
	CONCRETO	0.15

EODIMA DE I	A 7ADATA	VALORES DE If (cm/m)					
FORMA DE LA ZAPATA			CIM. FLEXIBLE				
UBICAC	IÓN	CENTRO ESQUINA MEDIO					
RECTANGULAR	L/B = 2	153	77	130	120		
	L/B = 5	210	105	183	170		
	L/B = 10	254	127	225	210		
CUADRADA		112	56	95	82		
CIRCULAR		100	.64	85	88		

Formulas: para estimar:

Arenas = $50(N+15) \text{ ton/m}^2$

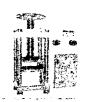
Arena arcillosa = 30(N+5) ton/m²

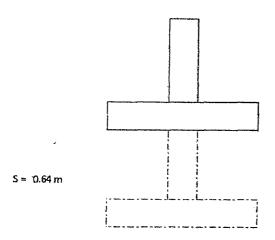
Arcillas sensibles normalmente consolidado = (125-250) qu

Arcilla poco sensible

= 500qu

N = SPT


Qu = Compresión simple (ton/m²).


CALCULO DE ASENTAMIENTOS DE CIMENTACION

$$S = Aqs B(1-u^2) \frac{tf}{Es}$$

qs 0.77

B 1.00

Es 90.00

if 82.00

µ 0.30

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES

ESTUDIO GEOLOGICOS, GFOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS. LICENCIA MUNICIPAL Nº 001120 - R.U.C. Nº 20479750000 - RNP C 39872.

Datos:

S = Asentamiento (cm).

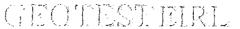
 $\Delta qs = Esfuerzo neto transmisible (kg/cm²)$

B = Ancho de cimentación (cm)

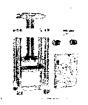
Es = Modulo de elasticidad

U = Relación de poisson

Lf = Factor de influencia que depende de la forma de rigidez de la cimentación.


9. AGRESIVIDAD QUIMICA DEL SUELO A LA CIMENTACION

El suelo bajo el cual se cimienta toda estructura tiene un efecto agresivo a la cimentación. Este efecto está en función de la presencia de elementos químicos que actúan sobre el concreto y el acero de refuerzos, causándole efectos nocivos y hasta destructivos sobre las estructuras.


Los principales elementos químicos a evaluar son los sulfatos y cloruros por su acción química sobre el concreto y acero del cimiento respectivamente y las sales solubles totales por su acción mecánica sobre el cimiento, al ocasionarle asentamientos bruscos por lixiviación (lavado de sales del suelo con el agua)

RESULTADOS DEL ANÁLISIS QUIMICA

SONDEO	PROFUNDIDAD	PPM				
N°	mts	₽H	SALES SOLUBLES	CLORURO	SULFATO	
C - 01	0.40 - 2.00	7.4	285.6	85	56	
C - 02	0.40 - 2.00	7,5	292.3	74	45	

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS, LICENCIA MUNICIPAL Nº 001120 -- R.U.C. Nº 20479750000 -- RNP C 39872.

Como se podrá interpretar las cantidades de sales, encontrado en los análisis de suelos, presenta leves concentraciones de agentes químicos que podrían cuásar efectos destructivos para el concreto y en caso de cimentación.

CUADRO DE CONCRETO EXPUESTO A SOLUCIONES DE SULFATOS

Exposicion a sulfatos	Sulfato Solubles en agua. (SO) presente en el suelo % en peso	Sulfato (SO) en agua p.p.m	Tipo de cemento	Concreto con agregado de peso normal relacion máxima agua/cemento en peso	Concreto con agregado de peso normal y ligera resistencia minima a compression 1.
Despreciable	0,00<: \$0 <0.40	0.00< SO <150			
Moderado?	0.10< 90<0.20	150< S O <150	H,H(MS),(O(MS), P(MS) I (PM)(MS), I (SMYMS)	0.50	4000
Severo	0.20< 80 <2.00	1500< SO <10000	Y	0.45	4500
Muy Severo	\$ 0 ≥2.00	SO >10000	Y mas puzclana	0.45	4500

Capítulo 4 calidad del concreto de la norma concreto armado código E-060 de la norma técnica de edificaciones del reglamento nacional de construcciones.

10. RIESGO SISMICO

En el borde occidental de Perú se desarrolla el proceso de convergencia de la placa de Nazca bajo la Sudamericana con una velocidad promedio del orden de 7-8 cm/año (De Metz et al, 1980; Norabuena et al, 1999). Este proceso es responsable de la ocurrencia de sismos de gran magnitud, todos con epicentros frente a la línea de costa y asociados al contacto sismo-génico inter-placa (Dorbath et al, 1990a; Tavera y Buforn, 2001). Estos sismos son muy frecuentes en el tiempo y en un año es posible registrar la ocurrencia de hasta 80 de ellos con magnitudes ML 4.5 y en general, todos son sensibles en las localidades cercanas a sus epicentros con intensidades mínimas de III-IV (MM).

Los sismos con magnitud mayor a M > 7, son menos frecuentes y cuando ocurren producen importantes daños en áreas relativamente grandes, tal como lo sucedido en la región Sur de Perú el 23 de Junio de 2001 (Mw = 8.2) y en Pisco, el 15 de Agosto de 2007 (Mw = 7.9). Del mismo modo, es importante mencionar a los sismos con origen en los procesos de deformación de la cordillera andina, todos ellos menos frecuentes en el tiempo pero al presentar sus focos cerca de la superficie, producen daños de consideración pero en áreas relativamente pequeñas.

Por ejemplo, los sismos del Alto Mayo (San Martín) ocurridos el 30 de Mayo de 1990 y 5 de Abril de 1991, ambos con magnitudes de 6.0 y 6.5 ML. A mayores niveles de profundidad, por debajo de los Andes, la frecuencia de sismos es menor y son pocos aquellos que son percibidos en superficie. Estos sismos tienen su origen en la deformación interna de la placa de Nazca a niveles de profundidad del orden de 120 km. El día 18 de Mayo del 2010, ocurre un sismo de magnitud moderada (6.2 ML) en la región norte del Perú

LICENCIA MUNICIPAL Nº 001120 - R.U.C. Nº 20479750000 - RNP C 39872.

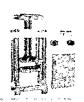
con epicentro a 82 km al Este de la ciudad de Bagua. Este sismo presento su foco a una profundidad de 121 km y en general, presento un área de percepción con radio del orden de 500 km (Imax = II (MM)), siendo mayor su intensidad en torno a las ciudades y/o localidades de Bagua y Chachapoyas.

Según la Norma Peruana E.030 de <u>Diseño</u> Sismo resistente, el territorio nacional se considera dividido en tres zonas. La zonificación propuesta se basa en la distribución espacial de la sismicidad observada, las características generales de los movimientos sísmicos y la atenuación de éstos con la distancia epicentral, así como en <u>información</u> geotectónica. A cada zona se asigna un factor "Z" según se indica en la tabla. Este factor se interpreta como la aceleración máxima del terreno con una <u>probabilidad</u> de 10% de ser excedida en 50 años. El <u>valor</u> del factor "Z" está expresado en gals (g).

ZONA	FACTOR DE ZONA
3	0.40
2	0.30
1	0.15

Factor de Zona

• Fuente: Norma E-030 - NPE.


Según normas podemos determinar, que sísmicamente la región de Amazonas, está considerado según mapas de sismicidad en la ZONA 2, se encuentre dentro de una zona con presencia sísmica media.

Además según nuestra evaluación, el suelo del lugar de estudio, presenta un suelo compacto sin presencia de fallas geológicas no existe presencia de aguas subterráneas la que nos permite plantear una estructura segura, según los resultados que arroje el análisis de laboratorio.

11. CONCLUSIONES Y RECOMENDACIONES

- Las capacidades obtenidas en el estudio no deben ser superadas por los esfuerzos que serán trasmitidos al suelo de fundación, para lo cual se debe tener en cuenta la distribución de los mismos y dicha capacidad portante escogida será de 0.75 Kg/cm2 a 1.00 mts, la del Diseño.
- El tipo de Fundación recomendado debe ser de acuerdo a la Luz, Ancho y Alto de las vigas y columnas los cuales deberán ser objeto del cálculo estructural con base las normas sismo resistentes, teniendo en cuenta que se debe obtener un confinamiento del sistema y además para efectos de minimizar los asentamientos.
- La profundidad de desplante para las fundaciones es recomendable hacerla a una profundidad mínima de 1.50mts o hasta una base u hondura de

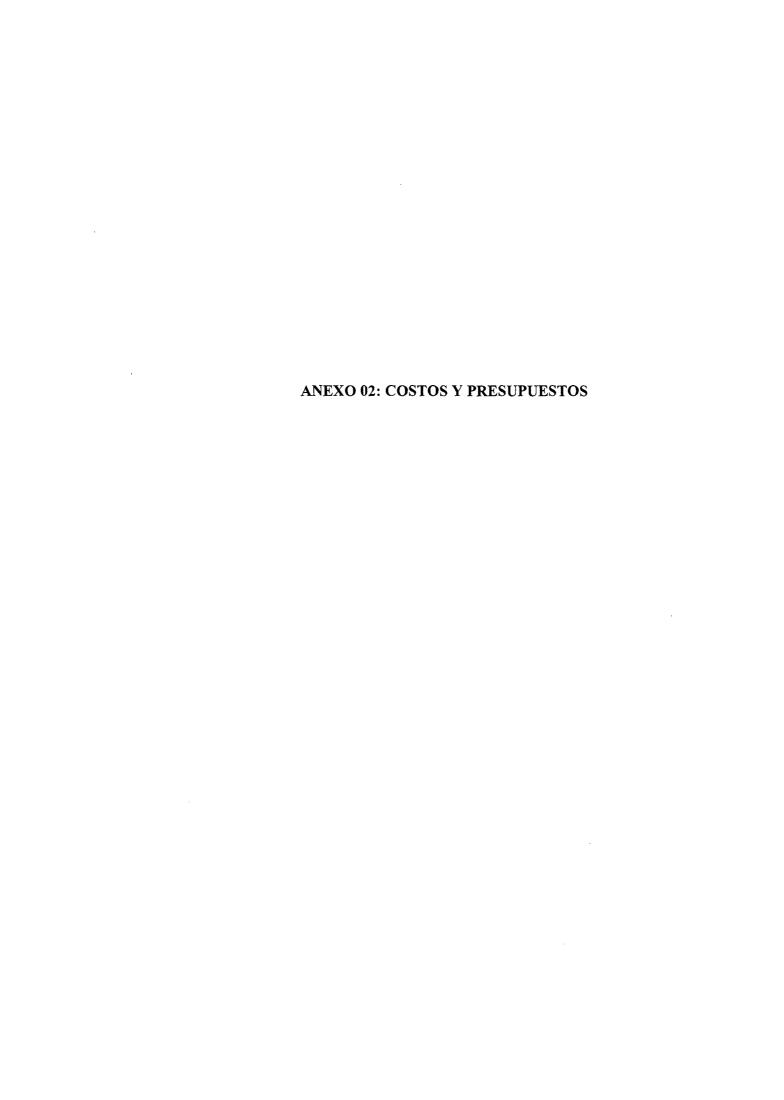
GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS. LICENCIA MUNICIPAL Nº 001120 - R.U.C. Nº 20479750000 - RNP C 39872.

suelo lo suficientemente consolidado, esto queda a criterio del responsable del proyecto.

- El periodo fundamental de la estructura (T), que depende de la altura de la construcción y características estructural (Debe ser calculado por el proyectista).
- Debido a que la capacidad portante de 0.75 Kg/cm2 a 1.00 mts la del diseño, es importante que para el diseño de las fundaciones se aumente el área de contacto de la misma sobre el suelo previamente mejorado y estabilizado con material de afirmado o con un producto de una mejor consolidación al subsuelo, bien sea mejorarlo con una mezcla de suelo cemento o adición de cal hidratada.

GEOLOGIA Y GEOMECANICA PARA OBRAS CIVILES ESTUDIO GEOLOGICOS, GEOTECNICOS, ESTIMACION DE RIESGOS, MECANICA DE SUELOS Y ROCAS, PAVIMENTOS. LICENCIA MUNICIPAL Nº 001120 - R.U.C. Nº 20479750000 - RNP C 39872.

VISTA PANORAMICA DE LA CALICATA Nº 01 A TOMANDO LAS MUESTRA DE SUELO INALTERADA



PANORAMICA DE LA CALICATA Nº02 TOMANDO LA MUESTRA DE SUELO

		,
	•	
·		
	ANEXO 2.1. Metrado de estructuras concreto celular	

METRADOS ESTRUCTURAS

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

HECHO POR: GONGORA ROJAS HITLER PEDRO. FECHA : Setiembre 2015

HUAMAN MAS FERNANDO REVISADO POR: Ing. John Hilmer Saldaña Nuñez

PARTIDA	DESCRIPCIÓN	LINUS	CANT.	MEDIDAS			DARCIAL	TOTAL
PARTIDA	DESCRIPCION		CANI.		ANCHO ALTO		PARCIAL	TOTAL
1.00.00	TRABAJOS PRELIMINARES							
1.01.01	Limpieza de terreno manual	m²		15.00	35.00		525.00	525.00
1.02.00	Trazo y replanteo preliminar	m²		15.00	35.00		525.00	525.00
2.00.00	MOVIMIENTO DE TIERRAS							
2.01.00	Excavaciones		_					
2.01.01	Excavacion manual p/losa de cimentacion	m³	ļ					74.94
	h = 0.40 m. (desde el Nivel de Terreno Natural)	 	Cant.	AREA	Prof.			
		T-	1.00	214.1	0.35		74.94	
			 					
2.01.02	Excavacion manual de zanjas p/Vigas de borde	m³	<u> </u>					8.80
	Viga de Borde	T^{-}						
	Eje A Entre 3-8		1.00	8.60	0.25	0.15	0.32	
	Eje 3 ,Entre A-B		1.00	1.55	0.25	0.15	0.06	
	Eje B ,Entre 2-3		1.00	2.55	0.25	0.15	0.10	
— <u> </u>	Eje 2 ,Entre B-D		1.00	2.35	0.25	0.15	0.09	
	Eje D ,Entre 1-2		1.00	1.90	0.25	0.15	0.07	
	Eje 1 ,Entre D-F		1.00	2.80	0.25	0.15	0.11	
	Eje F ,Entre 1-2		1.00	1.90	0.25	0.15	0.07	
	Eje 1,Entre F-I		1.00	3.45	0.25	0.15	0.13	
	Eje 1,Entre 2-6		1.00	5.50	0.25	0.15	0.21	
	Eje 6 ,Entre H-I		1.00	1.00	0.25	0.15	0.04	
	Eje H,Entre 6-7		1.00	2.40	0.25	0.15	0.09	
	Eje 7,Entre H-I		1.00	1.55	0.25	0.15	0.06	
	Eje I',Entre 7-8		1.00	3.60	0.25	0.15	0.14	
****	Eje 8,Entre l'-l		1.00	0.30	0.25	0.15	0.01	· · · · · · · · · · · · · · · · · · ·
	Eje I',Entre 8-14		1.00	8.30	1.25	0.15	1.56	
	Eje 14,Entre E-I		1.00	5.15	2.25	0.15	1.74	
	Eje E ,Entre 12-14		1.00	2.05	2.25	0.15	0.69	
	Eje 12,Entre C-E		1.00	3.15	2.25	0.15	1.06	
	Eje C,Entre 8-12		1.00	6.55	2.25	0.15	2.21	
	Eje 8 ,Entre A-B		1.00	1.55	0.25	0.15	0.06	
	Relleno compactado con material propio bordes de platea de							
2.01.03	cimentacion	m³						9.92
		<u> </u>	L	Area	Prof.			
		<u> </u>	1.00	28.34	0.35		9.92	
		<u> </u>						
2.01.04			1		İ			
2.01.04	Eliminación de material - manual distancia promedio = 30 m.	m³						73.8′
	<u> </u>					L		
2.01.05	Eliminacion de material -con volquete dist.promedio =5km	m³		<u> </u>				73.8
		[{					

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

HECHO POR: GONGORA ROJAS HITLER PEDRO.

HUAMAN MAS FERNANDO

FECHA : Setiembre 2015

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

DARTINA	Ρεσομοιόν	,,,,,,,		M	EDIDAS	3	DADOLAL	TOTAL
PARTIDA	DESCRIPCIÓN	טואטן	CANT.		ANCHO		PARCIAL	TOTAL
3.00.00	CONCRETO SIMPLE							
3.01.00	Solado e=0.10 m. C:H, 1:12 p/vigas de borde	m²						58.65
	Viga de Borde							
	Eje A ,Entre 3-8		1.00	8.60	0.25		2.15	
	Eje 3 ,Entre A-B		1.00	1.55	0.25		0.39	
	Eje B ,Entre 2-3		1.00	2.55	0.25		0.64	
	Eje 2 ,Entre B-D		1.00	2.35	0.25		0.59	
	Eje D ,Entre 1-2		1.00	1.90	0.25		0.48	
	Eje 1 ,Entre D-F		1.00	2.80	0.25		0.70	
	Eje F ,Entre 1-2		1.00	1.90	0.25		0.48	
	Eje 1,Entre F-I		1.00	3.45	0.25		0.86	
	Eje 1,Entre 2-6		1.00	5.50	0.25		1.38	
	Eje 6 ,Entre H-I		1.00	1.00	0.25		0.25	
	Eje H,Entre 6-7		1.00	2.40	0.25		0.60	
	Eje 7.Entre H-I		1.00	1.55	0.25		0.39	
	Eje l',Entre 7-8		1.00	3.60	0.25		0.90	
	Eje 8,Entre l'-l		1.00	0.30			0.08	
	Eje l' ,Entre 8-14		1.00				10.38	
	Eje 14,Entre E-I		1.00	5.15	i		11.59	
	Eje E ,Entre 12-14		1.00	2.05		 	4.61	
	Eie 12.Entre C-E		1.00	3.15			7.09	· · · · · · · · · · · · · · · · · · ·
	Eje C,Entre 8-12	- 	1.00			 	14.74	
	Eje 8 ,Entre A-B		1.00				0.39	
3.02.00	Solado e=0.10 m. C:H, 1:12 p/ Losa de cimentacion	m²						127.11
3.04.00	Falso piso e= 4" (Mezcla 1:10 Cemento : Hormigon)	m²	<u> </u>			ļ		9.72
			1.00	5.40	1.80	ļ	9.72	
3,05.00	Dado de concreto fc' = 175 Kg/cm2	m ³						0.08
0.00.00	Sale de Consolo lo 170 ligiting		186	0.08	0.08	0.08	0.08	0.00
400.00	CONTOURS ADMAND							
4.00.00	CONCRETO ARMADO					ļ. <u>.</u>		
4.01.00	Vigas de Borde		 		ļ	 		00.00
4.01.01	Concreto Fc' = 175 Kg/cm2 para vigas de borde	m ³		<u> </u>		 		29.33
	Viga de Borde		1	0.00	0.05	0.50	4.00	
	Eje A ,Entre 3-8		1.00			0.50		
	Eje 3 ,Entre A-B		1.00			0.50		
	Eje B ,Entre 2-3		1.00			0.50		
	Eje 2 ,Entre B-D		1.00			0.50		
	Eje D Entre 1-2		1.00		+	0.50		
	Eje 1 ,Entre D-F		1.00			0.50		
	Eje F ,Entre 1-2		1.00	ļ		0.50		
l 	Eje 1 ,Entre F-I		1.00			0.50		
	Eje 1,Entre 2-6		1.00	-		0.50		
	Eje 6 ,Entre H-I		1.00	1.00	0.25	0.50	0.13	

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

HECHO POR: GONGORA ROJAS HITLER PEDRO. FECHA: Setiembre 2015

HUAMAN MAS FERNANDO REVISADO POR: Ing. John Hilmer Saldaña Nuñez

		PEGGRIPOIÓN UNIDIGANT MEDIDAS CARGOLI TOTA						
PARTIDA	DESCRIPCIÓN	UNID	CANT.		ANCHO		PARCIAL	TOTAL
	Eje H ,Entre 6-7		1.00	2.40	0.25	0.50	0.30	
	Eje 7,Entre H-I		1.00	1.55	0.25	0.50	0.19	
	Eje 1' ,Entre 7-8		1.00	3.60	0.25	0.50	0.45	
	Eje 8,Entre l'-l		1.00	0.30	0.25	0.50	0.04	
	Eje I' ,Entre 8-14		1.00	8.30	1.25	0.50	5.19	
	Eje 14.Entre E-I		1.00	5.15	2.25	0.50	5.79	
	Eje E ,Entre 12-14		1.00	2.05		0.50	2.31	
	Eje 12,Entre C-E		1.00	3.15		0.50	3.54	
	Eje C.Entre 8-12		1.00	6.55		0.50	7.37	
	Eje 8 ,Entre A-B		1.00	1.55		0.50	0.19	
4.01.02	Acero Fy'= 4200 Kg/cm2 , grado 60	- Ka	ļ					613.50
4.01.02	Acero Fy = 4200 Kg/cffi2 , grado 60	Kg						013.50
4.02.00	Losa de Cimentacion							
4.02.01	Concreto fc' = 175 Kg/cm2 para Losa de cimentacion	m³						34.96
				Cant.	Area	Prof.		
	Platea de cimentacion			1.10	127.11	0.25	34.96	
4.01.02	Encofrado y Desencofrado de Losa de cimentación	m²	ļ	ļ				17.29
7.01.02	Encorado y Descricorado de Cosa de cimentación		-	Cant.	Perimet	Altur		11.20
	Platea de cimentacion		 	1.00				
				<u> </u>				
4.02.02	Acero Fy= 4200 Kg/cm2, grado 60	Kg						2471.87
4.03.00	Muro de Ductilidad limitada	-						
4.03.01	Concreto fc' = 175 Kg/cm2 de Muros	m³		<u> </u>	 	-		148.72
	Metrado en muros del 1er al 3er piso		-					
	N° de muro			Cant.	Area	Altura	Volumen	
	Muro 1			3.00		2.80	0.50	
	Muro 2			3.00		2.80	0.50	
	Muro 3		t —	3.00		2.80		
	Muro 4		1	3.00		2.80		
	Muro 5		 	3.00	1	2.80		
	Muro 6		†	3.00		2.80		
	Muro 7		-	3.00		2.80		
	Muro 8		<u> </u>	3.00		2.80		
	Muro 9			3.00		2.80		
	Muro 10	$\neg \uparrow \neg$	T	3.00		2.80		
	Muro 11		1	3.00		2.80		
· · · · · · ·	Muro 12			3.00		2.80		
	Muro 13		1	3.00		2.80		
	Muro 14			3.00		2.80		
	Muro 15	\dashv	1	3.00		2.80		
	Muro 16		†	3.00	·	2.80		
	Muro 17	$\neg \dagger \neg$	1	3.00		2.80		
	Muro 18		 	3.00		2.80	1	

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

HECHO POR: GONGORA ROJAS HITLER PEDRO.

HUAMAN MAS FERNANDO

: Setiembre 2015 **FECHA**

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

UBICACIÓN: Distrito: CHACHAPOYAS Provincia: CHACHAPOYAS Región: AMAZONAS **MEDIDAS PARTIDA** DESCRIPCIÓN UNID CANT PARCIAL TOTAL LARGO ANCHO ALTO 3.00 2.44 2.80 20.46 Muro 19 3.00 0.09 2.80 0.76 Muro 20 3.00 0.18 2.80 1.51 Muro 21 3.00 0.07 2.80 0.59 Muro 22 3.00 0.07 2.80 0.59 Muro 23 Muro 24 3.00 0.06 3.80 0.68 Muro 25 3.00 0.06 4.80 0.86 3.00 0.06 5.80 1.04 Muro 26 3.00 0.06 6.80 1.22 Muro 27 Metrado en Alfeizer 4.32 15.0 1.60 0.10 1.80 V 01 V 02 3.00 0.80 0.10 1.20 0.29 0.10 3.00 0.95 1.20 0.34 V 03 Metrado en muros del 4to piso 1.00 3.60 0.30 2.20 2.38 Muro 3 0.30 2.20 1.00 3.60 2.38 Muro 4 1.00 2.40 2.80 2.02 Muro 12 0.30 Muro 13 1.00 2.40 0.30 2.80 2.02 Muro 19 1.00 3.00 2.44 1.20 8.77 4.03.02 Encofrado y desencofrado de muros m² 1931.37 Metrado en muros del 1er al 3er piso Cant. PerimetriAltura N° de muro Area 3.00 1,40 2.80 11.76 Muro 1 3.00 1.40 2.80 11.76 Muro 2 2.80 3.00 9.60 80.64 Muro 3 3.00 17.20 144.48 2.80 Muro 4 94.08 3.00 11.20 2.80 Muro 5 34.44 3.00 4.10 2.80 Muro 6 71.40 3.00 8.50 2.80 Muro 7 61.32 Muro 8 3.00 7.30 2.80 3.00 13.60 114.24 Muro 9 2.80 24.36 Muro 10 3.00 2.90 2.80 Muro 11 3.00 6.10 2.80 51.24 Muro 12 3.00 5.40 2.80 45.36 Muro 13 3.00 17.50 2.80 147.00 3.00 2.70 2.80 22.68 Muro 14 3.00 9.30 2.80 78.12 Muro 15 3.00 32.00 2.80 268.80 Muro 16 6.50 2.80 54.60 Muro 17 3.00 3.00 10.60 2.80 89.04 Muro 18 3.00 22.00 2.80 184.80 Muro 19 2.00 2.80 16.80 Muro 20 3.00 3.00 3.80 2.80 31.92 Muro 21 13.44 3.00 1.60 2.80 Muro 22 3.00 1.60 2.80 13.44 Muro 23

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

HECHO POR: GONGORA ROJAS HITLER PEDRO.

FECHA : Setiembre 2015

HUAMAN MAS FERNANDO REVISADO POR: Ing. John Hilmer Saldaña Nuñez

			M	FDIDAS			
DESCRIPCIÓN	UNID	CANT.				PARCIAL	TOTAL
Muro 24						15.96	
							
Mulo 27			0.00	1.70	0.00	20,00	
Metrado en Alfeizer		Cant	Perimetr		Altura	Area	
· · · · · · · · · · · · · · · · · · ·		——					
		0.00	0.00		1.20	0.01	
		1.00	3.60	0.30	2.20	17 16	
		1.00					
Multi 13		 	3.00	2.44	1.20	13.00	
Acoro Evi- 4200 Kalom2 arado 60	- Ka						6188.09
Acero 1 y = 4200 Ng/cm2 , grado 00	- ity						0100.00
Vinac							
			-		 -		7.51
					 		7.01
		3.00	0.65	0.20	0.30	0.12	
			ļ				
		!					
							
				-			
		ļ		L			
<u> </u>				1			
					-		
				·	 -		
							
					-		
Viga chata 23		3.00			0.20		
		u.vv	. 0.00	1 0.20	1 4.50		Ī
Viga chata 24		3.00	2.30	0.20	0.20	0.28	
	Muro 24 Muro 25 Muro 26 Muro 27 Metrado en Alfeizer V 01 V 02 V 03 Metrado en muros del 4to piso Muro 3 Muro 4 Muro 12 Muro 13 Muro 19 Acero Fy'= 4200 Kg/cm2, grado 60 Vigas Concreto fc' = 175 Kg/cm2 de vigas chatas Metrado en vigas del 1er al 3er piso Viga chata 01 Viga chata 02 Viga chata 03 Viga chata 04 Viga chata 05 Viga chata 06 Viga chata 07 Viga chata 09 Viga chata 10 Viga chata 11 Viga chata 12 Viga chata 15 Viga chata 16 Viga chata 16 Viga chata 17 Viga chata 19 Viga chata 20 Viga chata 20 Viga chata 20 Viga chata 20 Viga chata 21 Viga chata 22 Viga chata 21 Viga chata 22	Muro 24 Muro 25 Muro 26 Muro 27 Metrado en Alfeizer V 01 V 02 V 03 Metrado en muros del 4to piso Muro 3 Muro 4 Muro 12 Muro 13 Muro 19 Acero Fy'= 4200 Kg/cm2 , grado 60 Vigas Concreto fc' = 175 Kg/cm2 de vigas chatas Metrado en vigas del 1er al 3er piso Viga chata 01 Viga chata 02 Viga chata 03 Viga chata 04 Viga chata 05 Viga chata 05 Viga chata 07 Viga chata 08 Viga chata 09 Viga chata 10 Viga chata 11 Viga chata 12 Viga chata 15 Viga chata 15 Viga chata 16 Viga chata 18 Viga chata 19 Viga chata 20 Viga chata 20 Viga chata 21 Viga chata 21 Viga chata 22	Muro 24 Muro 25 Muro 26 Muro 27 Cant. V 01 15.0 V 02 3.00 V 03 3.00 Metrado en muros del 4to piso 1.00 Muro 3 1.00 Muro 12 1.00 Muro 13 1.00 Muro 19 Kg Vigas Concreto fc' = 175 Kg/cm2 de vigas chatas m³ Metrado en vigas del 1er al 3er piso Viga chata 01 3.00 Viga chata 02 3.00 3.00 Viga chata 04 3.00 3.00 Viga chata 05 3.00 3.00 Viga chata 07 3.00 3.00 Viga chata 08 3.00 3.00 Viga chata 10 3.00 3.00 Viga chata 11 3.00 3.00 Viga chata 12 3.00 3.00 Viga chata 14 3.00 3.00 Viga chata 16 3.00 3.00 Viga chata 18 3.00 3.00 Viga chata 20 3.00	Muro 24 3.00	Muro 24 3.00 1.40	Muro 24 3.00 1.40 3.80 1.40 3.80 Muro 25 3.00 1.40 4.80 Muro 26 3.00 1.40 4.80 Muro 27 3.00 1.40 6.80 Muro 27 3.00 1.40 6.80 Muro 27 3.00 0.80 1.20 Muro 26 3.00 0.80 1.20 V01 15.0 1.60 1.80 V02 3.00 0.80 1.20 V03 Muro 3 3.00 0.95 1.20 Muro 3 3.00 0.95 1.20 Muro 3 4.00 3.60 0.30 2.20 Muro 4 4.100 3.60 0.30 2.20 Muro 12 4.00 3.60 0.30 2.20 Muro 13 4.00 2.40 0.30 2.80 Muro 19 3.00 2.44 1.20 Acero Fy'= 4200 Kg/cm2 , grado 60 Kg Vigas Concreto fc' = 175 Kg/cm2 de vigas chatas m³ Muro 14 3.00 0.65 0.20 0.20 Viga chata 01 Viga chata 02 3.00 0.95 0.20 0.20 Viga chata 03 3.00 1.10 0.20 0.20 Viga chata 04 3.00 2.70 0.20 0.20 Viga chata 05 Viga chata 06 3.00 1.50 0.20 0.20 Viga chata 07 3.00 0.70 0.20 0.20 Viga chata 08 3.00 0.70 0.20 0.20 Viga chata 09 3.00 0.80 0.20 0.20 0.20 Viga chata 10 3.00 0.80 0.20 0.20 0.20 Viga chata 11 3.00 0.80 0.20 0.20 0.20 Viga chata 11 3.00 0.80 0.20 0.20 0.20 Viga chata 13 3.00 0.90 0.20 0.20 0.20 Viga chata 14 3.00 0.80 0.20 0.20 0.20 Viga chata 15 3.00 0.70 0.20 0.20 0.20 Viga chata 15 3.00 0.70 0.20 0.20 0.20 Viga chata 15 3.00 0.90 0.20 0.20 0.20 Viga chata 19 3.00 0.90 0.20 0.20 0.20 Viga chata 19 3.00 3.00 0.70 0.20 0.20 Viga chata 20 Viga chata 21 3.00 3.00 0.70 0.20 0.20 Viga chata 20 Viga chata 21 3.00 0.70 0.20 0.20 Viga chata 21 3.00 3.00 0.70 0.20 0.20 Viga chata 21 3.00 3.00 0.70 0.20 0.20 Viga chata 21 3.00 3.00 0.70	Muro 24

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

HECHO POR: GONGORA ROJAS HITLER PEDRO.

HUAMAN MAS FERNANDO

FECHA: Setiembre 2015

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

				8.0	EDIDAG		
PARTIDA	DESCRIPCIÓN	UNID	CANT.		EDIDAS ANCHO AL	PARCIAL	TOTAL
	Viga chata 26		3.00		0.20 0.		
	Viga chata 27		3.00		0.20 0.	20 0.17	
	Viga chata 28	.	3.00	2.20	0.20 0.	20 0.26	
	Viga chata 29		3.00	0.80	0.20 0.	20 0.10	
	Viga chata 30		3.00	0.70	0.20 0.		
	Viga chata 31		3.00	1.10	0.20 0.	20 0.13	
	Viga chata 32		3.00	0.90	0.20 0.		
	Viga chata 33		3.00	0.80	0.20 0.	20 0.10	
	Viga chata 34		3.00	0.70	0.20 0.	20 0.08	
	Viga chata 35		3.00	1.10	0.20 0.		
	Viga chata 36		3.00		0.20 0.		
	Viga chata 37		3.00	2.10		20 0.25	
	Viga chata 38		3.00	3.85	0.20 0.		
	Viga chata 39		3.00	0.80	0.20 0.		
	Viga chata 40		3.00			20 0.11	
							f
4.04.02	Encofrado y desencofrado de vigas	m²	<u> </u>			1	19.7
	Metrado en vigas del 1er al 3er piso		 			 	
	Viga chata 01		3.00	0.65	0.20	0.39	
	Viga chata 02		3.00		0.20	0.57	
	Viga chata 03		3.00	1.10	0.20	0.66	
	Viga chata 04		3.00		0.20	1.62	ļ
	Viga chata 05		3.00		0.20	0.81	
	Viga chata 06		3.00	1.60	0.20	0.96	l
	Viga chata 07		3.00		0.20	0.42	
	Viga chata 08		3.00		0.20	0.48	 -
	Viga chata 09		3.00		0.20	0.57	[
	Viga chata 10		3.00		0.20	0.48	
	Viga chata 11		3.00	0.90	0.20	0.54	
	Viga chata 12		3.00	0.90	0.20	0.54	
	Viga chata 13		3.00	0.90	0.20	0.54	
	Viga chata 14		3.00	0.80	0.20	0.48	
	Viga chata 15		3.00		0.20	0.42	
	Viga chata 16		3.00		0.20	1.92	
	Viga peraltada 17		3.00		0.30 0.	20 6.30	
	Viga chata 18		3.00	0.90	0.20	0.54	
	Viga chata 19		3.00	1.60	0.20	0.96	
	Viga chata 20		3.00	1.15	0.20	0.69	<u> </u>
	Viga chata 21		3.00			1.80	
	Viga chata 22		3.00	0.70	0.20	0.42	l
	Viga chata 23		3.00			0.54	
	Viga chata 24		3.00			1.38	
	Viga chata 25		3.00			1.38	
	Viga chata 26		3.00			1.17	
	Viga chata 27		3.00			0.84	
	Viga chata 28		3.00			1.32	

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

HECHO POR: GONGORA ROJAS HITLER PEDRO.

HUAMAN MAS FERNANDO

: Setiembre 2015 **FECHA**

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

UBICACIÓN: Distrito: CHACHAPOYAS Provincia: CHACHAPOYAS

Región: AMAZONAS

PARTIDA	DESCRIPCIÓN	LINIE	CANT.	M	EDIDAS		PARCIAL	TOTAL
PARTIDA	DESCRIPCION	ONID.	CANI.	LARGO	ANCHO	ALTO	PARCIAL	TOTAL
	Viga chata 29		3.00	0.80	0.20		0.48	4
	Viga chata 30		3.00	0.70	0.20		0.42	
	Viga chata 31		3.00	1.10	0.20		0.66	
	Viga chata 32		3.00	0.90	0.20		0.54	
	Viga chata 33		3.00	0.80	0.20		0.48	
	Viga chata 34		3.00	0.70	0.20		0.42	
	Viga chata 35		3.00	1.10	0.20		0.66	
- 	Viga chata 36		3.00	2.10	0.20		1.26	
	Viga chata 37		3.00	2.10	0.20		1.26	
	Viga chata 38		3.00	3.85	0.20		2.31	
	Viga chata 39		3.00	0.80	0.20		0.48	
	Viga chata 40		3.00	0.90	0.20		0.54	
4.04.03	Acero Fy'= 4200 Kg/cm2 , grado 60	Kg						974.58
4.05.00	Losa Aligerada		L					
4.05.01	Concreto fc' = 175 Kg/cm2 en Losa aligerada	m ³			l			39.50
	Metrado en losa en habitaciones del 1er al 3er piso		Cant.			Area	Volumen:	
	Habitacion 01:HALL COMUN		3.00			12.5	3.27	
	Habitacion 02: CUARTO DE SERVICIO		3.00			8.00	2.10	
	Habitacion 03: SS.HH(Cuarto de servicio)		3.00			2.53	0.66	
	Habitacion 04: SS.HH(Sala)		3.00			2.89	0.76	
	Habitacion 05: SALA		3.00			17.5	4.60	
	Habitacion 06: COCINA		3.00			14.0	3.68	
	Habitacion 07: LAVANDERIA		3.00			6.90	1.81	
	Habitacion 08: COMEDOR		3.00			11.9	3.11	
	Habitacion 09: ESTAR		3.00			10.5	2.76	
	Habitacion 10: DORMITORIO 3		3.00			12.7	3.33	
	Habitacion 11: SS.HH(Dormitorio 2)		3.00			4.83	1.27	
	Habitacion 12: HALL		3.00			4.67	1.23	
	Habitacion 13: SS.HH(Dormitorio 03)		3.00			4.96	1.30	
	Habitacion 14: DORMITORIO 2		3.00			15.4	4.03	
	Habitacion 15: DORMITORIO 1		3.00			19.2	5.03	
	Habitacion 16: SS.HH(Dormitorio 01)		3.00			5.44	1.43	
	Habitacion 17:BALCON(Comedor)		3.00			3.00	0.79	
	Habitacion 18: BALCON(Dormitorio 1)		3.00			4.60	1.21	
	Techo escalera		1.00			9.72	0.85	
4.05.02	Encofrado y desencofrado normal de losa aligerada	m²	<u> </u>	<u> </u>				493.80
	Metrado en losa en habitaciones del 1er al 3er piso		Cant.	ļ		Area.	1	
	Habitacion 01:HALL COMUN		3.00			12.5		
	Habitacion 02: CUARTO DE SERVICIO		3.00			8.00		
	Habitacion 03: SS.HH(Cuarto de servicio)		3.00			2.53		
	Habitacion 04: SS.HH(Sala)		3.00		LI	2.89		
	Habitacion 05: SALA		3.00			17.5		
	Habitacion 06: COCINA	1	3.00			14.0		

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

HECHO POR: GONGORA ROJAS HITLER PEDRO.

FECHA : Setiembre 2015

REVISADO POR: Ing. John Hilmer Saldaña Nuñez HUAMAN MAS FERNANDO

UBICACIO	N: Distrito: CHACHAPOYAS Provincia: CHACH	APOYA	S	F	Región:	AMA	ZONAS	
PARTIDA	DESCRIPCIÓN	UNID	CANT.	_	EDIDAS	_	PARCIAL	TOTAL
	·	J			ANCHO	ALTO		
	Habitacion 07: LAVANDERIA		3.00			6.90		
	Habitacion 08: COMEDOR		3.00			11.9		
	Habitacion 09: ESTAR		3.00			10.5		
	Habitacion 10: DORMITORIO 3		3.00			12.7		
	Habitacion 11: SS.HH(Dormitorio 2)		3.00			4.83		
	Habitacion 12: HALL	1	3.00			4.67		
	Habitacion 13: SS.HH(Dormitorio 03)		3.00			4.96		
	Habitacion 14: DORMITORIO 2		3.00			15.4		
	Habitacion 15: DORMITORIO 1		3.00			19.2		
	Habitacion 16: SS.HH(Dormitorio 01)	1	3.00			5.44		
	Habitacion 17:BALCON(Comedor)	1	3.00			3.00		
	Habitacion 18: BALCON(Dormitorio 1)		3.00			4.60		
	Techo escalera		1.00			9.72		
4.05.03	Ladrillo hueco de arcilla 15x30x30 cm - Losa aligerada	Und						4607.15
4.05.04	Acero Fy= 4200 Kg/cm2 , grado 60	Kg						2153.70
4.06.00	Escalera							
4.06.01	Concreto Fc' = 175 Kg/cm2 de Escalera	m³	Cant.			Vol.		2.27
	Volumen contrapasos+losa		3.00			0.27	0.81	
	Losa de descanzo		3.00			0.49	1.46	
4.06.02	Encofrado y desencofrado normal de Escalera	m²		Largo	Ancho	Area		44.70
	Area lateral parte inclinada		3.00			1.06	6.36	
	Area inferior de la escalera		3.00		1,20	5.64		
	Area inferior de la Losa de descanzo	_	3.00			3.38		
	Borde de descanzo		3.00			0.41		
	Contrapasos		3.00			3.36		
4.06.03	Acero Fy'= 4200 Kg/cm2 , grado 60	Kq		-		_		409.43

ANEXO 2.2.	Metrado de acero	concreto celular	
	,		
		,	

METRADO DE ACERO EN LOSA DE CIMENTACIÓN CONCRETO CELULAR

METRADO DE ACERO EN LOSA DE CIMENTACION

Diseño del	Nº de	NºPzas	Long.			Longitude	s.xØ		
Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
Long (//Y)	3	2	1.40	<u> </u>		8.40			
Long (//Y)	6	2	8.80	 		105.60			
Long (//Y)	2	2	11.50			46.00			
Long (//Y)	1	2	17.75			35.50			
Long (//Y)	6	2	7.55	 -		90.60			
Long (//Y)	6	2	4.60	 		55.20			
Long (//Y)	1	2	20.28	 		40.56			
Long (//Y)	1	2	20.37	 		40.74			
Long (//Y)	1	2	19.47			38.94			
Long (//Y)	. 1	2	20.85	 		41.70			
Long (//Y)	1	2	19.80			39.60			
Long (//Y)	4	2	21.65			173.20			
Long (//Y)	9	2	20.00			360.00			
Long (//Y)	4	2	12.20			97.60			
Long (//Y)	4	2	5.71	1		45.68			
Long (//Y)	2	2	3.80			15.20			
Long (//X)	6	2	3.50			42.00			
Long (//X)	8	2	10.30			164.80			
Long (//X)	6	2	12.10	1		145.20			
Long (//X)	14	2	3.20			89.60			
Long (//X)	4	2	4.10			32.80			
Long (//X)	3	2	6.90			41.40			
Long (//X)	8	2	5.65			90.40			
Long (//X)	7	2	7.45			104.30			
Long (//X)	3	2	12.65			75.90			
Long (//X)	20	2	9.70			388.00			
Long (//X)	3	2	5.80	T		34.80			
Long (//X)	2	2	7.10			28.40			
Long (//X)	11	2	6.34			12.68			
Long (//X)	1	2	6.02			12.04			
		Ø		1/4"	3/8"	1/2"	5/8"	3/4"	1"
		d Total Ø		0.00	0.00	2496.84	0.00	0.00	0.00
		Ø Kg/ml		0.22	0.60	0.99	1.58	2.24	3.97
	Tot	al Kg		0.00	0.00	2,471.87	0.00	0.00	0.00

METRADO DE ACERO EN VIGAS DE BORDE DE LOSA DE CIMENTACION

Diseño del	Nº de	NºPzas	Long.	T		Longitude	sxØ	· · · · · · · · · · · · · · · · · · ·	i
Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	~1" ·
Longitudinal	4	1	2.84			11.36			
Estribos	15	1	1.34		20.10				
Longitudinal	4	1	3.14			12.56			
Estribos	16	1	1.34		21.44				
Longitudinal	4	1	2.19			8.76			
Estribos	13	1	1.34		17.42				
Longitudinal	4	1	3.59			14.36			
Estribos	18	1	1.34		24.12				
Longitudinal	4	1	2.19			8.76			
Estribos	13	1	1.34		17.42				
Longitudinal	4	1	4.34			17.36			
Estribos	21	1	1.34		28.14				
Longitudinal	4	1	5.79			23.16			
Estribos	27	1	1.34		36.18				
Longitudinal	4	1	1.79			7.16			
Estribos	11	1	1.34		14.74				
Longitudinal	4	1	2.69			10.76			
Estribos	15	1	1.34		20.10				
Longitudinal	4	1	2.34			9.36			
Estribos	13	1	1.34	<u> </u>	17.42				
Longitudinal	4	1	3.89	<u> </u>		15.56		<u> </u>	
Estribos	19	1	1.34		25.46				
Longitudinal	4	1	1.09			4.36		<u></u>	
Estribos	4	11	1.34	<u> </u>	5.36			<u></u>	
Longitudinal	4	1	8.54	<u> </u>		34.16	<u></u>		
Estribos	38	1	1.34	ļ	50.92		ļ		
Longitudinal	44	1	5.89	ļ		23.56	L		
Estribos	27	1	1.34		36.18				
Longitudinal	4	1	2.39	 		9.56			
Estribos	13	1	1.34		17.42				
Longitudinal	4	11	4.04		00.00	16.16	ļ	ļ	
Estribos	20	1	1.34	 	26.80	07.40	 	 	
Longitudinal	4	1 1	6.79	 	44.54	27.16		 	
Estribos	31	1	1.34	 	41.54	44.70	 		
Longitudinal	4	1	2.94	 	20.40	11.76	 	 	
Estribos	15	1 1	1.34	 	20.10	35.56		 	
Longitudinal	<u>4</u> 39	1	8.89 1.34	 	52.26	35.56	_	 	
Estribos	4		2.34	 	52.20	9.36	 	 	
Longitudinal Estribos	13	1 1	1.34	 	17.42	3.30	 	 	
LSUIDUS		Ø '	1.07	1/4"	3/8"	1/2"	5/8"	3/4"	1"
		d Total Ø		0.00	510.54	310.80	0.00	0.00	0.00
		Ø Kg/ml		0.00	0.60	0.99	1.58	2.24	3.97
				0.00	305.81	307.69	0.00	0.00	0.00

METRADO DE ACERO EN MUROS

Descripción	Diseño del	N° de	NºPzas	Long.			ngitudes x			
Describeion	Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
M01	Longitudinal	29	1	0.50	14.5					
IVIO	Vertical	3	1	8.90		26.70				
M02	Longitudinal	29	1	0.52	15.08					
IVIU2	Vertical	3	1	8.90		26.70			· ·	
	Longitudinal	29	1	1.42	41.18					
	Longitudinal	43	2	3.95			339.70			
M03	Vertical	32	1	10.10		323.20				
	Vertical	5	1	8.90		44.50				
	Vertical	4	1	11.20			44.80			
	Longitudinal	34	1	1.42	48.28					
	Longitudinal	43	2	3.95			339.70			
	Longitudinal	34	1	2.06	70.04					
1404	Longitudinal	29	1	2.35		68.15				
M04	Vertical	32	1	11.10		355.20				
	Vertical	7	1	8.90		62.30				
	Vertical	4	1	11.20			44.80			
	Vertical	9	1	8.90	80.1					
	Longitudinal	29	1	1.59	46.11					
	Longitudinal	34	1	1.53	52.02					
M05	Longitudinal	34	1	3.57		121.38				
	Vertical	19	1	8.90		169.10				
	Vertical	1	1	8.90			8.90			
	Longitudinal	42	1	1.70	71.4					
M06	Longitudinal	29	1	0.47	13.63					l
	Vertical	8	1	8.90		71.20			1	
	Longitudinal	29	1	2.12	61.48		† — — — — — — — — — — — — — — — — — — —			
	Longitudinal	34	1	2.42	82.28	1-11-Q-1			 	
M07	Longitudinal	42	1	0.77	32.34				1	
!	Vertical	15	1	8.90		133.50		 	1	
	Longitudinal	29	1	0.77	22.33		i			
M08	Longitudinal	34	1	3.93	133.62			1		
	Vertical	14	1	8.90		124.60				
	Longitudinal	29	1	1.47	42.63					
	Longitudinal	29	1	4.94		143.26	<u> </u>	<u> </u>		
M09	Longitudinal	29	2	1.76		102.08			 	<u> </u>
	Vertical	24	1	8.90		213.60		<u> </u>		
	Vertical	4	1	8.90			35.60			
MAG	Longitudinal	34	1	1.25	42.5			T		
M10	Vertical	5	1	8.90		44.50				
NAA 4	Longitudinal	42	1	3.49	146.58			1		
M11	Vertical	11	1	8.90		97.90				
	Longitudinal	42	2	2.78		233.52		T		
M12	Vertical	12	1	10.10		121.20		1		
	Vertical	8	1	10.20			81.60		1	
	Longitudinal	48	2	5.48			526.08	[
	Longitudinal	29	1	0.45	13.05					
	Longitudinal	34	1	3.73		126.82		Γ		
M13	Vertical	5	1	10.20			51.00			
	Vertical	5	1	9.00			45.00	1	 	
	Vertical	14	1	10.10				1		
	Vertical	26	1	8.90		231.40	 	1	1	
	Longitudinal	34	1	1.16	39.44		†	 	T	
M14	Vertical	5	1	8.90		44.50	†	 	†	<u> </u>

Descripción	Diseño del	N° de	NºPzas:	Long.		Loi	ngitudes x			
escripcion	Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
	Longitudinal	29	1	0.97	28.13					
M15	Longitudinal	29	11	3.03		87.87	•			
WITS	Longitudinal	34	1	1.72	58.48					
	Vertical	17	1	8.90		151.30				
	Longitudinal	29	1	2.68	77.72					
	Longitudinal	29	1	2.82		81.78				
'	Longitudinal	34	1	3.57		121.38				
M16	Longitudinal	29	1	1.74	50.46					
'	Longitudinal	42	2	2.42	203.28					
	Longitudinal	29	1	3.93		113.97				
!	Vertical	55	1	8.90		489.50				
	Longitudinal	48	2	2.78		266.88				
	Longitudinal	29	1	0.85	24.65					
M17	Vertical	8	1	10.10			80.80			
	Vertical	2	1	8.90		17.80				
	Vertical	11	1	10.10		111.10				
M18	Longitudinal	29	1	5.42		157.18				
IVI I O	Vertical	18	1	8.90		160.20				
	Longitudinal	48	2	7.15			686.40			
	Longitudinal	33	1	3.48		114.84				
M19	Longitudinal	39	1	2.32		90.48				
MIS	Vertical	22	1	9.00			198.00			
	Vertical	26	1	10.20			265.20			
	Vertical	15	1	2.80		42.00				
M20	Longitudinal	29	1	0.80	23.2					
IVIZU	Vertical	4	1	8.90		35.60				
M21	Longitudinal	29	_ 1	2.34	67.86					
10121	Vertical	7	1	8.90		62.30				
M22	Longitudinal	29	1	0.60	17.4					
10122	Vertical	3	1	8.90		26.70				
M23	Longitudinal	29	1	0.60	17.4					
10123	Vertical	3	1	8.90		26.70				
M24	Longitudinal	33	1	0.50	16.5					
10124	Vertical	3	1	10.10		30.30				
M25	Longitudinal	33	11	0.50	16.5					
10125	Vertical	3	1	10.10		30.30				
M26	Longitudinal	33	1	0.50	16.5					
14120	Vertical	3	1	10.10		30.30				
M27	Longitudinal	33	1	0.50	16.5					
1417	Vertical	3	1	10.10		30.30				
<u> </u>		Ø			1/4"	3/8"	1/2"	5/8"	3/4"	1'
		ongitud 1			1703.17	5164.09	2747.58	0.00	0.00	0.0
		Peso Ø I			0.22	0.60	0.99	1.58	2.24	3.9
		Total	Kg		374.70	3,093.29	2,720.10	0.00	0.00	0.0

METRADO DE ACERO EN VIGAS

V01				ongitud				NºPzas	Nº de	Diseño del	Dogovinski
VOI	1"	3/4"				1/4"		* Elem.	elem.	Acero	Descripción
V01					5.80		1.45	1	4	Longitudinal) (04
V02						6.12	0.68	1		Estribos	VUI
Constitution Cons					7.00		1.75	1	4	Longitudinal	1/00
V03	1					7.48		1	11		V02
V04					7.60			1	4		\ (0.0
V04 Estribos 29 1 0.68 19.72						10.2					V03
V04					14.00						
V05						19.72			29		V04
V06					8.60						
V06 Estribos 20						10.2		1			V05
V06			1		9.60						
V07 Longitudinal Estribos 11 1 0.68 7.48 6.00 V08 Longitudinal 4 1 1.60 6.40 V09 Longitudinal 4 1 1.75 7.00 Estribos 13 1 0.68 8.84 V10 Estribos 13 1 0.68 8.84 V10 Estribos 12 1 0.68 8.84 V11 Longitudinal 4 1 1.70 6.80 V11 Longitudinal 4 1 1.70 6.80 V12 Estribos 13 1 0.68 8.84 V12 Longitudinal 4 1 1.70 6.80 V13 Estribos 13 1 0.68 8.84 V14 Longitudinal 4 1 1.70 6.80 V14 Estribos 12 1 0.68 8.84 V14 Longitudinal 4 1 1.50 6.00 Estribos 11 1 0.68 7.	 					13.6					V06
V08					6.00						
V08	 		t		- 0.00	7 48					V07
V08	 				6.40						
V09	 				0.10	7 48					V08
V10	 				7.00	1					
V10 Longitudinal Estribos 12 1 0.68 8.16 V11 Longitudinal 4 1 1.70 6.80 V11 Longitudinal 4 1 1.70 6.80 V12 Longitudinal 4 1 1.70 6.80 V13 Longitudinal 4 1 1.70 6.80 Estribos 13 1 0.68 8.84 8.84 V13 Longitudinal 4 1 1.70 6.80 Estribos 13 1 0.68 8.84 8.4 V14 Longitudinal 4 1 1.60 6.40 6.80 Estribos 12 1 0.68 8.16 8.16 8.16 9.00	 					8 84					V09
V11	 				6.40						
V11	 				- 0.40	8 16					V10
V12 Estribos 13	 		 		6.80	0.10					
V12 Longitudinal Estribos 4 1 1.70 6.80 V13 Longitudinal 4 1 1.70 6.80 Estribos 13 1 0.68 8.84 V14 Estribos 13 1 0.68 8.84 V14 Longitudinal 4 1 1.60 6.40 V15 Longitudinal 4 1 1.50 6.00 Estribos 11 1 0.68 7.48 V16 Longitudinal 4 1 3.75 15.00 Estribos 35 1 0.68 23.8 V17 Estribos 35 1 0.68 23.8 V18 Longitudinal 4 1 2.49 9.96 V18 Estribos 17 1 0.68 11.56 V19 Longitudinal 4 1 2.49 9.96 V19 Estribos 19 1 0.68 12.92 <	┼──				-0.00	8 84					V11
V12	 				6.80	0.04					
V13 Longitudinal Estribos 13 1 1.70 6.80 V14 Longitudinal 4 1 1.60 6.40 Estribos 12 1 0.68 8.16 V15 Longitudinal 4 1 1.50 6.00 V16 Estribos 11 1 0.68 7.48 V16 Longitudinal 4 1 3.75 15.00 Estribos 35 1 0.68 23.8 V17 Longitudinal 4 1 3.45 13.80 V18 Longitudinal 4 1 2.49 9.96 V18 Longitudinal 4 1 2.49 9.96 V19 Longitudinal 4 1 2.40 9.60 V19 Longitudinal 4 1 2.40 9.60 V20 Longitudinal 4 1 1.95 7.80 V21 Longitudinal 4 1 3.55 14.20 V21 Longitudinal 4 1 1.60 6.40	+		_		0.00	8.84					V12
V14 Estribos 13	 				6.80	0.04					
V14 Longitudinal Estribos 12 1 1.60 6.40 V15 Longitudinal Estribos 12 1 0.68 8.16 V15 Longitudinal 4 1 1.50 6.00 V16 Longitudinal 4 1 3.75 15.00 V17 Estribos 35 1 0.68 23.8 V17 Longitudinal 4 1 3.45 13.80 V18 Longitudinal 4 1 2.49 9.96 V18 Longitudinal 4 1 2.49 9.96 V19 Longitudinal 4 1 2.40 9.60 V19 Longitudinal 4 1 2.40 9.60 V20 Longitudinal 4 1 1.95 7.80 V21 Longitudinal 4 1 1.95 7.80 V21 Longitudinal 4 1 1.60 6.40 V22 Longitudinal 4 1 1.60 6.40 V23 Longitudinal 4 1 1.20 <td>+</td> <td><u> </u></td> <td> </td> <td></td> <td>0.00</td> <td>8 84</td> <td></td> <td></td> <td></td> <td></td> <td>V13</td>	+	<u> </u>	 		0.00	8 84					V13
V15	+				6.40	0.04					
V15 Longitudinal Estribos 4 1 1.50 6.00 V16 Estribos 11 1 0.68 7.48 V16 Longitudinal 4 1 3.75 15.00 V17 Longitudinal 4 1 3.45 13.80 V17 Longitudinal 4 1 2.49 28.16 V18 Longitudinal 4 1 2.49 9.96 Estribos 17 1 0.68 11.56 V19 Longitudinal 4 1 2.40 9.60 Estribos 19 1 0.68 12.92 V20 Longitudinal 4 1 1.95 7.80 Estribos 14 1 0.68 9.52 V21 Longitudinal 4 1 1.60 6.40 Estribos 32 1 0.68 21.76 V22 Longitudinal 4 1 1.60 6.40 Estribos 12 1 0.68 8.16	+				0.40	8 16					V14
V16	 		 		6.00	0.10					
V16 Longitudinal Estribos 4 1 3.75 15.00 V17 Longitudinal 4 1 3.45 13.80 V17 Estribos 22 1 1.28 28.16 V18 Longitudinal 4 1 2.49 9.96 V19 Longitudinal 4 1 2.49 9.96 V19 Longitudinal 4 1 2.40 9.60 Estribos 19 1 0.68 12.92 V20 Longitudinal 4 1 1.95 7.80 Estribos 14 1 0.68 9.52 V21 Longitudinal 4 1 3.55 14.20 V22 Longitudinal 4 1 1.60 6.40 V22 Longitudinal 4 1 1.20 4.80 Estribos 12 1 0.68 8.16 V23 Longitudinal 4 1 1.20 4.80 Estribos 25 1 0.68 17	+	 	 		0.00	7 / 18					V15
V16	 				15.00	7.40					
V17 Longitudinal Estribos 4 1 3.45 13.80 V18 Estribos 22 1 1.28 28.16 V18 Longitudinal 4 1 2.49 9.96 Estribos 17 1 0.68 11.56 V19 Longitudinal 4 1 2.40 9.60 Estribos 19 1 0.68 12.92 V20 Longitudinal 4 1 1.95 7.80 Estribos 14 1 0.68 9.52 V21 Longitudinal 4 1 3.55 14.20 V22 Longitudinal 4 1 1.60 6.40 V23 Longitudinal 4 1 1.20 4.80 V24 Longitudinal 4 1 2.75 11.00 V24 Longitudinal 4 1 3.10 12.40 V25 Longitudinal 4 1 3.10	┼	<u> </u>			13.00	22.8					V16
V17 Estribos 22 1 1.28 28.16 V18 Longitudinal 4 1 2.49 9.96 V19 Estribos 17 1 0.68 11.56 V19 Longitudinal 4 1 2.40 9.60 V20 Estribos 19 1 0.68 12.92 V20 Longitudinal 4 1 1.95 7.80 V21 Estribos 14 1 0.68 9.52 V21 Longitudinal 4 1 3.55 14.20 V21 Estribos 32 1 0.68 21.76 V22 Longitudinal 4 1 1.60 6.40 V23 Longitudinal 4 1 1.20 4.80 V24 Longitudinal 4 1 2.75 11.00 V25 Longitudinal 4 1 3.10 12.40 V26 Longitudinal 4 <td>+</td> <td></td> <td> </td> <td>13.80</td> <td></td> <td>23.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>	+		 	13.80		23.0					
V18 Longitudinal Estribos 4 1 2.49 9.96 V19 Estribos 17 1 0.68 11.56 V19 Longitudinal 4 1 2.40 9.60 V20 Estribos 19 1 0.68 12.92 V20 Longitudinal 4 1 1.95 7.80 V21 Estribos 14 1 0.68 9.52 V21 Longitudinal 4 1 3.55 14.20 V22 Estribos 32 1 0.68 21.76 V22 Longitudinal 4 1 1.60 6.40 V23 Estribos 12 1 0.68 8.16 V24 Longitudinal 4 1 1.20 4.80 V24 Longitudinal 4 1 2.75 11.00 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25	+	 		13.00	28 16						V17
V18	+		 								
V19 Longitudinal Estribos 4 1 2.40 9.60 V20 Longitudinal 4 1 1.95 7.80 V21 Estribos 14 1 0.68 9.52 V21 Longitudinal 4 1 3.55 14.20 V21 Estribos 32 1 0.68 21.76 V22 Longitudinal 4 1 1.60 6.40 V23 Estribos 12 1 0.68 8.16 V24 Longitudinal 4 1 1.20 4.80 V24 Longitudinal 4 1 2.75 11.00 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 V26 Longitudinal 4 1 2.50 10.00	+		 		9.90	11.56					V18
V19	┼		┼		9 60	11.30					
V20 Longitudinal Estribos 4 1 1.95 7.80 V21 Estribos 14 1 0.68 9.52 V21 Longitudinal 4 1 3.55 14.20 Estribos 32 1 0.68 21.76 V22 Longitudinal 4 1 1.60 6.40 Estribos 12 1 0.68 8.16 V23 Longitudinal 4 1 1.20 4.80 V24 Estribos 10 1 0.68 6.8 V24 Longitudinal 4 1 2.75 11.00 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 V26 Longitudinal 4 1 2.50 10.00	+		 		3.00	12.02					V19
V20	 		 		7.80	12.32					
V21 Longitudinal Estribos 32 1 0.68 21.76 V22 Longitudinal 4 1 1.60 6.40 V23 Estribos 12 1 0.68 8.16 V23 Longitudinal 4 1 1.20 4.80 Estribos 10 1 0.68 6.8 V24 Longitudinal 4 1 2.75 11.00 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 Longitudinal 4 1 2.50 10.00	+	 	├		7.00	0.52					V20
V21 Estribos 32 1 0.68 21.76 V22 Longitudinal 4 1 1.60 6.40 V23 Estribos 12 1 0.68 8.16 V23 Longitudinal 4 1 1.20 4.80 Estribos 10 1 0.68 6.8 V24 Longitudinal 4 1 2.75 11.00 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 V26 Longitudinal 4 1 2.50 10.00	+	 	 		14.20	9.52					
V22 Longitudinal Estribos 4 1 1.60 6.40 V23 Estribos 12 1 0.68 8.16 V23 Longitudinal 4 1 1.20 4.80 Estribos 10 1 0.68 6.8 V24 Longitudinal 4 1 2.75 11.00 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 V26 Longitudinal 4 1 2.50 10.00	+	 	 		14.20	21.76					V21
V22 Estribos 12 1 0.68 8.16 V23 Longitudinal 4 1 1.20 4.80 Estribos 10 1 0.68 6.8 V24 Longitudinal 4 1 2.75 11.00 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 V26 Longitudinal 4 1 2.50 10.00	}	 	 		6.40	21.70					
V23 Longitudinal Estribos 4 1 1.20 4.80 V24 Estribos 10 1 0.68 6.8 V24 Longitudinal 4 1 2.75 11.00 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 Longitudinal 4 1 2.50 10.00	+	 			0.40	8 16					V22
V23 Estribos 10 1 0.68 6.8 V24 Longitudinal 4 1 2.75 11.00 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 V26 Longitudinal 4 1 2.50 10.00	+	 	├		4.80	0.10					
V24 Longitudinal Estribos 4 1 2.75 11.00 V25 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 Longitudinal 4 1 2.50 10.00	+	 	 		7.00	6.8					V23
V24 Estribos 25 1 0.68 17 V25 Longitudinal 4 1 3.10 12.40 Estribos 25 1 0.68 17 Longitudinal 4 1 2.50 10.00	+	 	 		11.00	0.0					
V25 Longitudinal Estribos 25 1 3.10 12.40 Longitudinal 4 1 2.50 10.00	+	 	}		11.00	17					V24
V25 Estribos 25 1 0.68 17 Longitudinal 4 1 2.50 10.00	+	 	 		12.40	1/					
Estribos 25 1 0.68 17	 	 	 		12.40	47					V25
	+	ļ	 		10.00	1/					
*** Fatilities 20 4 0.00 44.00(+	 	 		10.00	44.00					V26
Estribos 22 1 0.68 14.96	+-	 	 			14.90					

- D	Diseño del	Nº de	N°Pzas	Long.	Longitudes x Ø								
Descripción	Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"			
VZT	Estribos	16	1	0.68	10.88								
V28	Longitudinal	4	1	2.79		11.16							
V20	Estribos	22	1	0.68	14.96								
V29	Longitudinal	4	1	1.60		6.40							
V Z 9	Estribos	12	1	0.68	8.16								
V30	Longitudinal	4	1	1.34		5.36							
V30	Estribos	9	1	0.68	6.12								
V31	Longitudinal	4	1	1.40		5.60							
۷۵۱	Estribos	11	1	0.68	7.48								
V32	Longitudinal	4	1	1.45		5.80							
V32	Estribos	12	1	0.68	8.16								
V33	Longitudinal	4	1	1.90		7.60							
	Estribos	13	1	0.68	8.84								
V34	Longitudinal	4	1	1.50		6.00		•					
V34	Estribos	11	1	0.68	7.48								
V35	Longitudinal	4	1	1.90		7.60							
v 35	Estribos	15	1	0.68	10.2								
\/26	Longitudinal	4	1	2.90		11.60							
V36	Estribos	23	1	0.68	15.64								
V37	Longitudinal	4	1	2.90		11.60							
V37	Estribos	25	1	0.68	17								
V38	Longitudinal	4	1	4.85		19.40							
V36	Estribos	38	1	0.68	25.84								
V39	Longitudinal	4	1	1.53		6.12							
V39	Estribos	10	1	0.68	6.8								
V40	Longitudinal	4	1	1.25		5.00							
V40	Estribos	6	1	0.68	4.08								
		Ø			1/4"	3/8"	1/2"	5/8"	3/4"	1"			
	L	ongitud	Total Ø		436.56	359.20	13.80	0.00	0.00	0.00			
		Peso Ø	Kg/ml		0.22	0.60	0.99	1.58	2.24	3.97			
i		Total	Kg		96.04	215.16	13.66	0.00	0.00	0.00			

933.60

METRADO DE ACERO EN ALIGERADO

Diseño del	N° de	N°Pzas	Long.		1	ongitude	es x Ø		
Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
Longitudinal +	4	1	3.02			12.08			
Longitudinal +	1	11	4.22			4.22			
Longitudinal +	4	1	5.70			22.80		-	
Longitudinal + Longitudinal +		 	10.42 11.62			10.42 11.62		 	
Longitudinal +	- 1	 	2.12			4.24		 	
Longitudinal +	4	1 1	6.82			27.28			
Longitudinal +	1	11_	1.42			1.42			
Longitudinal +	5	1	3.82			19.10			
Longitudinal -	5	1 1	0.66	ļ	3.30 6.88			 	
Longitudinal - Longitudinal -	<u>8</u> 6	1 1	0.86 1.30		7.80		 	 	
Longitudinal -	- 5	1 1	0.38		2.66	 			
Longitudinal -	3	1	2.03		6.09				
Longitudinal -	3	1	1.81		5.43				
Longitudinal -	1	1	0.66		0.66				
Longitudinal -		1 1	0.53	 	0.53			 	
Longitudinal - Longitudinal -	<u>2</u> 4	1	1.48 0.42	 	2.96 1.68	 		 	
Longitudinal -	2	 	0.59		1.18			 	
Longitudinal -	9		0.86		7.74			1	
Longitudinal -	4	11_	2.24		8.96	L			
Longitudinal -	5	1 1	0.86		4.30				
Longitudinal -	<u>4</u>	1 1	0.74	 	2.96	764	 	 	<u> </u>
Longitudinal + Longitudinal + L	2	 	3.82 5.07			7.64 10.14		 	
Longitudinal +	3	 	7.42	 		22.26	 	 	
Longitudinal +	6	1 1	9.22			55.32	<u> </u>	 	
Longitudinal +	1	1	7.02			7.02			
Longitudinal +	1	1	5.22			5.22			
Longitudinal +		11	0.60			0.60	<u> </u>	-	
Longitudinal + Longitudinal +		+	1.71 4.26			1.71 4.26	 		
Longitudinal -	4	 	0.86	 	4.86	4.20		 	
Longitudinal -	11	1 1	2.55		13.55		├	 	-
Longitudinal -	15	11	0.84		15.84				
Longitudinal -		1	1.81		8.81				
Longitudinal -	7	 	0.50		7.50		ļ	ļ	ļ
Longitudinal - Longitudinal -	2	 }	2.80 0.50		4.80 1.50	ļ	 	╁——	
Longitudinal -	- i -	 	1.71		2.71	 	 	 -	
Longitudinal -	 i	 	0.74	1	1.74				
Longitudinal -	1	1	2,17		3.17	İ			
Longitudinal +	5	11	8.31			41.55			
Longitudinal +		11	7.71			7.71	├	 	
Longitudinal + Longitudinal +	<u>5</u> 8	1 1	9.91 3.62			49.55 28.96		ļ	
Longitudinal +	<u></u> 3	1 - 1	5.02	 	· · · · · ·	15.06	 	 	
Longitudinal +	4	1	5.82			23.28			
Longitudinal -	5	1	0.79			3.95			
Longitudinal -	<u>5</u> 5	1 1	2.40 2.59	<u> </u>	12.00		<u> </u>	 	
Longitudinal - Longitudinal -	<u>5</u>	1-1-	0,95		12.95	3.80	 	 	
Longitudinal -		 	2,66	 	15.96	3.00	 	 	
Longitudinal -	1	1 1	1.19		1.19	<u> </u>		1	<u> </u>
Longitudinal -	5	1	1.83		9.15			1	
Longitudinal -	5	1	0.61		3.05				
Longitudinal -	2	1 1	1.00		44.40	2.00	<u> </u>	 	
Longitudinal -	15	1 1	0.96 0.86		14.40 6.88		 	 	
Longitudinal - Longitudinal -	<u>8</u> 3	1-1-	1.65	 	4.95	 	 	+	
Longitudinal -	3	† †	0.46		1.38		 	 	
Longitudinal -	4	1	1.97		7.88				
Longitudinal -	4	1	0,56		2.24				
Con Temp Y	6	1 1	2.02	12.12		ļ		ļ	
Con Temp Y	10	 	3.50	35			 	 	[
Con Temp Y Con Temp Y	<u>1</u> 10	1	1.76 6.07	1.76 60.7		 	 	-	
_Con Temp Y	10	1 1	4.52	4.52		<u> </u>	 	1	
Con Temp Y	2	1	7.82	15.64					

METRADO DE ACERO EN ALIGERADO

Con Temp Y Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	elem. 1 11 4 4 1 2 3 4 5 4 7 8 1 1 1 1 1 1 1 4 5	* Elem. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* Pza. 3.32 5.63 1.41 1.90 1.80 1.35 1.29 2.03 2.50 1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62 1.77	3.32 61.93 5.64 7.6 1.8 2.7 3.87 8.12 12.5 6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19 7.36 7.62	3/8"	ongitude 1/2"	5/8"	3/4"	1"
Con Temp Y Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	11 4 4 1 2 3 4 5 4 5 4 7 8 1 1 1 1 1 1		5.63 1.41 1.90 1.80 1.35 1.29 2.03 2.50 1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62	61.93 5.64 7.61 1.8 2.7 3.87 8.12 12.5 6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19 7.36					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	4 4 1 2 3 4 5 4 5 4 7 8 1 1 1 1 1 1		1.41 1.90 1.80 1.35 1.29 2.03 2.50 1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62	5.64 7.6 1.8 2.7 3.87 8.12 12.5 6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19 7.36					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	4 1 2 3 4 5 4 2 1 4 7 8 1 1 1 1 1 1		1.90 1.80 1.35 1.29 2.03 2.50 1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62	7.6 1.8 2.7 3.87 8.12 12.5 6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	1 2 3 4 5 4 2 1 4 7 8 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.80 1.35 1.29 2.03 2.50 1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62	1.8 2.7 3.87 8.12 12.5 6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19 7.36					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	3 4 5 4 2 1 4 7 8 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.35 1.29 2.03 2.50 1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62	2.7 3.87 8.12 12.5 6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	3 4 5 4 2 1 4 7 8 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.29 2.03 2.50 1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62	3.87 8.12 12.5 6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	4 5 4 2 1 4 7 8 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.03 2.50 1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62 1.77	8.12 12.5 6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	5 4 2 1 4 7 8 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.50 1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62 1.77	12.5 6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19 7.36					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	4 2 1 4 7 8 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.57 1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62	6.28 2.48 1.57 7 6.37 34.16 4.73 7.09 7.19 7.36					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	2 1 4 7 8 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.24 1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62	2.48 1.57 7 6.37 34.16 4.73 7.09 7.19 7.36					
Con Temp X Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	1 4 7 8 1 1 1 1 1 1 1 1 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.57 1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62 1.77	1.57 7 6.37 34.16 4.73 7.09 7.19 7.36					
Con Temp X Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	7 8 1 1 1 1 1 1 1 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.75 0.91 4.27 4.73 7.09 7.19 7.36 7.62	7 6.37 34.16 4.73 7.09 7.19 7.36					
Con Temp X Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	7 8 1 1 1 1 1 1 1 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.91 4.27 4.73 7.09 7.19 7.36 7.62	6.37 34.16 4.73 7.09 7.19 7.36					
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	1 1 1 1 1 1 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.27 4.73 7.09 7.19 7.36 7.62	34.16 4.73 7.09 7.19 7.36					
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	1 1 1 1 1 1 4	1 1 1 1 1 1 1 1 1 1 1	4.73 7.09 7.19 7.36 7.62 1.77	4.73 7.09 7.19 7.36					
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	1 1 1 1 1 4	1 1 1 1 1 1 1 1	7.09 7.19 7.36 7.62 1.77	7.09 7.19 7.36					
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	1 1 4	1 1 1	7.19 7.36 7.62 1.77	7.19 7.36					
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	1 1 4	1 1 1	7.36 7.62 1.77	7.36					
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	1 1 4	1 1	7. <u>62</u> 1.77	7 60					
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	1 4	1 1	1.77						
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X	_4	1 1		1.77				 	
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X			7.42	29.68				· · · · · ·	
Con Temp Y Con Temp Y Con Temp Y Con Temp Y Con Temp X		1 1	8.12	40.6					
Con Temp Y Con Temp Y Con Temp X	5	1 1	6.62	33.1					
Con Temp Y Con Temp X	6	1	4.62	27.72					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X	1	1 1	3.52	3.52					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X	9	1	1.98	17.82					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X	2	11_	2.50	5					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X	6	1	1.98	11.88					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X	. 7	11	1.52	10.64					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X	1	1	1.75	1.75					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X	<u> </u>	11	1.19	8.33					
Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X Con Temp X	3	1	3.22	9.66					
Con Temp X Con Temp X Con Temp X Con Temp X	12	11	5.02	60.24					
Con Temp X Con Temp X Con Temp X	11	1 1	11,62	127.82					
Con Temp X Con Temp X	4	11	5.02	20.08			<u> </u>	-	
Con Temp X	3	1 1	2.62	7.86			L	 	
	5	+ + -	3.22	16.1				ļ	
COIL FEILIP T	<u>2</u> 5	1 1	2.02 1.89	4.04 9.45			 	 	
Con Temp Y	11	 	1.44	15.84			 -	 	
Con Temp Y	6	 	2.27	13.62				 	
Con Temp Y	5	 	1.35	6.75				 	
Con Temp Y	-8	1-1-	2.20	17.6				 	
Con Temp Y	3	1 1	0.95	2.85				 	
Con Temp Y		1 1	1.80	12.6				1	
Con Temp Y		1	1,33	5.32					
	4		l	1/4"	3/8"	1/2"	E /O!!	2/4"	
I an							5/8"	3/4"	0.00
	Ø	Longitud Total Ø					0.00 1.58	2.24	0.00 3.97
	Ø ngitud T		Peso Ø Kg/ml Total Kg					0.00	0.00

METRADO DE ACERO EN ESCALERA

Danasinalika	Diseño del	Longitudes x Ø								
Descripción	Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
Descanzo	perpendicular	2	6	1.38		16.56				
Descarizo	Longitudinal	10	6	1.71	102.6					
\/i====b=t=	Longitudinal	4	6	3.42		82.08				
Viga chata	Estribos	27	6	0.60	97.2					
	Perpendicular	7	6	1.86		78.12	• •			
	Longitudinal	25	6	1.56	234					
Tramo	Perpendicular	6	6	4.33		155.88				
inclinado	Perpendicular	6	6	3.43		123.48				
	Perpendicular	4	6	1.90		45.60				
	Estribos	15	6	0.68	61.2					
		1/4"	3/8"	1/2"	5/8"	3/4"	1"			
	L	495.00	501.72	0.00	0.00	0.00	0.00			
		0.22	0.60	0.99	1.58	2.24	3.97			
	VI 48 U.S. 1	108.90	300.53	0.00	0.00	0.00	0.00			

ANEXO 2.3. Metrado de estructuras concreto estructural.

METRADOS ESTRUCTURAS

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

HECHO POR: GONGORA ROJAS HITLER PEDRO. FECHA : Setiembre 2015

HUAMAN MAS FERNANDO REVISADO POR: Ing. John Hilmer Saldaña Nuñez

PARTIDA	DESCRIPCIÓN	LIMIT	CANT.	М	EDIDA	S	PARCIAL	TOTAL
FARTIDA	DESCRIPCION	JOINID.	CANI.	LARGO	ANCHO	ALTO	PARCIAL	IOIAL
1.00.00	TRABAJOS PRELIMINARES							
1.01.01	Limpieza de terreno manual	m²		15.00	35.00		525.00	525.00
1.02.00	Trazo y replanteo preliminar	m²		15.00	35.00		525.00	525.00
2.00.00	MOVIMIENTO DE TIERRAS	1						
2.01.00	Excavaciones							
2.01.01	Excavacion manual p/losa de cimentacion	m³						89.42
	h = 0.40 m. (desde el Nivel de Terreno Natural)		Cant.	AREA	Prof.			
		1	1.00	223.5	0.40		89.42	
2.01.02	Excavacion manual de zanjas p/Vigas de borde	m³						11.73
	Viga de Borde							
	Eje A ,Entre 3-8	1	1.00	8.60	0.25	0.20	0.43	
	Eje 3 ,Entre A-B		1.00	1.55	0.25	0.20	0.08	
	Eje B ,Entre 2-3		1.00	2.55	0.25	0.20	0.13	
	Eje 2 ,Entre B-D		1.00	2.35	0.25	0.20	0.12	
	Eje D ,Entre 1-2	1	1.00	1.90	0.25	0.20	0.10	
	Eje 1 ,Entre D-F		1.00	2.80	0.25	0.20	0.14	
	Eje F ,Entre 1-2		1.00	1.90	0.25	0.20	0.10	
	Eje 1,Entre F-I		1.00	3.45	0.25	0.20	0.17	
	Eje I ,Entre 2-6		1.00	5.50	0.25	0.20	0.28	
	Eje 6 ,Entre H-I	1	1.00	1.00	0.25	0.20	0.05	
	Eje H ,Entre 6-7		1.00	2.40	0.25	0.20	0.12	
	Eje 7,Entre H-I	1	1.00	1.55	0.25	0.20	0.08	·
	Eje 1' ,Entre 7-8		1.00	3.60	0.25	0.20	0.18	
	Eje 8,Entre l'-l		1.00	0.30	0.25	0.20	0.02	
	Eje l' ,Entre 8-14		1.00	8.30	1.25	0.20	2.08	
	Eje 14,Entre E-I	1	1.00	5.15	2.25	0.20	2.32	
	Eje E ,Entre 12-14		1.00	2.05	2.25	0.20	0.92	
	Eje 12,Entre C-E		1.00	3.15	2.25	0.20	1.42	
	Eje C,Entre 8-12		1.00	6.55	2.25	0.20	2.95	
	Eje 8 ,Entre A-B		1.00	1.55	0.25	0.20	0.08	
	Relieno compactado con material propio bordes de platea de							
2.01.03	címentacion	m³						11.30
				Area		<u> </u>		
			1.00	28.26	0,40		11.30	
						<u> </u>		
2.01.04	Eliminación de material - manual distancia promedio = 30 m.	m³						89.84
		1						
2.01.05	Eliminacion de material -con volquete dist.promedio =5km	m ³						89.84
						L		
3.00.00	CONCRETO SIMPLE							
3.01.00	Solado e=0.10 m. C:H, 1:12 p/vigas de borde	m²		ļ				58.65

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

 HECHO POR:
 GONGORA ROJAS HITLER PEDRO.
 FECHA
 : Seliembre 2015

HUAMAN MAS FERNANDO REVISADO POR: Ing. John Hilmer Saldaña Nuñez

PARTIDA	DESCRIPCIÓN	UNITO	CANT.	М	EDIDA:	S	PARCIAL	TOTAL
PARTIDA	DESCRIPCION	UNID.	CANI.	LARGO	ANCHO	ALTO	PARCIAL	TOTAL
	Viga de Borde							
	Eje A ,Entre 3-8		1.00	8.60	0.25		2.15	
	Eje 3 ,Entre A-B		1.00	1.55	0.25		0.39	
	Eje B ,Entre 2-3		1.00	2.55	0.25		0.64	
	Eje 2 ,Entre B-D		1.00	2.35	0.25		0.59	
	Eje D ,Entre 1-2		1.00	1.90	0.25		0.48	
	Eje 1,Entre D-F		1.00	2.80	0.25		0.70	
	Eje F ,Entre 1-2		1.00	1.90	0.25		0.48	
	Eje 1,Entre F-l		1.00	3.45	0.25		0.86	
	Eje 1,Entre 2-6		1.00	5.50	0.25		1.38	
	Eje 6 ,Entre H-I		1.00	1.00			0.25	
	Eje H ,Entre 6-7		1.00	2.40	0.25		0.60	
	Eje 7,Entre H-I		1.00	1.55	0.25		0.39	
	Eje I',Entre 7-8		1.00	3.60	0.25		0.90	
	Eje 8,Entre l'-l		1.00	0.30	0.25		0.08	
	Eje I' ,Entre 8-14		1.00	8.30	1.25		10.38	
	Eje 14,Entre E-l		1.00	5,15	2.25		11.59	
	Eje E ,Entre 12-14		1.00	2.05	2.25		4.61	
	Eje 12,Entre C-E		1.00	3.15	2.25		7.09	
	Eje C,Entre 8-12		1.00	6.55	2.25		14.74	
	Eje 8 ,Entre A-B	_	1.00	1.55	0.25		0.39	
3.02.00	Solado e=0.10 m. C:H, 1:12 p/ Losa de cimentacion	m ²						136.63
3.05.00	Dado de concreto fc' = 210 Kg/cm2	m ³						0.08
			195	0.08	0.08	0.08	0.08	
.00.00	CONCRETO ARMADO						<u> </u>	
1.01.00	Vigas de Borde			 	 			
1.01.01	Concreto Fc' = 175 Kg/cm2 para vigas de borde				<u> </u>			35.19
	Viga de Borde	- - - - - - - - - - 	<u> </u>	 				
	Eje A ,Entre 3-8		1.00	8.60	0.25	0.60	1.29	·
	Eie 3 Entre A-B		1.00					
	Eje B Entre 2-3		1.00			0.60	0.38	
	Eje 2 ,Entre B-D		1.00				0.35	
	Eje D Entre 1-2		1.00	1.90	0.25	0.60	0.29	
	Eje 1 ,Entre D-F		1.00	2.80	0.25	0.60	0.42	
	Eje F ,Entre 1-2		1.00	1.90	0.25	0.60	0.29	
	Eje 1 ,Entre F-I		1.00	3.45	0.25	0.60	0.52	
	Eje 1,Entre 2-6		1.00	5.50	0.25	0.60	0.83	
	Eje 6 ,Entre H-I		1.00	1.00	0.25	0.60	0.15	
	Eje H ,Entre 6-7		1.00	2.40	0.25	0.60	0.36	
	Eje 7,Entre H-I		1.00	1.55	0.25	0.60	0.23	
	Eie I'.Entre 7-8		1.00			0.60	0.54	

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

HECHO POR: GONGORA ROJAS HITLER PEDRO.

FECHA : Setiembre 2015

HUAMAN MAS FERNANDO

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

DADTIDA	processorión	LINES	CANT	M	EDIDA	S	DADCIAL	TOTAL
PARTIDA	DESCRIPCIÓN	UNID.	CANT.		ANCHO		PARCIAL	TOTAL
	Eje 8,Entre l'-l		1.00				0.05	
	Eje l' ,Entre 8-14	_	1.00				6.23	
	Eje 14,Entre E-l		1.00				6.95	
	Eje E ,Entre 12-14		1.00		2.25		2.77	
	Eje 12,Entre C-E		1.00		2.25		4.25	
	Eje C,Entre 8-12		1.00		2.25		8.84	
	Eje 8 ,Entre A-B		1.00	 	0.25		0.23	
4.01.02	Acero Fy'= 4200 Kg/cm2 . grado 60	Kg						654.58
4.02.00	Losa de Cimentacion		ļ	-	} 			
4.02.01	Concreto fc' = 175 Kg/cm2 para Losa de cimentación	m³	 					45.09
4.02.01	Contrato le 2 173 regioniz para Losa de cimentación		 	Cant.	Area	Prof.		45.03
<u> –</u>	Platea de cimentacion	_	<u> </u>	1.10	<u> </u>	 	45.09	
4.04.00								00.00
4.01.02	Encofrado y Desencofrado de Losa de cimentacion	m²	 	0	n	A.II		20.69
			ļ	Cant.	Perime		00.00	
	Platea de cimentacion		ļ	1.00	68.95	0.30	20.69	
4.02.02	Acero Fy= 4200 Kg/cm2 , grado 60	Kg						3128.7
4.03.00	Muro de Ductilidad limitada		ļ					
4.03.01	Concreto fc' = 175 Kg/cm2 de Muros	m³	1					148.7
	Metrado en muros del 1er al 3er piso		 					
	N° de muro		T^-	Cant.	Area	Altura.	Volumen	
	Muro 1		<u> </u>	3.00	0.06	2.80	0.50	
	Muro 2			3.00	0.06	2.80	0.50	
-	Muro 3		1	3.00	1.17	2.80	9.83	
	Muro 4		1	3.00	1.55	2.80	13.02	
	Muro 5			3.00	0.55	2.80	4.62	
	Muro 6		1	3.00	0.20	2.80	1.64	
	Muro 7			3.00	0.42	2.80	3.49	
	Muro 8			3.00	0.35	2.80	2.97	
	Muro 9			3.00	0.90	2.80	7.53	
	Muro 10			3.00	0.14	2.80	1.13	
	Muro 11			3.00	0.30	2.80	2.48	
	Muro 12			3.00	0.72	2.80	6.05	
	Muro 13		† 	3.00	1.87	2.80	15.67	
	Muro 14		1	3.00		2.80	1.05	
	Muro 15		1	3.00				
	Muro 16	_	1	3.00				
	Muro 17		1	3.00			6.47	
	Muro 18		†	3.00	-			
	Muro 19		†	3.00				

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

HECHO POR: GONGORA ROJAS HITLER PEDRO.

HUAMAN MAS FERNANDO

FECHA : Setiembre 2015

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

UBICACIÓN: Distrito: CHACHAPOYAS

Provincia: CHACHAPOYAS

Región: AMAZONAS

PARTIDA	DESCRIPCIÓN	UMID	CANT.	M	EDIDA	S	PARCIAL	TOTAL
PARTIDA	DESCRIPCION	UNID.	CANI.	LARGO			PARCIAL	TOTAL
	Muro 20			3.00	0.09	2.80	0.76	
	Muro 21			3.00	0.18	2.80	1.51	
	Muro 22			3.00	0.07	2.80	0.59	
	Muro 23			3.00	0.07	2.80	0.59	
	Muro 24			3.00	0.06	3.80	0.68	
	Muro 25			3.00	0.06	4.80	0.86	
	Muro 26			3.00	0.06	5.80	1.04	
	Muro 27			3.00	0.06	6.80	1.22	
	Metrado en Alfeizer							
	V 01		15.0	1.60	0.10	1.80	4.32	
	V 02		3.00	0.80	0.10	1.20	0.29	
	V 03		3.00	0.95	0.10	1.20	0.34	
	Metrado en muros del 4to piso							
	Muro 3		1.00	3.60	0.30	2.20	2.38	
	Muro 4		1.00	3.60	0.30	2.20	2.38	
	Muro 12		1.00	2.40	0.30	2.80	2.02	
	Muro 13		1.00	2,40	0.30	2.80	2.02	
	Muro 19		1.00	3.00	2.44	1.20	8.77	-
						-		
1.03.02	Encofrado y desencofrado de muros	m²						1931.3
	Metrado en muros del 1er al 3er piso							
	N° de muro			Cant.	erimetr	Altura.	Area	
	Muro 1			3.00	1.40	2.80	11.76	
	Muro 2			3.00	1.40	2.80	11.76	
	Muro 3			3.00	9.60	2.80	80.64	
	Muro 4			3.00	17.20	2.80	144.48	
	. Muro 5			3.00	11.20	2.80	94.08	-
	Muro 6			3.00	4.10	2.80	34.44	
	Muro 7			3.00	8.50	2.80	71.40	
	Muro 8			3.00	7.30	2.80	61.32	
	Muro 9			3.00	13.60	2.80	114.24	
	Muro 10			3.00	2.90	2.80	24.36	
	Muro 11			3.00	6.10	2.80	51.24	
	Muro 12			3.00	5.40	2.80	45.36	
	Muro 13			3.00	17.50	2.80	147.00	
	Muro 14			3.00	2.70	2.80	22.68	
	Muro 15			3.00	9.30	2.80	78.12	
	Muro 16			3.00	32.00	2.80	268.80	7.
	Muro 17			3.00	6.50	2.80	54.60	
	Muro 18		<u> </u>	3.00	10.60	2.80	89.04	-
	Muro 19			3.00	22.00	2.80	184.80	-
	Muro 20		<u> </u>	3.00	2.00	2.80	16.80	
	Muro 21			3.00	3.80	2.80	31.92	i
	Muro 22			3.00	1.60	2.80	13.44	

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

HECHO POR: GONGORA ROJAS HITLER PEDRO.

FECHA : Setiembre 2015

HUAMAN MAS FERNANDO

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

PARTIDA	DESCRIPCIÓN	HARD	CANT.	М	EDIDA	S	PARCIAL	TOTAL
PARTIDA	DESCRIPCION	טואטן	CANI.		ANCHO		PARCIAL	IOIAL
	Muro 23		1	3.00	1.60	2.80	13.44	
	Muro 24		Γ.	3.00	1.40	3.80	15.96	
	Muro 25			3.00	1.40	4.80	20.16	
	Muro 26			3.00	1.40	5.80	24.36	
	Muro 27			3.00	1.40	6.80	28.56	
					<u></u>			
	<u>Metrado en Alfeizer</u>			Perimetr		Altura.	Area	
	V 01		15.0			1.80	86.40	
	V 02		3.00			1.20	5.76	
	V 03		3.00	0.95		1.20	6.84	
	Metrado en muros del 4to piso		ļ					
	Muro 3		1.00	3.60			17.16	
	Muro 4		1.00				17.16	
	Muro 12		1.00		ļ		15.12	
	Muro 13		1.00		1		15.12	
	Muro 19		ļ	3.00	2.44	1.20	13.05	
			-					
4.03.03	Acero Fy'= 4200 Kg/cm2 , grado 60	Kg		ļ <u>.</u>	<u> </u>			6188.0
1.04.00	Vigas Chatas		 	 		-		
1.04.01	Concreto fc' = 175 Kg/cm2 de vigas chatas	m ³						7.5
	Metrado en vigas del 1er al 3er piso							
	Viga chata 01		3.00	0.65	0.20	0.30	0.12	
	Viga chata 02		3.00	0.95	0.20	0.20	0.11	
	Viga chata 03		3.00	1.10	0.20	0.20	0.13	
	Viga chata 04		3.00	2.70	0.20	0.20	0.32	
	Viga chata 05		3.00	1.35	0.20	0.20	0.16	
	Viga chata 06		3.00	1.60	0.20	0.20	0.19	
	Viga chata 07		3.00	0.70	0.20	0.20	0.08	
	Víga chata 08		3.00	0.80	0.20	0.20	0.10	
	Viga chata 09		3.00	0.95	0.20	0.20	0.11	
	Viga chata 10		3.00	_		0.20	0.10	
	Viga chata 11		3.00					
	Viga chata 12		3.00				ļ	ļ
	Viga chata 13		3.00					
	Viga chata 14		3.00					
	Viga chata 15		3.00					
	Viga chata 16		3.00					
	Viga peraltada 17		3.00					
	Viga chata 18		3.00	1				
	Viga chata 19		3.00					
	Viga chata 20		3.00			1		
	Viga chata 21		3.00					
	Viga chata 22		3.00	0.70	0.20	0.20	0.08	

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

HECHO POR: GONGORA ROJAS HITLER PEDRO.

FECHA : Setiembre 2015

HUAMAN MAS FERNANDO

REVISADO POR: Ing. John Hilmer Saldaña Nuñez

UBICACIÓN: Distrito: CHACHAPOYAS

Provincia: CHACHAPOYAS

Región: AMAZONAS

	prograndu		0417	М	EDIDA:	S	DARCIAL	TOTAL
PARTIDA	DESCRIPCIÓN	JUNID.	CANT.		ANCHO		PARCIAL	TOTAL
	Viga chata 23		3.00	0.90	0.20	0.20	0.11	
	Viga chata 24		3.00	2.30	0.20	0.20	0.28	
	Viga chata 25		3.00	2.30	0.20	0.20	0.28	
	Viga chata 26		3.00	1.95	0.20	0.20	0.23	
	Viga chata 27		3.00	1.40	0.20	0.20	0.17	
	Viga chata 28		3.00	2.20	0.20	0.20	0.26	
	Viga chata 29		3.00	0.80	0.20	0.20	0.10	
	Viga chata 30		3.00	0.70	0.20	0.20	0.08	
	Viga chata 31		3.00	1.10	0.20	0.20	0.13	
	Viga chata 32		3.00	0.90	0.20	0.20	0.11	
	Viga chata 33		3.00	0.80	0.20	0.20	0.10	
	Viga chata 34		3.00	0.70	0.20	0.20	0.08	
	Viga chata 35		3.00	1.10	0.20	0.20	0.13	
	Viga chata 36		3.00	2.10	0.20	0.20	0.25	
	Viga chata 37		3.00			0.20		
	Viga chata 38		3.00			0.20		
	Viga chata 39		3.00	0.80	0.20	0.20	0.10	
	Viga chata 40		3.00	0.90	0.20	0.20	0.11	
			1					
4.04.02	Encofrado y desencofrado de vigas	m²	1					19.7
	Metrado en vigas del 1er al 3er piso							
	Viga chata 01		3.00	0.65	0.20		0.39	
	Viga chata 02		3.00	0.95	0.20		0.57	
	Viga chata 03		3.00	1.10	0.20		0.66	
	Viga chata 04		3.00	2.70	0.20		1.62	
	Viga chata 05		3.00	1.35	0.20		0.81	
	Viga chata 06		3.00	1.60	0.20		0.96	
	Viga chata 07		3.00	0.70	0.20		0.42	
	Viga chata 08		3.00	0.80	0.20		0.48	_
	Viga chata 09		3.00	0.95	0.20		0.57	
	Viga chata 10		3.00	0.80	0.20		0.48	
	Viga chata 11		3.00	0.90	0.20		0.54	
	Viga chata 12		3.00	0.90	0.20	-	0.54	
	Viga chata 13		3.00	0.90	0.20		0.54	
	Viga chata 14		3.00	0.80	0.20		0.48	
	Viga chata 15		3.00	0.70	0.20		0.42	
	Viga chata 16		3.00	3.20	0.20		1.92	
	Viga peraltada 17		3.00	3.00	0.30	0.20	6.30	
	Viga chata 18		3.00	0.90	0.20		0.54	
	Viga chata 19		3.00	1.60	0.20		0.96	
	Viga chata 20		3.00				0.69	
	Viga chata 21		3.00				1.80	
	Viga chata 22		3.00		 	<u> </u>	0.42	
	Viga chata 23		3.00				0.54	

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

HECHO POR:GONGORA ROJAS HITLER PEDRO.FECHA: Setiembre 2015

HUAMAN MAS FERNANDO REVISADO POR: Ing. John Hilmer Saldaña Nuñez

PARTIDA	DESCRIPCIÓN	UNID.	CANT	M	EDIDA	S	PARCIAL	TOTAL
- PARTIDA	DESCRIPCION	UNID.	CANT.	LARGO	ANCHO	ALTO	PARCIAL	IOIAL
	Viga chata 24		3.00	2.30	0.20		1.38	
	Viga chata 25		3.00	2.30	0.20		1.38	
	Viga chata 26		3.00	1.95	0.20		1.17	
	Viga chata 27		3.00	1.40	0.20		0.84	
	Viga chata 28		3.00	2.20	0.20		1.32	
	Viga chata 29		3.00	0.80	0.20		0.48	
	Viga chata 30		3.00	0.70	0.20		0.42	
	Viga chata 31		3.00	1.10	0.20		0.66	
	Viga chata 32	_	3.00	0.90	0.20		0.54	
	Viga chata 33		3.00	0.80	0.20		0.48	
	Viga chata 34		3.00	0.70	0.20		0.42	
	Viga chata 35		3.00	1.10	0.20		0.66	
	Viga chata 36		3.00	2.10	0.20		1.26	
	Viga chata 37		3.00	2.10	0.20		1.26	
	Viga chata 38		3.00	3.85	0.20		2.31	
·	Viga chata 39		3.00	0.80			0.48	
	Viga chata 40		3.00	0.90	0.20		0.54	
			l					
4.04.03	Acero Fy'= 4200 Kg/cm2 , grado 60	Kg						974.58
4.05.00	Losa Aligerada	_						
4.05.01	Concreto fc' = 175 Kg/cm2 en Losa aligerada	m³						39.50
	Metrado en losa en habitaciones del 1er al 3er piso	1	Cant.			Area.	Volumen:	
	Habitacion 01:HALL COMUN		3.00			12.5	3.27	
	Habitacion 02: CUARTO DE SERVICIO		3.00			8.00	2.10	
	Habitacion 03: SS.HH(Cuarto de servicio)		3.00			2.53	0.66	
	Habitacion 04: SS.HH(Sala)		3.00			2.89	0.76	
	Habitacion 05: SALA		3.00			17.5	4.60	
	Habitacion 06: COCINA		3.00			14.0	3.68	
	Habitacion 07: LAVANDERIA		3.00			6.90	1.81	
***	Habitacion 08: COMEDOR		3.00			11.9	3.11	
<u> </u>	Habitacion 09: ESTAR		3.00			10.5	2.76	
	Habitacion 10: DORMITORIO 3		3.00			12.7	3.33	
	Habitacion 11: SS.HH(Dormitorio 2)		3.00			4.83	1.27	
	Habitacion 12: HALL		3.00			4.67	1.23	
	Habitacion 13: SS.HH(Dormitorio 03)		3.00			4.96	1.30	
	Habitacion 14: DORMITORIO 2		3.00			15.4	4.03	
	Habitacion 15: DORMITORIO 1		3.00		f	19.2	5.03	
	Habitacion 16: SS.HH(Dormitorio 01)		3.00			5.44		
-	Habitacion 17:BALCON(Comedor)		3.00			3.00		
	Habitacion 18: BALCON(Dormitorio 1)	<u> </u>	3.00			4.60		_
	Techo escalera		1.00			9.72		
4.05.02	Encofrado y desencofrado normal de losa aligerada	m²	<u> </u>	<u> </u>		<u> </u>	ļ	493.8

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO ESTRUCTURAL

HECHO POR: GONGORA ROJAS HITLER PEDRO. FECHA : Setiembre 2015

HUAMAN MAS FERNANDO REVISADO POR: Ing. John Hilmer Saldaña Nuñez

PARTIDA	DESCRIPCIÓN	UNID.	CANT.	M	EDIDA	S	PARCIAL	TOTAL
	220011, 0.0.1		0,,,,,	LARGO	ANCHO	ALTO	. ANOIAL	10174
	Metrado en losa en habitaciones del 1er al 3er piso		Cant.			Area.		
	Habitacion 01:HALL COMUN		3.00			12.5		
	Habitacion 02: CUARTO DE SERVICIO		3.00			8.00		
	Habitacion 03: SS.HH(Cuarto de servicio)		3.00			2.53		
	Habitacion 04: SS.HH(Sala)		3.00			2.89		
	Habitacion 05; SALA		3.00			17.5		
	Habitacion 06: COCINA		3.00			14.0		
	Habitacion 07: LAVANDERIA		3.00			6.90		
	Habitacion 08: COMEDOR		3.00			11.9		
	Habitacion 09: ESTAR		3.00			10.5		
	Habitacion 10: DORMITORIO 3		3.00			12.7		
	Habitacion 11: SS.HH(Dormitorio 2)		3.00			4.83		
	Habitacion 12: HALL		3.00			4.67		
	Habitacion 13: SS.HH(Dormitorio 03)		3.00			4.96		
	Habitacion 14: DORMITORIO 2		3.00			15.4		
	Habitacion 15: DORMITORIO 1		3.00			19.2		
	Habitacion 16: SS.HH(Dormitorio 01)		3.00			5.44		
	Habitacion 17:BALCON(Comedor)		3.00			3.00		
	Habitacion 18: BALCON(Dormitorio 1)		3.00			4.60		
	Techo escalera		1.00			9.72		1
1.05.03	Ladrillo hueco de arcilla 15x30x30 cm - Losa aligerada	Und						4607.18
1.05.04	Acero Fy= 4200 Kg/cm2 , grado 60	Kg						2153.70
1.06.00	Escalera							
1.06.01	Concreto Fc' = 175 Kg/cm2 de Escalera	m ³	Cant.			Vol.		2.27
	Volumen contrapasos+losa		3.00			0.27	0.81	
	Losa de descanzo		3.00	<u> </u>		0.49	1.46	
1.06.02	Encofrado y desencofrado normal de Escalera	m²		Largo	Ancho	Area		44.70
	Area lateral parte inclinada		3.00			1.06	6.36	
	Area inferior de la escalera		3.00	•	1.20	5.64	16.92	
	Area inferior de la Losa de descanzo		3.00	2.70	1.25	3.38	10.13	
	Borde de descanzo		3.00	2.70	0.15	0.41	1.22	
	Contrapasos		3.00	1.20	0.18	3.36	10.08	
1.06.03	Acero Fy'= 4200 Kg/cm2 , grado 60	Kg						409.4

ANEXO 2.4. Metrado de acero concreto estructural.

METRADO DE ACERO EN MUROS

Descripción	Diseño del	Nº de	N°Pzas	Long.		Lo	ngitudes	x Ø		
Descripcion	Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
M04	Longitudinal	29	1	0.50	14.5					
M01	Vertical	3	1	8.90		26.70				
MOO	Longitudinal	29	1	0.52	15.08					
M02	Vertical	3	1	8.90		26.70			,	
	Longitudinal	29	1	1.42	41.18				1	1
	Longitudinal	43	2	3.95			339.70		<u> </u>	丁
M03	Vertical	32	1	10.10		323.20				
	Vertical	5	1	8.90		44.50			1	T^-
	Vertical	4	1	11.20			44.80		 	1
	Longitudinal	34	1	1.42	48.28				 	†
	Longitudinal	43	2	3.95			339.70			1
	Longitudinal	34	1	2.06	70.04				 	╁╴
	Longitudinal	29	1	2.35		68.15			†	
M04	Vertical	32	1	11.10		355.20			 	+
	Vertical	7	1	8.90		62.30			-	╁╌
	Vertical	4	1	11.20		02.50	44.80		 	+
	Vertical	9	1	8.90	80.1		44.00		 	+-
	Longitudinal	29	1	1.59	46.11			 -	+	+-
	Longitudinal	34	1	1.53	52.02				1	+-
M05	Longitudinal	34	1	3.57	32.02	121.38			 	┼─
WOS	Vertical	19	1	8.90		169.10			-	┼
	Vertical	1	1	8.90		109.10	8.90		 	+-
	Longitudinal	42	1	1.70	71.4		0.90		 	┼─
M06	Longitudinal	29	1	0.47	13.63			<u> </u>	 	+-
MOO		8			13.03	71.20			 	+-
	Vertical	29	1 1	8.90	64.49	71.20			<u> </u>	+-
	Longitudinal		1	2.12	61.48			<u></u> -	 	+-
M07	Longitudinal	34	1	2.42	82.28				_	╁
	Longitudinal	42	1	0.77	32.34	100.50			ļ	╄
	Vertical	15	11	8.90	20.00	133.50				┿
1400	Longitudinal	29	1	0.77	22.33					↓_
M08	Longitudinal	34	1	3.93	133.62	101.00			<u> </u>	┼
	Vertical	14	1	8.90	10.00	124.60				∔_
	Longitudinal	29	1	1.47	42.63	110.00				
	Longitudinal	29	1	4.94		143.26			ļ	↓_
M09	Longitudinal	29	2	1.76		102.08			ļ	ļ
	Vertical	24	11	8.90		213.60		L		1
	Vertical	4	1	8.90			35.60		<u> </u>	↓_
M10	Longitudinal	34	1	1.25	42.5					1
	Vertical	5	11	8.90		44.50		<u> </u>		┷
M11	Longitudinal	42	11	3.49	146.58				<u> </u>	_
	Vertical	11	1	8.90		97.90				
	Longitudinal	42	2	2.78		233.52				Ļ.
M12	Vertical	12	1	10.10		121.20				ļ
···	Vertical	8	11	10.20			81.60	l	J	\perp
	Longitudinal	48	2	5.48			526.08	L	<u> </u>	
	Longitudinal	29	1	0.45	13.05			l		
	Longitudinal	34	1	3.73		126.82		<u></u>		
M13	Vertical	5	1	10.20			51.00			
	Vertical	5	1	9.00			45.00	L		\perp
	Vertical	14	1	10.10						\prod
	Vertical	26	1	8.90		231.40				Ι
NA1 4	Longitudinal	34	1	1.16	39.44					Γ
M14	Vertical	5	1	8.90		44.50]		Π
	Longitudinal	29	1	0.97	28.13	:				
N/15	Longitudinal	29	1	3.03		87.87		T	1	T

Descripción	1 :0		l° de N°Pzas Long.										
	Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"			
10/15	Longitudinal	34	1	1.72	58.48								
	Vertical	17	1	8.90		151.30							
	Longitudinal	29	1	2.68	77.72								
	Longitudinal	29	1	2.82		81.78							
	Longitudinal	34	1	3.57		121.38							
M16	Longitudinal	29	1	1.74	50.46								
	Longitudinal	42	2	2.42	203.28								
	Longitudinal	29	1	3.93		113.97							
	Vertical	55	1	8.90		489.50				Г			
	Longitudinal	48	2	2.78		266.88							
	Longitudinal	29	1	0.85	24.65								
M17	Vertical	8	1	10.10			80.80						
	Vertical	2	1	8.90		17.80							
	Vertical	11	1	10.10		111.10							
1440	Longitudinal	29	1	5.42		157.18							
M18	Vertical	18	1	8.90		160.20				\vdash			
	Longitudinal	48	2	7.15			686.40						
	Longitudinal	33	1	3.48	- 1	114.84			l	\vdash			
	Longitudinal	39	1	2.32		90.48				\vdash			
M19	Vertical	22	1	9.00			198.00			\vdash			
	Vertical	26	1	10.20			265.20			┢			
	Vertical	15	1	2.80		42.00				T			
	Longitudinal	29	1	0.80	23.2					\vdash			
M20	Vertical	4	1	8.90		35.60				┪			
	Longitudinal	29	1	2.34	67.86					\top			
M21	Vertical	7	1	8.90		62.30							
	Longitudinal	29	1	0.60	17.4					1			
M22	Vertical	3	1	8.90		26.70				<u> </u>			
1400	Longitudinal	29	1	0.60	17.4					\top			
M23	Vertical	3	1	8.90		26.70				一			
1404	Longitudinal	33	1	0.50	16.5								
M24	Vertical	3	1	10.10		30.30				\vdash			
1405	Longitudinal	33	1	0.50	16.5	·				\top			
M25	Vertical	3	1	10.10		30.30				⇈			
1400	Longitudinal	33	1	0.50	16.5					 			
M26	Vertical	3	1	10.10		30.30				†			
	Longitudinal	33	1	0.50	16.5								
M27	Vertical	3	1	10.10		30.30				\top			
		Ø	 	<u> </u>	1/4"	3/8"	1/2"	5/8"	3/4"	1"			
	Lo	ngitud T	otal Ø		1703.17	5164.09	2747.58	0.00	0.00	0.0			
		eso Ø k			0.22	0.60	0.99	1.58	2.24	4.0			
		Total		j. + s	374.70	3,093.3	2,720.1	0.00	0.00	0.0			
	I			<u> </u>		,	1		1				

METRADO DE ACERO EN VIGAS

Descripción	Diseño del	Nº de	N°Pzas	Long.			ongitud			
Descripcion	Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
V01	Longitudinal	4	1	1.45		5.80				
VOI	Estribos	9	1	0.68	6.12					
\ /00	Longitudinal	4	1	1.75		7.00				
V02	Estribos	11	1	0.68	7.48					<u> </u>
	Longitudinal	4	1	1.90		7.60				
V03	Estribos	15	1	0.68	10.2					
	Longitudinal	4	1	3.50		14.00		<u> </u>		
V04	Estribos	29	1	0.68	19.72	,				
	Longitudinal	4	1 1	2.15	10.72	8.60				
V05	Estribos	15	1	0.68	10.2	0.00			<u> </u>	+-
	Longitudinal	4	1	2.40	10.2	9.60				┼
V06	Estribos	20	1	0.68	13.6	9.00				
	Longitudinal	4	1	1.50	13.0	6.00				┼
V07		11	- 		7.48	0.00			<u> </u>	┼
	Estribos			0.68	7.40	C 40		ļ. ——		┿
V08	Longitudinal	4	1 1	1.60	7.40	6.40				┼
	Estribos	11	1	0.68	7.48	7.00				
V09	Longitudinal	4	1	1.75		7.00		 		₩-
	Estribos	13	1	0.68	8.84	0.40		<u> </u>		—
V10	Longitudinal	4	1	1.60		6.40				
	Estribos	12	11	0.68	8.16					<u> </u>
V11	Longitudinal	4	11	1.70		6.80				ļ <u>.</u>
	Estribos	13	1 1	0.68	8.84			L	ļ	<u> </u>
V12	Longitudinal	4	11	1.70	L	6.80		<u> </u>		<u> </u>
V 12	Estribos	13	11	0.68	8.84					
V13	Longitudinal	4	1	1.70		6.80				
V 13	Estribos	13	1	0.68	8.84					
V14	Longitudinal	4	1	1.60		6.40				
V 14	Estribos	12	1	0.68	8.16					
\/A.E	Longitudinal	4	1	1.50		6.00				T
V15	Estribos	11	1	0.68	7.48					
1/4.0	Longitudinal	4	1	3.75		15.00				1
V16	Estribos	35	1	0.68	23.8					
	Longitudinal	4	1	3.45			13.80			_
V17	Estribos	22	1	1.28		28.16				1
	Longitudinal	4	1	2.49		9.96				\dagger
V18	Estribos	17	 	0.68	11.56		.			†
	Longitudinal	4	1	2.40		9.60				
V19	Estribos	19	1	0.68	12.92	0.00		 		
	Longitudinal	4	1	1.95	12.02	7.80		·		+
V20	Estribos	14	1	0.68	9.52	1.00		ļ	 	+
	Longitudinal	4	1	3.55	0.02	14.20		 		+
V21	Estribos	32	1	0.68	21.76	14.20	 	 	 	+
		4	1	1.60	21.70	6.40			 	+
V22	Longitudinal	12			0.16	0.40	<u> </u>	 	 	+
	Estribos		1	0.68	8.16	4.00	 	 	 	┼
V23	Longitudinal	4	1	1.20	 	4.80	 	 	 	+
	Estribos	10	1	0.68	6.8	44.00	ļ	 	<u> </u>	+
V24	Longitudinal	4	11	2.75	<u> </u>	11.00	<u> </u>	ļ	 	+
	Estribos	25	1	0.68	17	16 :-		ļ	ļ	₩-
V25	Longitudinal	4	1	3.10		12.40		ļ		4
	Estribos	25	11	0.68	17		<u> </u>	.	<u> </u>	
V26	Longitudinal	4	11	2.50		10.00	ļ	<u> </u>	<u></u>	
V 2 0	Estribos	22	1	0.68	14.96					
V27	Longitudinal	4	1	2.36		9.44				
VZI	Estribos	16	1	0.68	10.88					

Dogovinojća	Diseño del Nº de NºPzas Long.					Longitudes x Ø							
Descripción	Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"			
V28	Longitudinal	4	1	2.79		11.16			,				
V20	Estribos	22	1	0.68	14.96								
V29	Longitudinal	4	1	1.60		6.40							
VZ9	Estribos	12	1	0.68	8.16								
V30	Longitudinal	4	1	1.34		5.36							
V30	Estribos	9	1	0.68	6.12								
V31	Longitudinal	4	1	1.40		5.60							
VSI	Estribos	11	1	0.68	7.48		·						
V32	Longitudinal	4	1	1.45		5.80							
V32	Estribos	12	1	0.68	8.16								
V33	Longitudinal	4	1	1.90		7.60							
V33	Estribos	13	1	0.68	8.84								
V34	Longitudinal	4	1	1.50		6.00							
V34	Estribos	11	1	0.68	7.48								
V35	Longitudinal	4	1	1.90		7.60							
vəə	Estribos	15	1	0.68	10.2								
V36	Longitudinal	4	1	2.90		11.60							
V36	Estribos	23	1	0.68	15.64								
V37	Longitudinal	4	1	2.90		11.60							
V3/	Estribos	25	1	0.68	17								
V38	Longitudinal	4	1	4.85		19.40							
V 36	Estribos	38	1	0.68	25.84								
V39	Longitudinal	4	1	1.53		6.12							
V 39	Estribos	10	1	0.68	6.8								
V40	Longitudinal	4	1	1.25		5.00							
V40	Estribos	6	1	0.68	4.08								
		Ø			1/4"	3/4"	1"						
		Longitud 1			436.56	359.20	13.80	0.00	0.00	0.00			
		Peso Ø I			0.22	0.60	0.99	1.58	2.24	3.97			
		Total	Kg		96.04	215.16	13.66	0.00	0.00	0.00			
	·				033 60								

933.60

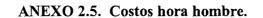
METRADO DE ACERO EN ALIGERADO

	N° de elem. 4	N°Pzas * Elem.	Long. * Pza.	1/4"	3/8"	1/2"	udes x Ø 5/8"	3/4"	
Longitudinal + Longitudinal + Longitudinal + Longitudinal +	4		* Pza.	1/4"	3/8"	1/2"	K/Q"	2/4"	
Longitudinal + Longitudinal + Longitudinal +		4			0,0		-310	3/4	1"
Longitudinal + Longitudinal +	1		3.02			12.08			
Longitudinal +		1	4.22			4.22			
	4	1	5.70			22.80			
Longitudinal +	1	1	10.42			10.42			
Echigicadinal ' {	1	1	11.62			11.62			
Longitudinal +	2	1	2.12			4.24			
Longitudinal +	4	1	6.82			27.28		i	
Longitudinal +	1	1	1.42			1.42			
Longitudinal +	5	1	3.82			19.10			
Longitudinal -	5	1	0.66		3.30				
Longitudinal -	8	1	0.86		6.88				
Longitudinal -	6	1	1.30		7.80				·
Longitudinal -	7	1	0.38		2.66				
Longitudinal -	3	1	2.03		6.09				
Longitudinal -	3	1	1.81		5.43				
	1	1							·
Longitudinal -			0.66		0.66				
Longitudinal -	1	1	0.53		0.53			 	
Longitudinal -	2	1	1.48		2.96			 	
Longitudinal -	4	11	0.42		1.68		ļ	 	
Longitudinal -	2	11	0.59		1.18				
Longitudinal -	9	1	0.86		7.74				
Longitudinal -	4	1	2.24		8.96				
Longitudinal -	5	1	0.86		4.30				
Longitudinal -	4	1	0.74		2.96				
Longitudinal +	2	1	3.82			7.64			
Longitudinal +	2	1	5.07			10.14			
Longitudinal +	3	1	7.42			22.26			
Longitudinal +	6	1	9.22			55.32			
Longitudinal +	1	1 _	7.02			7.02			
Longitudinal +	1	1	5.22			5.22			
Longitudinal +	1	1	0.60			0.60			
Longitudinal +	1	1	1.71			1.71			
Longitudinal +	1	1	4.26			4.26			
Longitudinal -	4	1	0.86		4.86				
Longitudinal -	11	1	2.55		13.55				
Longitudinal -	15	1	0.84		15.84				
Longitudinal -	7	1	1.81		8.81				
Longitudinal -	7	1	0.50		7.50		h		
Longitudinal -	2	1	2.80		4.80				ļ ————
Longitudinal -	1	1	0.50		1.50				
Longitudinal -	1	1	1.71		2.71				
Longitudinal -	1	1	0.74		1.74				
Longitudinal -	1	1	2.17		3.17				
Longitudinal +	5	1	8.31	-	9.17	41.55	 	 	
Longitudinal +	1	1	7.71			7.71	 	 	
Longitudinal +	5	1	9.91		<u> </u>	49.55	 	 	
Longitudinal +	8	1	3.62			28.96			
Longitudinal +	3	1	5.02			15.06			
Longitudinal +	4	1	5.82			23.28		 	
	5	1	0.79			3.95	 	 	
Longitudinal -	5				12.00	3.90	 	 	<u> </u>
Longitudinal -		1	2.40		12.00			 	
Longitudinal -	5	11	2.59		12.95	0.00	<u> </u>	ļ <u>.</u>	
Longitudinal -	4	1	0.95		45.00	3.80	ļ	 	
Longitudinal -	6	1	2.66		15.96		<u> </u>	<u> </u>	ļ
Longitudinal -	1	1	1.19		1.19		ļ		ļ
Longitudinal -	5	1	1.83		9.15		ļ	ļ	L
Longitudinal -	5	1	0.61		3.05			L	
Longitudinal -	2	1	1.00			2.00		<u> </u>	
Longitudinal -	15	1	0.96		14.40				
Longitudinal -	8	1	0.86		6.88				
Longitudinal -	3	1	1.65		4.95				
Longitudinal -	3	1	0.46		1.38				

Diseño del	Nº de	NºPzas	Long.			Longitu	ides x Ø		
Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
Longitudinal -	4	1	1.97		7.88				111.77
Longitudinal -	4	1 1	0.56		2.24				
Con Temp Y	6	1	2.02	12.12					
Con Temp Y	10	1	3.50	35					
Con Temp Y	1	1	1.76	1.76					
Con Temp Y	10	1	6.07	60.7					
Con Temp Y	1	1	4.52	4.52					
Con Temp Y	2	1	7.82	15.64					
Con Temp Y	1	1	3.32	3.32					
Con Temp Y	11	1	5.63	61.93					
Con Temp X	4	1	1.41	5.64					
Con Temp X	4	1	1.90	7.6					
Con Temp X	11	1	1.80	1.8					
Con Temp X	2	_	1.35	2.7					
Con Temp X	3	1	1.29	3.87					
Con Temp X	4	1	2.03	8.12					
Con Temp X	5	1	2.50	12.5				L	
Con Temp X	4	1 1	1.57	6.28				L	
Con Temp X	2	1 1	1.24	2.48					
Con Temp X	1	1	1.57	1.57					
Con Temp X	4	1 1	1.75	7					
Con Temp X	7	1 1	0.91	6.37					
Con Temp Y	8	1 1	4.27	34.16					
Con Temp Y	1	1 1	4.73	4.73					
Con Temp Y	<u> </u>	1	7.09	7.09					
Con Temp Y	11	1 1	7.19	7.19 7.36					
Con Temp Y	<u>1</u>	1 1	7.36 7.62	7.62				 	
Con Temp Y	1	+ 1	1.77	1.77					
Con Temp Y Con Temp Y	4	+	7.42	29.68					
Con Temp Y	5	1 1	8.12	40.6					
Con Temp Y	5	 	6.62	33.1					
Con Temp Y	6	1 1	4.62	27.72					
Con Temp Y	1	1 1	3.52	3.52				 	
Con Temp X	9	+ 1	1.98	17.82					
Con Temp X	2	1 1	2.50	5					
Con Temp X	6	1	1.98	11.88					
Con Temp X	7	1 1	1.52	10.64					
Con Temp X	1	1	1.75	1.75					
Con Temp X	7	1 1	1.19	8.33					
Con Temp X	3	1	3.22	9.66					-
Con Temp X	12	1	5.02	60.24					
Con Temp X	11	1	11.62	127.82					
Con Temp X	4	1	5.02	20.08					
Con Temp X	3	1	2.62	7.86					
Con Temp X	5	1	3.22	16.1					
Con Temp X	2	1	2.02	4.04					
Con Temp Y	5	1	1.89	9.45					
Con Temp Y	11	1	1.44	15.84					
Con Temp Y	6	1	2.27	13.62			<u> </u>	ļ	
Con Temp Y	5	1	1.35	6.75					
Con Temp Y	8	1	2.20	17.6		<u> </u>		<u> </u>	
Con Temp Y	3	1	0.95	2.85			<u></u>	 	
Con Temp Y	7	1 1	1.80	12.6				 	
Con Temp Y	4	1 1	1.33	5.32	0.15.**	4/5"	F (A.11	0/4	4 **
	Ø			1/4"	3/8"	1/2"	5/8"	3/4"	1"
	ngitud To			850.71 0.22	219.64	403.21 0.99	0.00	0.00	0.00 3.9
	eso Ø K				0.60		1.58	2.24	

METRADO DE ACERO EN LOSA DE CIMENTACIÓN CONCRETO ESTRUCTURAL

METRADO DE ACERO EN LOSA DE CIMENTACION


Diseño del	Nº de	NºPzas	Long.			Longitude	sxØ		
Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
							_		
Long (//Y)	3	2	1.44			8.64	·· ·· ·· ·		
Long (//Y)	7	2	8.90			124.60			
Long (//Y)	3	2	11.60			69.60			
Long (//Y)	8	2	17.85			285.60			
Long (//Y)	1	2	20.38			40.76			
Long (//Y)	1	2	20.46	·		40.92			
Long (//Y)	1	2	20.59			41.18			
Long (//Y)	1	2	20.80			41.60			
Long (//Y)	1	2	21.14			42.28			
Long (//Y)	1	2	19.90			39.80			
Long (//Y)	5	2	21.75			217.50			
Long (//Y)	10	2	20.10	:		402.00	· ·		
Long (//Y)	5	2	12.30			123.00			
Long (//Y)	2	2	3.90			15.60			
Long (//Y)	5	2	5.81			58.10			
Long (//X)	7	2	3.60			50.40			
Long (//X)	9	2	10.40			187.20			
Long (//X)	11	2	12.20			268.40			
Long (//X)	7	2	10.95			153.30			
Long (//X)	2	2	11.75			47.00			
Long (//X)	2	2	13.55			54.20			
Long (//X)	- 10	2	12.75			255.00			
Long (//X)	1	2	10.39			20.78			
Long (//X)	24	2	9.80			470.40			
Long (//X)	3	2	5.91			35.46			
Long (//X)	2	2	7.20			28.80			
Long (//X)	1	- 2	6.71			13.42			
Long (//X)	1	2	6.31			12.62			
Long (//X)	1	2	6.08			12.16			
	Q	5		1/4"	3/8"	1/2"	5/8"	3/4"	1"
	Longitud	Total Ø		0.00	0.00	3160.32	0.00	0.00	0.00
	Peso Ø			0.22	0.60	0.99	1.58	2.24	3.97
	Total	l Kg	4.1	0.00	0.00	3,128.72	0.00	0.00	0.00

METRADO DE ACERO EN VIGAS DE BORDE DE LOSA DE CIMENTACION

Diseño del	Nº de	N°Pzas	Long.			Longitude	sxØ		
Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
Longitudinal	4	1	2.84		1 1	11.36			
Estribos	15	1	1.52		22.80				
Longitudinal	4	1	3.14			12.56			
Estribos	16	1	1.52		24.32			-	
Longitudinal	4	1	2.19			8.76			
Estribos	13	1	1.52		19.76				
Longitudinal	4	1	3.59			14.36			
Estribos	18	1	1.52		27.36				
Longitudinal	4	1	2.19			8.76	•		
Estribos	13	1	1.52		19.76				
Longitudinal	4	1	4.34			17.36			
Estribos	21	1	1.52		31.92				
Longitudinal	4	1	5.79			23.16			
Estribos	27	1	1.52		41.04				
Longitudinal	4	1	1.79			7.16			
Estribos	11	1	1.52		16.72				
Longitudinal	4	1	2.69		1	10.76			
Estribos	15	1	1.52		22.80				
Longitudinal	4	1	2.34			9.36			
Estribos	13	1	1.52		19.76				
Longitudinal	4	1	3.89			15.56			
Estribos	19	1	1.52		28.88				
Longitudinal	4	1	1.09			4.36			
Estribos	4	1	1.52		6.08				
Longitudinal	4	1	8.54			34.16			
Estribos	38	1	1.52		57.76				
Longitudinal	4	1	5.89			23.56			
Estribos	27	1	1.52		41.04				
Longitudinal	4	1	2.39			9.56			
Estribos	13	1	1.52		19.76				
Longitudinal	4	1	4.04			16.16			
Estribos	20	1	1.52		30.40				
Longitudinal	4	1	6.79			27.16			
Estribos	31	11	1.52		47.12				
Longitudinal	4	1	2.94			11.76	_		
Estribos	15	1	1.52		22.80				<u> </u>
Longitudinal	4	1	8.89			35.56			
Estribos	39	1	1.52	<u> </u>	59.28				
Longitudinal	4	1	2.34		ļļ.	9.36			<u> </u>
Estribos	13	1	1.52	ļ	19.76				<u> </u>
								<u> </u>	
		Ø		1/4"	3/8"	1/2"	5/8"	3/4"	1"
		Total Ø		0.00	579.12	310.80	1.58	2.24	3.97
		Kg/ml		0.22	0.60	0.99	1.58	2.24	3.97
	Tota	l Kg		0.00	346.89	307.69	2.50	5.02	15.76

METRADO DE ACERO EN ESCALERA

D114	Diseño del	Nº de	N°Pzas	Long.		Lor	ngitude	s x Ø		
Descripción	Acero	elem.	* Elem.	* Pza.	1/4"	3/8"	1/2"	5/8"	3/4"	1"
Descanzo	perpendicular	. 2	6	1.38		16.56				
Descarizo	Longitudinal	10	6	1.71	102.6					
\/isa abata	Longitudinal	4	6	3.42		82.08				
Viga chata	Estribos	27	6	0.60	97.2					
	Perpendicular	7	6	1.86		78.12			-	
	Longitudinal	25	6	1.56	234					
Tramo	Perpendicular	6	6	4.33		155.88				
inclinado	Perpendicular	6	6	3.43		123.48				
	Perpendicular	4	6	1.90		45.60				
	Estribos	15	6	0.68	61.2					
-		Ø			1/4"	3/8"	1/2"	5/8"	3/4"	1"
	L	ongitud To	otal Ø		495.00	501.72	0.00	0.00	0.00	0.00
		Peso Ø K	g/ml		0.22	0.60	0.99	1.58	2.24	3.97
		Total	√g		108.90	300.53	0.00	0.00	0.00	0.00

COSTO DE LA MANO DE OBRA

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA DE CONCRETO ESTRUCTURAL Y

CONCRETO CELULAR EN CHAHCAPOYAS

HECHO POR: GONGORA ROJAS Hitler P.

FECHA

: Setiembre 2015

HUAMAN MAS Fernando

REVISADO POR:

Ing. John Hilmer Saldaña Nuñez

-UBICACIÓN:

DEDUCCION DE LA MANO DE OBRA EN CONSTRUCION CIVIL (01/06/2015 al 31/05/2016)

Chachapoyas, Amazonas, Perú.

SEMANA	FERIADO	CAE EN DIA	DOMINICAL	FERIADOS	DIAS NO LABORABLES
1	San Pedro	Lunes	1	1.0625	2.0625
2	Fiestas patrias	Martes y Miercoles	1	1.0625	2.0625
3	Virgen asunta	Sabado	1	0.7875	1.7875
4	Santa rosa	Domingo	1	0.0000	1
5	Aniversario Chachapoyas	Sabado	1	0.7875	1.7875
6	Combate Angamos	Jueves	1	1.0625	2.0625
7	Día construcción civil	Domingo	1	0.0000	1
8	Todos los santos	Domingo	1	0.0000	1
9	Virgen inmaculada	Martes	1	1.0625	2.0625
10	Aniversario Amazonas	Jueves	1	1.0625	2.0625
11	Navidad	Viernes	1	1.0625	2.0625
12	Año nuevo	Viernes	1	1.0625	2.0625
13	Semana Santa	Jueves y viernes	1	2.1250	3.125
14	Día del trabajador	Domingo	1	0.0000	1
38 sen	nanas normales		52	11.1375	63.1375
Días la	borables en el periodo			301.8	8625

CALCULO DE INCIDENCIAS

1	Incidencia del descanso dominical	17.23
2	Incidencia de los feriados	3.69
3	Incidencia de la gratificación	26.50
4	Incidencia de la escolaridad	29.81
5	Incidencia de las vacaciones	11.30
6	Incidencia del overol	0.46 por día laborado
7	Incidencia de seguro de vida	0.2 por día

COSTO DE LA MANO DE OBRA

PROYECTO: VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA DE CONCRETO ESTRUCTURAL Y

CONCRETO CELULAR EN CHAHCAPOYAS

HECHO POR: GONGORA ROJAS Hitler P.

FECHA

Setiembre 2015

HUAMAN MAS Fernando

REVISADO POR:

Ing. John Hilmer Saldaña Nuñez

UBICACIÓN:

SIS	TEMA NACIONAL DE PE	NSIONES	
1.00	% ESTABLESIDOS	JB BUC	
1.01	Liquidación	15	
1.02	ESSALUD	9	9
1.03	SCTR	3	3
1.04	Aporte AFP		
	SUBTOTAL	27	12
2.00	% DEDUCIDOS		
2.01	Dominical	17.23	
2.02	Días feriados	3.69	
2.03	Gratificación	26.50	
2.04	Vacacional	11.30	
2.05	Escolaridad	29.81	
	SUBTOTAL	88.53	0
3.00	ESSALUD (9%)		
3.01	Dominical	1.55	
3.02	Días feriados	0.33	
3.03	Gratificación	2.39	
3.04	Vacacional	1.02	
	SUBTOTAL	5.28	0
4.00	SCTR (3%)		
4.01	Dominical	0.52	
4.02	Días feriados	0.11	
4.03	Gratificación	0.80	
4.04	Vacacional	0.34	
	SUBTOTAL	1.76	0

RESUMEN

CONCEPTO	JB	BUC
% Establecidos	27.00	12.00
% Deducidos	88.53	0.00
ESSALUD (9%)	5.28	0.00
SCTR(3%)	1.76	0.00
Aporte AFP(1%)		
TOTAL	122.58	12.00

VALOR DE HORA HOMBRE (HH)

CONCEPTO	Operario	Oficial	Peón
Jornal Básico	58.60	48.50	43.30
LL.SS sobre J.B	71.83	59.45	53.08
BUC (Op 32%, Of y Pe 30)	18.75	14.55	12.99
LL.SS sobre BUC 12%	2.25	1.75	1.56
Movilidad	7.20	7.20	7.20
Overol	0.46	0.46	0.46
COSTO (DH)	159.09	131.91	118.58
COSTO (H.H)	19.89	16.49	14.82

ANEXO 2.6.	Análisis de costos unitarios concreto celular	

HERRAMIENTAS MANUALES

0337010001

Análisis de precios unitarios VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA DE CONCRETO CELULAR

Presupuesto	030101	TO THE LABOR MO	LTIFAMILIAR DE I	CHACHAP		A DE CONCRET	OCELOLAN
Subpresupuesto	00	1 ESTRUCTURAS			Fech	a presupuesto	05/09/201
Partida	01.01	LIMP	IEZA DE TERREN	O MANUAL			
Rendimiento	m2/DIA	60.0000	EQ. 60.0000	Costo unitario	directo por : m2	2.38	
Código	Descripció	n Pacurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
Codigo	Descripcio	Mano de Obra	Ollidad	Cuaurina	Cantidad	FIEGIO SI.	raiciai 3/
0147010001	CAPATAZ	mano de Obra	hh	0.1000	0.0133	21.93	0.29
0147010004	PEON		hh	1.0000	0.1333	14.86	1.98
0141010004	LON		1111	1.0000	0.1000	14.00	2.27
		Equipos					2121
0337010001	HERRAMIE	NTAS MANUALES	%MO		5.0000	2.27	0.11
							0.11
Partida	01.02	TRA	ZO. NIVELES Y RE	PLANTEO PREL	IMINAR		
Rendimiento	m2/DiA	500.0000	EQ. 500.0000		directo por : m2	3.52	
Cádina	Decembraió	n Beeuwee	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
Código	Descripció	Mano de Obra	Onidad	Cuadrilla	Cantidad	Precio Si.	Parcial S
0147000032	TOPOGRA		hh	1.0000	0.0160	19.94	0.32
0147010001	CAPATAZ		hh	1.0000	0.0160	21.93	0.35
0147010004	PEON		hh	3.0000	0.0480	14.86	0.71
0717070001	12011		****	0.0000	0.0100	14.00	1.38
		Materiales					
0229030105	CAL (BOLS	SA X 20KG)	bls		0.0500	11.00	0.55
0239160011	CORDEL		ril		0.1900	5.00	0.95
0243920002	MADERA F	PARA ENCOFRADO	p2		0.0200	2.85	0.06
							1.56
		Equipos					
0337010001		ENTAS MANUALES	%MO		3.0000	1.38	0.04
0349880020		POGRAFICO	h m	1.0000	0.0160	15.00	0.24
0349880022	ESTACION	I TOTAL	hm	1.0000	0.0160	18.75	0.30
		 					0.58
Partida	02.01	EXC	AVACION MANUA	L P/LOSA DE CI	MENTACION		
Rendimiento	m³/DIA	4.0000	EQ. 4.0000	Costo unitario	directo por : m³	35.82	
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
•	•	Mano de Obra					
0147010001	CAPATAZ		hh	0.1000	0.2000	21.93	4.39
0147010004	PEON		hh	1.0000	2.0000	14.86	29.72
							34.11
0007040004		Equipos			5.0000	04.44	4.74

%MO

5.0000

34.11

1.71 1.71

Partida	02.02	EXU	AVACION MANUA	L DE ZANJAS P/\	IGAS DE BORD	E	
Rendimiento	m³/DIA	4.0000	EQ. 4.0000	Costo unitario	directo por : m³	35.82	
Código	Descrinció	on Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra		0 4 4 4 1 1 1 1		, , , , , , , , , , , , , , , , , , , ,	
0147010001	CAPATAZ		hh	0.1000	0.2000	21.93	4.39
0147010004	PEON	-	hh	1.0000	2.0000	14.86	29.72
							34.11
0337010001	HERRAMIE	Equipos ENTAS MANUALES	%MO		5.0000	34.11	1.71
							1.71
Partida	02.03	<u></u>	RELLENO COMP			BORDES DE P	ATEA DE
Rendimiento	m³/DłA	25.0000	EQ. 25.0000		directo per : m3	29.56	
Rendimiento	m/DIA	25.0000	EQ. 25.0000	Costo unitario	directo por : m³	29.56	
Código	Descripció	on Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010003	OFICIAL		hh	1.0000	0.3200	16.53	5.29
0147010004	PEON		hh	2.0000	0.6400	14.86	9.51
							14.80
		Materiales	_				
0239050000	AGUA		m3		0.0800	4.50	0.36 0.3 6
		Equipos					0.50
0349030003	COMPACT	ADOR VIBRATORIO	TIPO hm	0.5000	0.1600	90.00	14.40
							14.40
Partida	02.04	ELIM	IINACIÓN DE MAT	ERIAL - MANUAL	DISTANCIA PR	OMEDIO = 30 M	
Rendimiento	m³/DIA	6.0000	EQ. 6.0000	Costo unitario	directo por : m3	23.41	
Código	Descrinció			Cuadrilla	Cantidad	Precio S/.	Parcial Si
	2000	ón Recurso	Unidad	Cuadrilla	Cantidad	1 10010 07.	raiciai o
04.47040004		Mano de Obra				-	
0147010001	CAPATAZ	Mano de Obra	hh	0.1000	0.1333	21.93	2.92
0147010001 0147010004		Mano de Obra				-	
0147010004	CAPATAZ PEON	Mano de Obra Equipos	hh hh	0.1000	0.1333 1.3333	21.93 14.86	2.92 19.81 22.73
	CAPATAZ PEON	Mano de Obra	hh	0.1000	0.1333	21.93	2.92 19.81
0147010004	CAPATAZ PEON HERRAMII	Mano de Obra Equipos ENTAS MANUALES	hh hh %MO	0.1000 1.0000	0.1333 1.3333 3.0000	21.93 14.86 22.73	2.92 19.81 22.73 0.68
0147010004 0337010001 Partida	CAPATAZ PEON HERRAMII	Mano de Obra Equipos ENTAS MANUALES ELIM	hh hh %MO	0.1000 1.0000	0.1333 1.3333 3.0000	21.93 14.86 22.73	2.92 19.81 22.73 0.68
0147010004	CAPATAZ PEON HERRAMII	Mano de Obra Equipos ENTAS MANUALES	hh hh %MO	0.1000 1.0000	0.1333 1.3333 3.0000	21.93 14.86 22.73	2.92 19.81 22.73 0.68
0147010004 0337010001 Partida	CAPATAZ PEON HERRAMII 02.05 m³/DIA	Equipos ENTAS MANUALES ELIM 250.0000	hh hh %MO	0.1000 1.0000	0.1333 1.3333 3.0000	21.93 14.86 22.73	2.92 19.81 22.73 0.68
0147010004 0337010001 Partida Rendimiento	CAPATAZ PEON HERRAMII 02.05 m³/DIA Descripció	Equipos ENTAS MANUALES ELIM 250.0000 ón Recurso Mano de Obra	hh hh %MO MINACION DE MAT EQ. 250.0000 Unidad	0.1000 1.0000 FERIAL -CON VOL Costo unitario	0.1333 1.3333 3.0000 QUETE DIST.PR directo por : m³ Cantidad	21.93 14.86 22.73 COMEDIO =5KM 19.45 Precio S/.	2.92 19.81 22.73 0.68 0.68
0147010004 0337010001 Periida Rendimiento Código 0147000023	CAPATAZ PEON HERRAMII 02.05 m³/DIA Descripció	Equipos ENTAS MANUALES ELIM 250.0000 ón Recurso Mano de Obra DR DE EQUIPO PESA	hh hh %MO MINACION DE MAT EQ. 250.0000 Unidad	0.1000 1.0000 TERIAL -CON VOL Costo unitario Cuadrilla 2.0000	0.1333 1.3333 3.0000 QUETE DIST.PR directo por : m ² Cantidad 0.0640	21.93 14.86 22.73 20MEDIO = 5KM 19.45 Precio S/.	2.92 19.81 22.73 0.68 0.68
0147010004 0337010001 Periida Rendimiento Código 0147000023 0147010001	CAPATAZ PEON HERRAMII 02.05 m³/DIA Descripció OPERADO CAPATAZ	Equipos ENTAS MANUALES ELIM 250.0000 ón Recurso Mano de Obra DR DE EQUIPO PESA	%MO MINACION DE MAT EQ. 250.0000 Unidad	0.1000 1.0000 TERIAL -CON VOL Costo unitario Cuadrilla 2.0000 0.5000	0.1333 1.3333 3.0000 	21.93 14.86 22.73 20MEDIO = 5KM 19.45 Precio S/.	2.92 19.81 22.73 0.68 0.68
0147010004 0337010001 Periida Rendimiento Código 0147000023	CAPATAZ PEON HERRAMII 02.05 m³/DIA Descripció	Equipos ENTAS MANUALES ELIM 250.0000 ón Recurso Mano de Obra DR DE EQUIPO PESA	hh hh %MO MINACION DE MAT EQ. 250.0000 Unidad	0.1000 1.0000 TERIAL -CON VOL Costo unitario Cuadrilla 2.0000	0.1333 1.3333 3.0000 QUETE DIST.PR directo por : m ² Cantidad 0.0640	21.93 14.86 22.73 20MEDIO = 5KM 19.45 Precio S/.	2.92 19.81 22.73 0.68 0.68 Parcial S.
0147010004 0337010001 Periida Rendimiento Código 0147000023 0147010001	CAPATAZ PEON HERRAMII 02.05 m³/DIA Descripció OPERADO CAPATAZ	Equipos ENTAS MANUALES ELIM 250.0000 ón Recurso Mano de Obra DR DE EQUIPO PESA	%MO MINACION DE MAT EQ. 250.0000 Unidad	0.1000 1.0000 TERIAL -CON VOL Costo unitario Cuadrilla 2.0000 0.5000	0.1333 1.3333 3.0000 	21.93 14.86 22.73 20MEDIO = 5KM 19.45 Precio S/.	2.92 19.81 22.73 0.68 0.68
0147010004 0337010001 Periida Rendimiento Código 0147000023 0147010001	CAPATAZ PEON HERRAMII 02.05 m³/DIA Descripció OPERADO CAPATAZ PEON	Equipos ENTAS MANUALES ELIM 250.0000 ón Recurso Mano de Obra DR DE EQUIPO PESA	%MO MINACION DE MAT EQ. 250.0000 Unidad	0.1000 1.0000 TERIAL -CON VOL Costo unitario Cuadrilla 2.0000 0.5000	0.1333 1.3333 3.0000 	21.93 14.86 22.73 20MEDIO = 5KM 19.45 Precio S/.	2.92 19.81 22.73 0.68 0.68 Parcial S. 1.28 0.35 0.48 2.11
0147010004 0337010001 Partida Rendimiento Código 0147000023 0147010001 0147010004	CAPATAZ PEON HERRAMII 02.05 m³/DIA Descripció OPERADO CAPATAZ PEON HERRAMII	Equipos ENTAS MANUALES ELIM 250.0000 ón Recurso Mano de Obra DR DE EQUIPO PESA	hh hh %MO #INACION DE MAT EQ. 250.0000 Unidad ADO hh hh hh	0.1000 1.0000 TERIAL -CON VOL Costo unitario Cuadrilla 2.0000 0.5000	0.1333 1.3333 3.0000 QUETE DIST.PR directo por : m³ Cantidad 0.0640 0.0160 0.0320	21.93 14.86 22.73 20MEDIO = 5KM 19.45 Precio S/. 19.94 21.93 14.86	2.92 19.81 22.73 0.68 0.68 Parcial S.
0147010004 0337010001 Partida Rendimiento Código 0147000023 0147010001 0147010004	CAPATAZ PEON HERRAMII 02.05 m³/DIA Descripció OPERADO CAPATAZ PEON HERRAMII CAMION V	Equipos ENTAS MANUALES ELIM 250.0000 ón Recurso Mano de Obra DR DE EQUIPO PESA Equipos ENTAS MANUALES	hh hh %MO #INACION DE MAT EQ. 250.0000 Unidad ADO hh hh hh hh	0.1000 1.0000 TERIAL -CON VOL Costo unitario Cuadrilla 2.0000 0.5000 1.0000	0.1333 1.3333 3.0000 	21.93 14.86 22.73 20MEDIO =5KM 19.45 Precio S/. 19.94 21.93 14.86	2.92 19.81 22.73 0.68 0.68 Parcial S. 1.28 0.35 0.48 2.11

Partida	03.01	so	LADO E=0.10 M. C	H, 1:12 P/VIGAS [DE BORDE		
Rendimiento	m²/DIA	80.0000	EQ. 80.0000	Costo unitario	directo por ; m²	35.11	
Código	Descripción	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
. •		Mano de Obra					
0147010001	CAPATAZ		hh '	0.2000	0.0200	21.93	0.44
0147010002	OPERARIO		hh	2.0000	0.2000	19.94	3.99
0147010003	OFICIAL		hh	1.0000	0.1000	16.53	1.65
0147010004	PEON		hh	6.0000	0.6000	14.86	8.92
							15.00
		Materiales					
0221000001	CEMENTO	PORTLAND TIPO	l (42.5 k bls		0.6000	25.00	15.00
0238000000	HORMIGON	I (PUESTO EN OE	BRA) m3		0.0660	55.00	3.63
0239050000	AGUA		m3		0.0060	4.50	0.03
							18.66
		Equipos					
0337010001	HERRAMIE	NTAS MANUALES	%MO		3.0000	15.00	0.45
0348010011	MEZCLADO	DRA DE CONCRET	ODE {hm	1.0000	0.1000	10.00	1.00
	-						1.45
Partida	03.02	so	LADO E=0.10 M. C	:H, 1:12 P/ LOSA [DE CIMENTACIO	N	
Rendimiento	m²/DIA	80.0000	EQ. 80.0000	Costo unitario	directo por : m²	35.11	
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
	2000.,	Mano de Obra		o a a a m a	04		, 4,0,4, 0,,
0147010001	CAPATAZ		hh	0,2000	0.0200	21.93	0.44
0147010002	OPERARIO		hh	2.0000	0,2000	19.94	3.99
0147010003	OFICIAL		hh	1,0000	0.1000	16.53	1.65
0147010004	PEON		hh	6.0000	0.6000	14.86	8.92
							15.00
		Materiales					
0221000001	CEMENTO	PORTLAND TIPO	I (42.5 k bls		0.6000	25.00	15.00
0238000000	HORMIGON	N (PUESTO EN OE	BRA) m3		0.0660	55.00	3.63
0239050000	AGUA		m3		0.0060	4.50	0.03
							18.66
		Equipos					_
0337010001		NTAS MANUALES			3.0000	15.00	0.45
0348010011	MEZCLADO	DRA DE CONCRET	ΓΟ DE {hm	1.0000	0.1000	10.00	1.00
							1.45

Partida	04.01.01	CON	CRETO FC' = 175	KG/CM2 PARA V	GAS DE BORDE		
Rendimiento	m³/DIA	20.0000	EQ. 20.0000	Costo unitario	directo por : m³	360.28	
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra					
0147000022	OPERADO	R DE EQUIPO LIVIA	NO hh	1.0000	0.4000	19.94	7.98
0147010001	CAPATAZ		h h ·	0.2000	0.0800	21.93	1.75
0147010002	OPERARIO)	hh	1.0000	0.4000	19.94	7.98
0147010003	OFICIAL		hh	2.0000	. 0.8000	16.53	13.22
0147010004	PEON		hh	8.0000	3.2000	14.86	47.55
							78.48
		Materiales					
0205010004	ARENA GF	RUESA	m3		0.7500	50.00	37.50
0221000001	CEMENTO	PORTLAND TIPO I	(42.5 k bls		9.4000	25.00	235.00
0229010101	Sika Ligtho	rete	It		0.2000	11.54	2.31
0239050000	AGUA		m3		0.1430	4.50	0.64
							275.45
		Equipos					
0337010001	HERRAMIE	NTAS MANUALES	%MO		3.0000	78.48	2.35
0348010011	MEZCLADO	ORA DE CONCRETO	DE (hm	1.0000	0.4000	10.00	4.00
							6.35
Partida	04.01.02		RO FY'= 4200 KG	•			
Rendimiento	Kg/DiA	250.0000	EQ. 250.0000	Costo unitario	directo por : Kg	6.16	
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
·	·	Mano de Obra					
0147010001	CAPATAZ		hh	0.1000	0.0032	21.93	0.07
0147010002	OPERARIO)	hh	1.0000	0.0320	19.94	0.64
0147010003	OFICIAL		hh ·	1.0000	0.0320	16.53	0.53
							1.24
		Materiales					
0202000010	ALAMBRE	NEGRO # 16	kg		0.0600	6.50	0.39
0203020003	ACERO CO	ORRUGADO fy=4200	kg/cm kg		1.0700	4.20	4.49
							4.88
		Equipos					
0337010001	HERRAMIE	ENTAS MANUALES	%MO		3.0000	1.24	0.04
							0.04

Partida	04.02.01		CONCRETO FC' = 175	KG/CM2 PARA LO	OSA DE CIMENT	ACION	
Rendimiento	m³/DIA	25.0000	EQ. 25.0000	Costo unitario	directo por : m ³	343.31	
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
		Mano de Ob	ora				
0147000022	OPERADO	R DE EQUIPO	LIVIANO hh	1.0000	0.3200	19.94	6.38
0147010001	CAPATAZ		hh	0.2000	0.0640	21.93	1.40
0147010002	OPERARIO)	hh	1.0000	0.3200	19.94	6.38
0147010003	OFICIAL		hh	2.0000	0.6400	16.53	10.58
0147010004	PEON		hh	8.0000	2.5600	14.86	38.04
							62.78
0205010004	ARENA GR	Materiale:	m3		0.7500	50.00	37.50
0221000001			TIPO I (42.5 k bls		9.4000	25.00	235.00
			•				
0229010101	Sika Ligthor	ete	It o		0.2000	11.54	2.31
0239050000	AGUA		m3		0.1430	4.50	0.64
		Equipos					275.45
0337010001	HERRAMIE	ENTAS MANU			3.0000	62.78	1.88
0348010011			CRETO DE {hm	1.0000	0.3200	10.00	3.20
0010010011	III. ZODADA		ONE TO BE THAT	1.0000	0.0200	10.00	5.08
Partida	04.02.02		ENCOFRADO Y DESI	NCOEDADO DE I	OCA DE CIMENT	ACION	
Rendimiento	m²/DIA	14.0000	EQ. 14.0000		directo por : m²	44.85	
rendimente	1117201	11.0000	24. 14.000	Coole dillane	directo por . III	44.00	
Código	Descripció	n Recurso Mano de Ol	Unidad ora	Cuadrilla	Cantidad	Precio S/.	Parcial Si
0147010001	CAPATAZ		hh	0.1225	0.0700	21.93	1.54
0147010002	OPERARIC)	hh	1.2250	0.7000	19.94	13.96
0147010003	OFICIAL		hh	1.8375	1.0500	16.53	17.36
0147010004	PEON		hh	0.9975	0.5700	14.86	8.47
0147010004	LON		1111	0.5575	0.5700	14.00	41.33
		Materiale	5				
0202000015	ALAMBRE	NEGRO#8	kg		0.2600	6.50	1.69
0202160003	CLAVO DE	3"	kg		0.1300	4.50	0.59
		Equipos					2.28
0337010001	HERRAMIE	ENTAS MANU			3.0000	41.33	1.24
							1.24
	24.00.00			10110 0010000			
Partida Rendimiento	04.02.03 Kg/DIA	250.0000	ACERO FY= 4200 KG EQ: 250.0000	· .	directo por : Kg	6.16	
Tendimento	NgibiA	250.0000	EQ. 250.0000	OOS(O UIII(alio	directo poi . Ng	0.10	
Código	Descripció		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
		Mano de Ol					
0147010001	CAPATAZ		hh	0.1000	0.0032	21.93	0.07
0147010002	OPERARIO)	hh	1.0000	0.0320	19.94	0.64
0147010003	OFICIAL		hh	1.0000	0.0320	16.53	0.53
		88.4	_				1.24
0202000010	AL AMPRE	Materiale NEGRO # 16	s kg		0.0600	6.50	0.39
			=				4.49
0203020003	ACEROCO	JKKUGADO I	y=4200 kg/cm kg		1.0700	4.20	4.49 4.88
		Equipos					
							0.04
0337010001	HERRAMIE	ENTAS MANU	ALES %MO		3.0000	1.24	0.04

Partida	04.03.01	CONC	RETO FC' = 175	KG/CM2 DE MUR	os		
Rendimiento	m³/DIA	10.0000	EQ. 10.0000	Costo unitario	directo por : m³	466.36	
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
	2000	Mano de Obra	•	•		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 410147 67
0147000022	OPERADO	R DE EQUIPO LIVIAN	O hh	1.0000	0.8000	19.94	15.95
0147010001	CAPATAZ		hh	0.0200	0.0160	21.93	0.35
0147010002	OPERARIO	•	hh	1.0000	0.8000	19.94	15.95
0147010003	OFICIAL		hh	2.0000	1.6000	16.53	26.45
0147010004	PEON		hh	10.0000	8.0000	14.86	118.88
							177.58
		Materiales	•				
0205010004	ARENA GR	UESA	m3		0.7500	50.00	37.50
0221000001	CEMENTO	PORTLAND TIPO I (4	2.5 k bls		9.4000	25.00	235.00
0229010101	Sika Ligthor	ete	lt		0.2000	11.54	2.31
0239050000	AGUA		m3		0.1430	4.50	0.64
							275.45
		Equipos					
0337010001	HERRAMIE	NTAS MANUALES	%MO		3.0000	177.58	5.33
0348010011	MEZCLADO	DRA DE CONCRETO I	DE (hm	1.0000	0.8000	10.00	8.00
							13.33
	04.02.02	FNCO	EDADO V DECE	UCOEDADO DE M			
Partida Rendimiento	04.03.02 m2/DIA	25.0000		NCOFRADO DE N	-	22.60	
Rendimiento	IIIZ/DIA	25.0000	EQ. 25.0000	Costo unitario	directo por : m2	33.60	
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
		Mano de Obra					
0147010003	OFICIAL		hh	1.0000	0.3200	16.53	5.29
0147030081	OPERARIC	ENCOFRADO	hh	1.0000	0.3200	19.94	6.38
							11.67
		Materiales					
0275010011	AGENTE D	ESMOLDANTE	It		0.0030	7.53	0.02
							0.02
		Equipos					
0348990001		DO METALICO	m2		0.0200	1,046.30	20.93
0398010037	HERRAMIE	NTA MANUAL	%PU		3.0000	32.62	0.98
							21.91
Partida	04.03.03	ACER	O EV= 4200 KG/	CM2, GRADO 60	 		
Rendimiento	Kg/DIA	250,0000	EQ. 250.0000		directo por : Kg	6.16	
, toridamionto	119.201	200,000		Octo dintano	directo per . reg		
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
-		Mano de Obra					
0147010001	CAPATAZ		hh	0.1000	0.0032	21.93	0.07
0147010002	OPERARIO)	hh	1.0000	0.0320	19.94	0.64
0147010003	OFICIAL		hh	1.0000	0.0320	16.53	0.53
							1.24
		Materiales					
0202000010	ALAMBRE	NEGRO # 16	kg		0.0600	6.50	0.39
0203020003	ACERO CO	RRUGADO fy=4200 k	g/cm kg		1.0700	4.20	4.49
							4.88
		Equipos		•			
0337010001	HERRAMIE	NTAS MANUALES	%MO		3.0000	1.24	0.04

.

Partida Dondinologia	04.04.01	00 0000	CONCRETO FC' = 175			000 00	
Rendimiento	m³/DIA	20.0000	EQ. 20.0000	Costo unitario	directo por : m³	388.96	
ódigo	Descripció		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
147000022	OPERADO	Mano de Obi R DE EQUIPO		3.0000	1.2000	19.94	23.93
0147010001	CAPATAZ		hh	0.2000	0.0800	21.93	1.75
147010002	OPERARIO		hh	1.0000	0.4000	19.94	7.98
0147010003	OFICIAL		hh	2.0000	0.8000	16.53	13.22
0147010004	PEON		hh	10.0000	4.0000	14.86	59.44
	. = 27.						106.32
0205010004	ARENA GR	Materiales	~ 2		0.7500	E0 00	. 27.50
0221000001			m3		0.7500 9.4000	50.00 25.00	37.50
			IPO I (42.5 k bls				235.00
0229010101	Sika Ligther	ete	lt ?		0.2000	11.54	2.31
0239050000	AGUA		m3		0.1430	4.50	0.64 275.45
		Equipos					
0337010001		NTAS MANUA			3.0000	106.32	3.19
0348010011	MEZCLAD(DRA DE CONC	RETO DE (hm	1.0000	0.4000	10.00	4.00 7.19
Panida Rendimiento	04.04.02 m²/DIA	9.0000	EQ. 9.0000		IGAS directo por : m²	75.53	
Código	Descripció		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
ouigo	Descripcio	Mano de Obi		Cuaurina	Canguau	PIECIO SI.	raiciai Si.
147010001	CAPATAZ		hh	0.1238	0.1100	21.93	2.41
147010002	OPERARIO		hh	1.2263	1.0900	19.94	21.73
147010003	OFICIAL		hh	1.4738	1.3100	16.53	21.65
147010004	PEON		hh	0.5000	0.4444	14.86	6.60
,010001	1 2011		.,,	0.0000	0.4417	14.00	52.39
		Materiales					
202000015	ALAMBRE	NEGRO#8	kg		0.2100	6.50	1.37
0202160003	CLAVO DE	3"	kg		0.2400	4.50	1.08
0243920002	MADERA P	ARA ENCOFF	ADO p2		6.7100	2.85	19.12
		Equipos					21.57
0337010001	HERRAMIE	NTAS MANUA	LES %MO		3.0000	52.39	1.57
	712/110/11/12				0.000		1.57
Partida	04.04.03		ACERO FY'= 4200 KG	ICM2 CRADO 60			
Rendimiento	Kg/DIA	250.0000	EQ. 250.0000	-	directo por : Kg	6.16	
Código	Descripció	n Recurso Mano de Ob	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010001	CAPATAZ		hh	0.1000	0.0032	21.93	0.07
0147010001	OPERARIC		hh	1.0000	0.0320	19.94	0.64
0147010002	OFICIAL		hh	1.0000	0.0320	16.53	0.53
	OI TOIAL		tiii	1.3000	0.0020	10.00	1.24
		Materiales		÷			
0202000010		NEGRO # 16	kg		0.0600	6.50	0.39
0203020003	ACERO CO	RRUGADO fy	=4200 kg/cm kg		1.0700	4.20	4.49
		_					4.88
0000040004	UEDBAAR	Equipos			0.0000	4.04	
0337010001	HERRAMIE	NTAS MANUA	ALES %MO		3.0000	1.24	0.04
							0.04

Partida	04.05.01	CONC	RETO FC' = 175	KG/CM2 EN LOS	A ALIGERADA		
Rendimiento	m³/DIA	25.0000	EQ. 25.0000	Costo unitario	directo por : m3	384.86	
0 (4)	Danasis ali	. D	lluta a	Our dutille	0	Deserte Of	D
Código	Descripcio	n Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147000022	OPERADO	R DE EQUIPO LIVIANO) hh	3.0000	0.9600	19.94	19.14
0147000022	CAPATAZ	IN DE EQUITO EIVIAIN	hh	0.3000	0.0960	21.93	2.11
0147010007	OPERARIO)	hh	2.0000	0.6400	19.94	12.76
0147010002	OFICIAL		hh	2.0000	0.6400	16.53	10.58
0147010004	PEON		hh	11.0000	3.5200	14.86	52.31
0111010001	1 2011		,,,,	11.0000	0.0200	14.00	96.90
		Materiales					•
0205010004	ARENA GF	RUESA	m3		0.7500	50.00	37.50
0221000001	CEMENTO	PORTLAND TIPO I (4)	2.5 k bls		9.4000	25.00	235.00
0229010101	Sika Ligtho	rete	It		0.2000	11.54	2.31
0239050000	AGUA		m3		0.1430	4.50	0.64
							275.45
		Equipos					
0337010001	HERRAMIE	ENTAS MANUALES	%MO		3.0000	96.90	2.91
0348010011	MEZCLAD	ORA DE CONCRETO (DE {hm	1.0000	0.3200	10.00	3.20
0348810006	WINCHE D	E 2 TAMBORES 37HP	hm	1.0000	0.3200	20.00	6.40
							12.51
Partida	04.05.02	ENCO	FRADO Y DESE	NCOFRADO NOR	MAL DE LOSA A	LIGERADA	
Rendimiento	m²/DIA		EQ. 12.0000		directo por : m²	57.03	
······························							
Código	Descripció	on Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra					
0147010001	CAPATAZ		hh	0.1200	0.0800	21.93	1.75
0147010002	OPERARI()	ħħ	1.1550	0.7700	19.94	15.35
0147010003	OFICIAL		hh	1.4850	0.9900	16.53	16.36
0147010004	PEON		hh	0.6600	0.4400	14.86	6.54
							40.00
		Materiales					
0202000010		NEGRO # 16	kg		0.1000	6.50	0.65
0202160005	CLAVO DE		kg		0.1100	4.50	0.50
0243920002	MADERA F	PARA ENCOFRADO	p2		5.1500	2.85	14.68
							15.83
000704000:		Equipos				40.00	
0337010001	HERRAMII	ENTAS MANUALES	%MO		3.0000	40.00	1.20
							1.20

•

Partida	04.05.03			E ARCILLA DE 15X			
Rendimiento	und/DIA	1,600.000	EQ. 1,600.00	Costo unitario o	directo por : und	2.15	
Código	Descripción i	Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcia
•	1	Mano de Obra					
0147010001	CAPATAZ		hh	0.1000	0.0005	21.93	0.
0147010002	OPERARIO		hh	1.0000	0.0050	19.94	0.
0147010003	OFICIAL		h h	1.0000	0.0050	16.53	0.
0147010004	PEON		ħh	9.0000	0.0450	14.86	0.
		Materiales					0.
0217010021	LADRILLO AF	RCILLA HUECO DE	15X: und		1.0500	1.20	1.
							1.
0337010001	UEDOAMIEN	Equipos TAS MANUALES	%MO		3.0000	0.86	0.
0337010001	HERRAINIEN	I AS IMANUALES	76 IVIO		3.0000	0.00	0
Partida Dandinianta	04.05.04			CM2 , GRADO 60	di 1/a	6.46	
Rendimiento	Kg/DIA	250.0000	EQ. 250.0000	Costo unitario	directo por : Kg	6.16	
Código	Descripción I	Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial
0147010001	CAPATAZ		hh	0.1000	0.0032	21.93	0
0147010002	OPERARIO		hh	1.0000	0.0320	19.94	0
0147010003	OFICIAL		hh	1.0000	0.0320	16.53	0
							1
		Materiales					
0202000010	ALAMBRE N		kg .		0.0600	6.50	0
0203020003	ACERO COR	RUGADO fy=4200 l	kg/cm kg		1.0700	4.20	4
		Equipos					4
0337010001	HERRAMIEN	TAS MANUALES	%MO		3.0000	1.24	0
							0.
Partida	04.06.01	CON	CRETO FC' = 175	KG/CM2 DE ESC	ALERA		
Rendimiento	m³/DIA	12.0000	EQ. 12.0000	Costo unitario	directo por : m³	493.18	- <u></u> -
Código	Descripción	Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio Si.	Parcial
0147000022		DE EQUIPO LIVIAN	NO hh	3.0000	2.0000	19.94	39
0147010001	CAPATAZ		hh	0.3000	0.2000	21.93	4
0147010002	OPERARIO		hh	2.0000	1.3333	19.94	26
0147010003	OFICIAL		h h	2.0000	1.3333	16.53	22
0147010004	PEON		hh	10.0000	6.6667	14.86	99
							191
0205010004	ARENA GRU	Materiales	m3		0.7500	50.00	37
						25.00	
0221000001		ORTLAND TIPO I (:			9.4000		235
0229010101	Sika Ligthcret	е	lt m2		0.2000	11.54	2
	AGUA		m3		0.1430	4.50	0 275
0239050000							•
0239050000		Equipos					
0337010001	HERRAMIEN	Equipos TAS MANUALES	%M O		3.0000	191.97	5
				1.0000	3.0000 0.6667	191.97 10.00	
0337010001	MEZCLADOF	TAS MANUALES	DE {hm	1.0000 1.0000			5 6 13

Partida	04.06.02	ENC	DFRADO Y DESE	NCOFRADO NORI	MAL DE ESCALE	RA	
Rendimiento	m²/DIA	6.0000	EQ. 6.0000	Costo unitario	directo por : m²	102.91	
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
•	•	Mano de Obra					
0147010001	CAPATAZ		hh	0.1200	0.1600	21.93	3.51
0147010002	OPERARIO)	hh	1.2150	1.6200	19.94	32.30
0147010003	OFICIAL.		hh	1.5450	2.0600	16.53	34.05
0147010004	PEON		hh	0.6675	0.8900	14.86	13.23
							83.09
		Materiales					
0202000010	ALAMBRE	NEGRO # 16	kg		0.0800	6.50	0.52
0202160003	CLAVO DE	3"	kg		0.1000	4.50	0.45
0243920002	MADERA P	PARA ENCOFRADO	p2		5.7400	2.85	16.36
							17.33
		Equipos					
0337010001	HERRAMIE	NTAS MANUALES	%MO		3.0000	83.09	2.49
							2,49
			··-				
Partida	04.06.03			CM2, GRADO 60		,	
Rendimiento	Kg/DIA	250.0000	EQ. 250.0000	Costo unitario	directo por : Kg	6.16	
Código	Descripció	n Recurso	Unidad	0			
		ii itcouroc	Ulliuau	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra	Omdau	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010001	CAPATAZ		hh	0.1000	Cantidad 0.0032	Precio S/. 21.93	Parcial S/. 0.07
	CAPATAZ OPERARIO	Mano de Obra					
0147010002		Mano de Obra	hh	0.1000	0.0032	21.93	0.07
0147010002	OPERARIO	Mano de Obra	hh hh	0.1000 1.0000	0.0032 0.0320	21.93 19.94	0.07 0.64
0147010002	OPERARIO	Mano de Obra	hh hh	0.1000 1.0000	0.0032 0.0320	21.93 19.94	0.07 0.64 0.53
0147010002 0147010003	OPERARIO OFICIAL ALAMBRE	Mano de Obra Materiales NEGRO # 16	hh hh hh	0.1000 1.0000	0.0032 0.0320 0.0320 0.0600	21.93 19.94 16.53	0.07 0.64 0.53 1.24
0147010002 0147010003 0202000010	OPERARIO OFICIAL ALAMBRE	Mano de Obra	hh hh hh	0.1000 1.0000	0.0032 0.0320 0.0320	21.93 19.94 16.53	0.07 0.64 0.53 1.24 0.39 4.49
0147010002 0147010003 0202000010	OPERARIO OFICIAL ALAMBRE	Mano de Obra Materiales NEGRO # 16 DRRUGADO fy=4200	hh hh hh	0.1000 1.0000	0.0032 0.0320 0.0320 0.0600	21.93 19.94 16.53	0.07 0.64 0.53 1.24
0147010001 0147010002 0147010003 0202000010 0203020003	OPERARIO OFICIAL ALAMBRE ACERO CO	Materiales NEGRO # 16 DRRUGADO fy=4200 Equipos	hh hh hh kg kg/cm kg	0.1000 1.0000	0.0032 0.0320 0.0320 0.0600 1.0700	21.93 19.94 16.53 6.50 4.20	0.07 0.64 0.53 1.24 0.39 4.49 4.88
0147010002 0147010003 0202000010	OPERARIO OFICIAL ALAMBRE ACERO CO	Mano de Obra Materiales NEGRO # 16 DRRUGADO fy=4200	hh hh hh	0.1000 1.0000	0.0032 0.0320 0.0320 0.0600	21.93 19.94 16.53	0.07 0.64 0.53 1.24 0.39 4.49

ANEXO 2.7. Análisis de costos unitarios concreto estruc	tural

Análisis de precios unitarios

Presupuesto	030101	2	ELK SMILISK DE MI	CHACHAP		A DE CONCRETO EST	NOUTURAL
Subpresupuesto	00	1 ESTRUCTURAS				Fecha presupuesto	05/09/2015
Partida	01.01		LIMPIEZA DE TER	RENO MANUAL			
Rendimiento	m2/DIA	60.0000	EQ. 60.0000	Costo unitario di	recto por : m2	2.38	
Código	Descripcio	ón Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010001	CAPATAZ		hh	0.1000	0.0133	21.93	0.29
0147010004	PEON		hh	1.0000	0.1333	14.86	1.98
		Equipos					2.27
0337010001	HERRAM!	ENTAS MANUALES	%MO .		5.0000	2.27	0.11 0.11
Partida	01.02		TRAZO, NIVELES	Y REPLANTED PE	REI IMINAR		
Rendimiento	m2/DIA	500.0000	EQ. 500.0000	Costo unitario di		3.52	
O441	Deserte el	- D	11-14-4	O d .: III .	0	Davis Of	D
Código	Descripcio	ón Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial Si
0147000032	TOPOGRA	AFO	hh	1.0000	0.0160	19.94	0.32
0147010001	CAPATAZ		hh	1.0000	0.0160	21.93	0.35
0147010004	PEON		ħh	3.0000	0.0480	14.86	0.71
		Materiales					1.38
0229030105	CAL (BOL:	SA X 20KG)	bls		0.0500	11.00	0.55
0239160011	CORDEL	ON X 20110)	rli		0.1900	5.00	0.95
0243920002		PARA ENCOFRADO	p2		0.0200	2.85	0.06
							1.56
2022012001		Equipos	0.440				
0337010001		ENTAS MANUALES	% M O		3.0000	1.38	0.04
0349880020		POGRAFICO	hm	1.0000	0.0160	15.00	0.24
0349880022	ESTACIO	N TOTAL	hm	1.0000	0.0160	18.75	0.30 0.58
Partida	02.01		EXCAVACION MA	MILAL DILOCA DE	CIMENTACIO		
Rendimiento	m³/DìA	4.0000	EQ. 4.0000	Costo unitario d		JN 35.82	
Código	Descripci	ón Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
04.47040004	CADATAT	Mano de Obra	hit	0.4000	0.0000	04.00	4.00
0147010001	CAPATAZ PEON		hh hh	0.1000	0.2000	21.93 14.86	4.39 29.72
0147010004	PEUN		nn	1.0000	2.0000	14.86	29.72 34.11
		Equipos					
0337010001	HERRAMI	ENTAS MANUALES	%MO		5.0000	34.11	1.71
							1.71

Partida	02.02			NUAL DE ZANJAS			
Rendimiento	m³/DIA	4.0000	EQ. 4.0000	Costo unitario di	recto por : m³	35.82	
Código	Descripci	ón Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010001	CAPATAZ		hh	0.1000	0.2000	21.93	4.39
0147010004	PEON		hh	1.0000	2,0000	14.86	29.72
	, =				_,•••		34.11
		Equipos					
0337010001	HERRAMI	ENTAS MANUALES	%MO		5.0000	34.11	1.71
							1.71
Partida	02.03		RELLENO CO		MATERIAL PROP	PIO BORDES DE PL	ATEA DE
Rendimiento	m³/DIA	25.0000	EQ. 25.0000	Costo unitario di	irecto por : m³	29.56	
							
Código	Descripci	ón Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial Si
0147010003	OFICIAL		hh	1.0000	0.3200	16.53	5.29
0147010004	PEON		hh	2.0000	0.6400	14.86	9.51
							14.80
		Materiales					
0239050000	AGUA		m3		0.0800	4.50	0.36
							0.36
		Equipos					
		-4					
349030003	COMPAC	TADOR VIBRATORIO	TIPO PIhm	0.5000	0.1600	90.00	14.40
0349030003	COMPAC		TIPO PI hm	0.5000	0.1600	90.00	14.40 14.40
Partida	02.04	TADOR VIBRATORIO	ELIMINACIÓN DE	MATERIAL - MANI	UAL DISTANCIA	PROMEDIO = 30 M.	
Partida					UAL DISTANCIA		
Partida Rendimiento	02.04 m³/DIA	TADOR VIBRATORIO 6.0000 6n Recurso	ELIMINACIÓN DE	MATERIAL - MANI	UAL DISTANCIA	PROMEDIO = 30 M.	
Partida Rendimiento Código	02.04 m³/DIA Descripci	6.0000 6.0000 Mano de Obra	ELIMINACIÓN DE EQ. 6,0000 Unidad	MATERIAL - MANI Costo unitario d Cuadrilla	UAL DISTANCIA I irecto por : m³ Cantidad	PROMEDIO = 30 M. 23.41 Precio S/.	14.40 Parcial S
Partida Rendimiento Código 0147010001	02.04 m³/DIA Descripci	6.0000 6.0000 Mano de Obra	ELIMINACIÓN DE EQ. 6.0000 Unidad	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333	PROMEDIO = 30 M. 23.41 Precio S/. 21.93	14,40 Parcial S 2,92
Partida Rendimiento Código 0147010001	02.04 m³/DIA Descripci	6.0000 6.0000 Mano de Obra	ELIMINACIÓN DE EQ. 6,0000 Unidad	MATERIAL - MANI Costo unitario d Cuadrilla	UAL DISTANCIA I irecto por : m³ Cantidad	PROMEDIO = 30 M. 23.41 Precio S/.	Parcial S 2.92 19.8
Partide Rendimiento Código 0147010001	02.04 m³/DIA Descripci	6.0000 6.0000 ón Recurso Mano de Obra	ELIMINACIÓN DE EQ. 6.0000 Unidad	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333	PROMEDIO = 30 M. 23.41 Precio S/. 21.93	14.40 Parcial S
Partida Rendimiento Código 0147010001 0147010004	02.04 m³/DIA Descripci CAPATAZ PEON	6.0000 6.0000 6n Recurso Mano de Obra	ELIMINACIÓN DE EQ. 6.0000 Unidad hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86	Parcial S 2.92 19.8* 22.73
Partida Rendimiento Código 0147010001 0147010004	02.04 m³/DIA Descripci CAPATAZ PEON	6.0000 6.0000 ón Recurso Mano de Obra	ELIMINACIÓN DE EQ. 6.0000 Unidad	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333	PROMEDIO = 30 M. 23.41 Precio S/. 21.93	Parcial S 2.92 19.8* 22.73
Partida Rendimiento Código 0147010001 0147010004	02.04 m³/DIA Descripci CAPATAZ PEON	6.0000 6.0000 6n Recurso Mano de Obra	ELIMINACIÓN DE EQ. 6.0000 Unidad hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86	Parcial S 2.92 19.8* 22.73
Partida Rendimiento Código 0147010001 0147010004 0337010001	02.04 m³/DIA Descripci CAPATAZ PEON	6.0000 6.0000 6n Recurso Mano de Obra	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86	Parcial S 2.92 19.8* 22.73
Partida Rendimiento Código 0147010001 0147010004 0337010001	02.04 m³/DIA Descripci CAPATAZ PEON	6.0000 6.0000 6n Recurso Mano de Obra	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86	Parcial S 2.93 19.8* 22.73
Partida Rendimiento Código 0147010001 0147010004 0337010001	02.04 m³/DIA Descripci CAPATAZ PEON HERRAM	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73	Parcial S 2.93 19.8* 22.73
Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73	14.40 Parcial S 2.92 19.87 22.73 0.66
Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento Código	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA Descripci	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES 250.0000 6n Recurso Mano de Obra	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh CONTROL OF THE PROPERSON OF THE	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000 MATERIAL - CON V Costo unitario d Cuadrilla	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000 VOLQUETE DIST. irecto por : m³ Cantidad	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73 PROMEDIO =5KM 19.45 Precio S/.	14.40 Parcial S 2.92 19.81 22.73 0.66 0.66
Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento Código 0147000023	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA Descripci	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES 250.0000 6n Recurso Mano de Obra OR DE EQUIPO PESA	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh ELIMINACION DE EQ. 250.0000 Unidad	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000 MATERIAL - CON V Costo unitario d Cuadrilla 2.0000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000 VOLQUETE DIST. irecto por : m³ Cantidad 0.0640	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73 PROMEDIO =5KM 19.45 Precio S/.	14.40 Parcial S 2.92 19.81 22.73 0.66 0.61
Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento Código 0147000023 0147010001	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA Descripci OPERADO CAPATAZ	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES 250.0000 6n Recurso Mano de Obra OR DE EQUIPO PESA	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh CONTROL WIND BELIMINACION DE EQ. 250.0000 Unidad DO hh hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000 MATERIAL - CON V Costo unitario d Cuadrilla 2.0000 0.5000	Cantidad 0.1333 1.3333 3.0000 VOLQUETE DIST.Irrecto por: m³ Cantidad 0.0640 0.0160	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73 PROMEDIO =5KM 19.45 Precio S/. 19.94 21.93	Parcial S 2.92 19.81 22.73 0.66 0.66
Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento Código 0147000023 0147010001	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA Descripci	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES 250.0000 6n Recurso Mano de Obra OR DE EQUIPO PESA	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh ELIMINACION DE EQ. 250.0000 Unidad	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000 MATERIAL - CON V Costo unitario d Cuadrilla 2.0000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000 VOLQUETE DIST.I irecto por : m³ Cantidad 0.0640	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73 PROMEDIO =5KM 19.45 Precio S/.	Parcial S 2.93 19.8* 22.73 0.66 0.66 Parcial S 1.24 0.34
Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento Código 0147000023 0147010001	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA Descripci OPERADO CAPATAZ	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES 250.0000 6n Recurso Mano de Obra DR DE EQUIPO PESA	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh CONTROL WIND BELIMINACION DE EQ. 250.0000 Unidad DO hh hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000 MATERIAL - CON V Costo unitario d Cuadrilla 2.0000 0.5000	Cantidad 0.1333 1.3333 3.0000 VOLQUETE DIST.Irrecto por: m³ Cantidad 0.0640 0.0160	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73 PROMEDIO =5KM 19.45 Precio S/. 19.94 21.93	Parcial S 2.93 19.8* 22.73 0.66 0.66 Parcial S 1.24 0.34
0349030003 Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento Código 0147000023 0147010004	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA Descripci OPERADIC CAPATAZ PEON	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES 250.0000 6n Recurso Mano de Obra DR DE EQUIPO PESA	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh CONTROL WIND UNIDAD UNIDAD UNIDAD UNIDAD UNIDAD UNIDAD UNIDAD	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000 MATERIAL - CON V Costo unitario d Cuadrilla 2.0000 0.5000	Cantidad 0.1333 1.3333 3.0000 VOLQUETE DIST.I irecto por: m³ Cantidad 0.0640 0.0160 0.0320	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73 PROMEDIO =5KM 19.45 Precio S/. 19.94 21.93 14.86	Parcial S 2.92 19.81 22.73 0.66 0.66 Parcial S 1.24 0.33 0.48 2.11
Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento Código 0147000023 0147010001 0147010004	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA Descripci CAPATAZ PEON HERRAMI	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES 250.0000 6n Recurso Mano de Obra CR DE EQUIPO PESA	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh MO ELIMINACION DE EQ. 250.0000 Unidad DO hh hh hh hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000 MATERIAL - CON V Costo unitario d Cuadrilla 2.0000 0.5000 1.0000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000 VOLQUETE DIST.I irecto por : m³ Cantidad 0.0640 0.0160 0.0320 3.0000	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73 PROMEDIO =5KM 19.45 Precio S/. 19.94 21.93 14.86 2.11	Parcial S 2.93 19.8 22.73 0.66 0.66 Parcial S 1.22 0.33 0.44 2.1
Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento Código 0147000023 0147010001 0147010004 0337010001 0348040025	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA Descripci CAPATAZ PEON HERRAMI CAMION '	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES 250.0000 6n Recurso Mano de Obra CR DE EQUIPO PESA Equipos ENTAS MANUALES VOLQUETE 4 X 2 210	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh MO ELIMINACION DE EQ. 250.0000 Unidad DO hh hh hh hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000 MATERIAL - CON Costo unitario d Cuadrilla 2.0000 0.5000 1.0000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000 VOLQUETE DIST.I irecto por : m³ Cantidad 0.0640 0.0160 0.0320 3.0000 0.0640	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73 PROMEDIO =5KM 19.45 Precio S/. 19.94 21.93 14.86 2.11 150.00	Parcial S 2.93 19.8 22.73 0.66 0.66 Parcial S 1.22 0.3 0.44 2.1
Partida Rendimiento Código 0147010001 0147010004 0337010001 Partida Rendimiento Código 0147000023 0147010001 0147010004	02.04 m³/DIA Descripci CAPATAZ PEON HERRAMI 02.05 m³/DIA Descripci CAPATAZ PEON HERRAMI CAMION '	6.0000 6.0000 6n Recurso Mano de Obra Equipos ENTAS MANUALES 250.0000 6n Recurso Mano de Obra CR DE EQUIPO PESA	ELIMINACIÓN DE EQ. 6.0000 Unidad hh hh MO ELIMINACION DE EQ. 250.0000 Unidad DO hh hh hh hh	MATERIAL - MANI Costo unitario d Cuadrilla 0.1000 1.0000 MATERIAL - CON V Costo unitario d Cuadrilla 2.0000 0.5000 1.0000	UAL DISTANCIA I irecto por : m³ Cantidad 0.1333 1.3333 3.0000 VOLQUETE DIST.I irecto por : m³ Cantidad 0.0640 0.0160 0.0320 3.0000	PROMEDIO = 30 M. 23.41 Precio S/. 21.93 14.86 22.73 PROMEDIO =5KM 19.45 Precio S/. 19.94 21.93 14.86 2.11	Parcial S 2.93 19.8 22.73 0.66 0.66 Parcial S 1.22 0.33 0.44 2.1

Partida	03.01	SOLADO E=0.10 I	M. C:H, 1:12 P/VIGA	AS DE BORDE		
Rendimiento	m²/DIA 80,0000	EQ. 80.000 0	Costo unitario d	irecto por : m²	35.11	
Código	Descripción Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de O	bra				
0147010001	CAPATAZ	hh	0.2000	0.0200	21.93	0.44
0147010002	OPERARIO .	hh	2.0000	0.2000	19.94	3.99
0147010003	OFICIAL	hh	1.0000	0.1000	16.53	1.65
0147010004	PEON	hh	6.0000	0.6000	14.86	8.92
						15.00
	Materiale	5				
0221000001	CEMENTO PORTLAND TIP	PO I (42.5 kg) bls		0.6000	25.00	15.00
0238000000	HORMIGON (PUESTO EN	OBRA) m3		0.0660	55.00	3.63
0239050000	AGUA	m3		0.0060	4.50	0.03
						18.66
	Equipos					
0337010001	HERRAMIENTAS MANUAL			3.0000	15.00	0.45
0348010011	MEZCLADORA DE CONCE	RETO DE 9 - hm	1.0000	0.1000	10.00	1.00
						1.45
			 -			
Partida	03.02	SOLADO E=0.10 I	W. C:H, 1:12 P/ LOS	SA DE CIMENTAC	ION	
Partida Rendimiento	03.02 m²/DIA 80.0000	SOLADO E=0.10 I EQ. 80.0000	VI. C:H, 1:12 P/ LOS Costo unitario d		ION 35.11	
Rendimiento	m²/DIA 80.0000	EQ. 80.0000	Costo unitario d	irecto por : m²	35.11	
	m²/DIA 80.0000 Descripción Recurso	EQ. 80.0000 Unidad	•			Parcial S/
Rendimiento Código	m²/DIA 80.0000 Descripción Recurso Mano de O	EQ. 80.0000 Unidad bra	Costo unitario d	irecto por : m² Cantidad	35.11 Precio S/.	Parcial S/
Rendimiento Código 0147010001	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ	EQ. 80.0000 Unidad bra	Costo unitario d Cuadrilla 0.2000	Cantidad 0.0200	35.11 Precio S/. 21.93	Parcial S/.
Código 0147010001 0147010002	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO	EQ. 80.0000 Unidad bra hh hh	Costo unitario d Cuadrilla 0.2000 2.0000	Cantidad 0.0200 0.2000	35.11 Precio S/. 21.93 19.94	Parcial SI. 0.44 3.99
Código 0147010001 0147010002 0147010003	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO OFICIAL	EQ. 80.0000 Unidad bra hh hh hh	Costo unitario d Cuadrilla 0.2000 2.0000 1.0000	Cantidad 0.0200 0.2000 0.1000	35.11 Precio S/. 21.93 19.94 16.53	Parcial S/. 0.44 3.99 1.65
Código 0147010001 0147010002	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO	EQ. 80.0000 Unidad bra hh hh	Costo unitario d Cuadrilla 0.2000 2.0000	Cantidad 0.0200 0.2000	35.11 Precio S/. 21.93 19.94	Parcial S/. 0.44 3.99 1.65 8.92
Código 0147010001 0147010002 0147010003	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO OFICIAL PEON	EQ. 80.0000 Unidad bra hh hh hh	Costo unitario d Cuadrilla 0.2000 2.0000 1.0000	Cantidad 0.0200 0.2000 0.1000	35.11 Precio S/. 21.93 19.94 16.53	Parcial S/. 0.44 3.99 1.65
Código 0147010001 0147010002 0147010003	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO OFICIAL PEON Materiale	EQ. 80.0000 Unidad bra hh hh hh	Costo unitario d Cuadrilla 0.2000 2.0000 1.0000	Cantidad 0.0200 0.2000 0.1000	35.11 Precio S/. 21.93 19.94 16.53	Parcial S/. 0.44 3.99 1.65 8.92
Rendimiento Código 0147010001 0147010002 0147010003 0147010004	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO OFICIAL PEON Materiale CEMENTO PORTLAND TII	EQ. 80.0000 Unidad bra hh hh hh s	Costo unitario d Cuadrilla 0.2000 2.0000 1.0000	Cantidad 0.0200 0.2000 0.1000 0.6000	35.11 Precio S/. 21.93 19.94 16.53 14.86	9.44 3.99 1.65 8.92 15.00
Rendimiento Código 0147010001 0147010002 0147010003 0147010004	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO OFICIAL PEON Materiale	EQ. 80.0000 Unidad bra hh hh hh s	Costo unitario d Cuadrilla 0.2000 2.0000 1.0000	Cantidad 0.0200 0.2000 0.1000 0.6000	35.11 Precio S/. 21.93 19.94 16.53 14.86	9.44 3.99 1.65 8.92 15.00
Rendimiento Código 0147010001 0147010002 0147010003 0147010004 0221000001 0238000000	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO OFICIAL PEON Materiale CEMENTO PORTLAND TII HORMIGON (PUESTO EN	EQ. 80.0000 Unidad bra hh hh hh s PO I (42.5 kg) bis OBRA) m3	Costo unitario d Cuadrilla 0.2000 2.0000 1.0000	Cantidad 0.0200 0.2000 0.1000 0.6000 0.6000 0.6600	35.11 Precio S/. 21.93 19.94 16.53 14.86	9.44 3.99 1.65 8.92 15.00
Rendimiento Código 0147010001 0147010002 0147010003 0147010004 0221000001 0238000000	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO OFICIAL PEON Materiale CEMENTO PORTLAND TII HORMIGON (PUESTO EN	EQ. 80.0000 Unidad bra hh hh hh s PO I (42.5 kg) bls OBRA) m3 m3	Costo unitario d Cuadrilla 0.2000 2.0000 1.0000	Cantidad 0.0200 0.2000 0.1000 0.6000 0.6000 0.6600	35.11 Precio S/. 21.93 19.94 16.53 14.86	9.44 3.99 1.65 8.92 15.00 15.00 3.63 0.03
Rendimiento Código 0147010001 0147010002 0147010003 0147010004 0221000001 0238000000	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO OFICIAL PEON Materiale CEMENTO PORTLAND TII HORMIGON (PUESTO EN AGUA	EQ. 80.0000 Unidad bra hh hh hh ss PO I (42.5 kg) bls OBRA) m3 m3	Costo unitario d Cuadrilla 0.2000 2.0000 1.0000	Cantidad 0.0200 0.2000 0.1000 0.6000 0.6000 0.6600	35.11 Precio S/. 21.93 19.94 16.53 14.86	9.44 3.99 1.65 8.92 15.00 15.00 3.63 0.03
Rendimiento Código 0147010001 0147010002 0147010003 0147010004 0221000001 0238000000 02390500000	m²/DIA 80.0000 Descripción Recurso Mano de O CAPATAZ OPERARIO OFICIAL PEON Materiale CEMENTO PORTLAND TIE HORMIGON (PUESTO EN AGUA	EQ. 80.0000 Unidad bra hh hh hh s PO I (42.5 kg) bls OBRA) m3 m3 m3 ES %MO	Costo unitario d Cuadrilla 0.2000 2.0000 1.0000	Cantidad 0.0200 0.2000 0.2000 0.1000 0.6000 0.6000 0.0660 0.0060	35.11 Precio S/. 21.93 19.94 16.53 14.86 25.00 55.00 4.50	Parcial S/. 0.44 3.99 1.65 8.92 15.00 15.00 3.63 0.03 18.66

artida	04.01.01 CONCRETO FC' = 175 KG/CM2 PARA VIGAS DE BORDE						
Rendimiento	m³/DIA	20.0000	EQ. 20.0000	Costo unitario directo por : m³		373.35	
Código	Descripci	ón Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra	a				
147000022	OPERADOR DE EQUIPO LIVIA		IANO hh	1.0000	0.4000	19.94	7.98
147010001	CAPATAZ		hh	0.2000	0.0800	21.93	1.75
147010002	OPERARIO		hh	2.0000	0.8000	19.94	15.95
147010003	OFICIAL		hh	2.0000	0.8000	16.53	13.22
147010004	PEON		hh	8.0000	3.2000	14.86	47.55
							86.45
		Materiales					
205000003	PIEDRA C	HANCADA DE 1/2"	m3		0.5500	65.00	35.75
205010004	ARENA G	RUESA	m3		0.5400	50.00	27.00
221000001	CEMENT	O PORTLAND TIPO	I (42.5 kg) bis		8.4300	25.00	210.75
239050000	AGUA		m3		0.1800	4.50	0.81
							274.31
		Equipos					
337010001	HERRAMI	ENTAS MANUALES	S %MO		3.0000	86.45	2.59
348010011		ORA DE CONCRE		1.0000	0.4000	10.00	4.00
349070004	VIBRADOR DE CONCRETO 4 HP 2.40" hm			1.0000	0.4000	15.00	6.00
							12.59
artida	04.01.02		ACERO FY'= 420	0 KG/CM2, GRADO	0 60		
Rendimiento	Kg/DIA	250.0000	EQ. 250.0000	Costo unitario directo por : Kg		6.16	
Código	Descripci	ón Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
•	•	Mano de Obr	a				
147010001	CAPATAZ		hh	0.1000	0.0032	21.93	0.07
147010002	OPERARIO		hh	1.0000	0.0320	19.94	0.64
147010003	OFICIAL		hh	1.0000	0.0320	16.53	0.53
							1.24
		Materiales					
202000010	ALAMBRE NEGRO # 16 kg				0.0600	6.50	0.39
203020003	ACERO C	ORRUGADO fy=42	· · · · · · · · · · · · · · · · · · ·		1.0700	4.20	4.49
			3 1112 113				4.88
		Equipos					
0337010001	HERRAMI	Equipos ENTAS MANUALES	S %MO		3.0000	1.24	0.04

Partida Rendimiento	04.02.01 m³/DIA 25.0000	CONCRETO FC' = EQ. 25.0000	Costo unitario di		353.54	
Renamiento	III7DIA 23.0000	EQ. 23.0000	Costo unitario di	recto por , in-	353.54	
Código	Descripción Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147000022	Mano de Obra OPERADOR DE EQUIPO LIVIAN	IO hh	1,0000	0.3200	19.94	6.38
0147010001	CAPATAZ	hh	0,2000	0.0640	21.93	1.40
0147010001	OPERARIO	h h	2,0000	0.6400	19.94	12.76
0147010002	OFICIAL	hh	2.0000	0.6400	16.53	10.58
0147010004	PEON	hh	8.0000	2.5600	14.86	38.04
2147010004	72011	1411	0.0000	2.0000	14.00	69.16
	Materiales					
0205000003	PIEDRA CHANCADA DE 1/2"	m3		0.5500	65.00	35.75
0205010004	ARENA GRUESA	m3		0.5400	50.00	27.00
0221000001	CEMENTO PORTLAND TIPO I (4	12.5 kg) bis		8.4300	25.00	210.75
0239050000	AGUA	m3		0.1800	4.50	0.81
						274.31
	Equipos					
0337010001	HERRAMIENTAS MANUALES	%MO		3.0000	69.16	2.07
0348010011	MEZCLADORA DE CONCRETO		1.0000	0.3200	10.00	3.20
0349070004	VIBRADOR DE CONCRETO 4 H	P 2.40" hm	1.0000	0.3200	15.00	4.80
						10.07
Partida	04.02,02	ENCOFRADO Y DE	SENCOFRADO D	E LOSA DE CIME	NTACION	
Rendimiento	m²/DIA 14.0000	EQ. 14.0000	Costo unitario di	irecto por : m²	44.85	
Código	Descripción Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
	Mano de Obra					
0147010001	CAPATAZ	ħħ	0.1225	0.0700	21.93	1.54
0147010002	OPERARIO	hh	1.2250	0.7000	19.94	13.96
0147010003	OFICIAL	hh	1.8375	1.0500	16.53	17.36
0147010004	PEON	hh	0.9975	0.5700	14.86	8.47
	01-1-2-1					41.33
0202000015	Materiales ALAMBRE NEGRO # 8	ka		0.2600	6.50	1.69
0202000013	CLAVO DE 3"	kg ka		0.2300	4.50	0.59
0202100003	CLAVO DE 3	kg		0.1300	4.50	2.28
	Equipos					
0337010001	HERRAMIENTAS MANUALES	%MO		3.0000	41.33	1.24
						1.24
	04.02.03	ACERO FY= 4200	•		C 46	
Rendimiento	Kg/DIA 250.0000	EQ. 250.0000	Costo unitario di	irecto por : Kg	6.16	Parcial S
Rendimiento	Kg/DIA 250.0000 Descripción Recurso		•		6.16 Precio S/.	Parcial S.
Rendimiento Código	Kg/DIA 250.0000 Descripción Recurso Mano de Obra	EQ. 250.0000 Unidad	Costo unitario di Cuadrilla	recto por : Kg Cantidad	Precio S/.	
Rendimiento Código 0147010001	Kg/DIA 250.0000 Descripción Recurso Mano de Obra CAPATAZ	EQ. 250.0000 Unidad hh	Costo unitario di Cuadrilla 0.1000	Cantidad 0.0032	Precio S/. 21.93	0.07
Rendimiento Código 0147010001 0147010002	Kg/DIA 250.0000 Descripción Recurso Mano de Obra CAPATAZ OPERARIO	EQ. 250.0000 Unidad hh hh	Costo unitario di Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320	Precio S/. 21.93 19.94	0.07 0.64
Rendimiento Código 0147010001 0147010002	Kg/DIA 250.0000 Descripción Recurso Mano de Obra CAPATAZ OPERARIO OFICIAL	EQ. 250.0000 Unidad hh	Costo unitario di Cuadrilla 0.1000	Cantidad 0.0032	Precio S/. 21.93	0.07 0.64
Rendimiento Código 0147010001 0147010002 0147010003	Kg/DIA 250.0000 Descripción Recurso Mano de Obra CAPATAZ OPERARIO OFICIAL Materiales	EQ. 250.0000 Unidad hh hh hh	Costo unitario di Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320 0.0320	Precio S/. 21.93 19.94 16.53	0.07 0.64 0.53
Rendimiento Código 0147010001 0147010002 0147010003 0202000010	Kg/DIA 250.0000 Descripción Recurso Mano de Obra CAPATAZ OPERARIO OFICIAL Materiales ALAMBRE NEGRO # 16	EQ. 250.0000 Unidad hh hh hh	Costo unitario di Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320 0.0320 0.0320	21.93 19.94 16.53	0.07 0.64 0.55
Parkida Rendimiento Código 0147010001 0147010002 0147010003 0202000010 0203020003	Kg/DIA 250.0000 Descripción Recurso Mano de Obra CAPATAZ OPERARIO OFICIAL Materiales	EQ. 250.0000 Unidad hh hh hh	Costo unitario di Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320 0.0320	Precio S/. 21.93 19.94 16.53	0.07 0.64 0.55 0.39 4.49
Rendimiento Código 0147010001 0147010002 0147010003 0202000010	Kg/DIA 250.0000 Descripción Recurso Mano de Obra CAPATAZ OPERARIO OFICIAL Materiales ALAMBRE NEGRO # 16	EQ. 250.0000 Unidad hh hh hh	Costo unitario di Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320 0.0320 0.0320	21.93 19.94 16.53	0.07 0.64 0.55 0.39 4.49
Rendimiento Código 0147010001 0147010002 0147010003 0202000010	Kg/DIA 250.0000 Descripción Recurso Mano de Obra CAPATAZ OPERARIO OFICIAL Materiales ALAMBRE NEGRO # 16 ACERO CORRUGADO fy=4200 l	EQ. 250.0000 Unidad hh hh hh	Costo unitario di Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320 0.0320 0.0320	21.93 19.94 16.53	Parcial S. 0.07 0.64 0.53 0.39 4.49 4.88

Rendimiento	m³/DIA 10.0000	EQ. 10,0000	Costo unitario di	recto por : m³	493.15	
Código	Descripción Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147000022	Mano de Obra OPERADOR DE EQUIPO LIVIAN	NO hh	1.0000	0.8000	19.94	15.95
0147000022	CAPATAZ	hh	0.0200	0.0160	21.93	0.3
0147010001	OPERARIO	hh	2.0000	1.6000	19.94	31.9
0147010002	OFICIAL	hh	2.0000	1.6000		26.45
0147010003	PEON	hh	10.0000	8.0000	16.53	
0147010004		TITS	10.0000	8.0000	14.86	118.88 193.5 3
	Materiales			0	05.00	0-7
0205000003	PIEDRA CHANCADA DE 1/2"	m3		0.5500	65.00	35.7
0205010004	ARENA GRUESA	m3		0.5300	50.00	26.50
0221000001	CEMENTO PORTLAND TIPO I (0,		8.4300	25.00	210.7
0239050000	AGUA	m3		0.1800	4.50	0.8
	<u>.</u> .					273.8
0007040004	Equipos	~		0.000	400.50	
0337010001	HERRAMIÉNTAS MANUALES	%MO	4 ****	3.0000	193.53	5.8
0348010011	MEZCLADORA DE CONCRETO		1.0000	0.8000	10.00	8.00
0349070004	VIBRADOR DE CONCRETO 4 H	IP 2.40" hm	1.0000	0.8000	15.00	12.00
						25.8
Partida	04.03.02	ENCOFRADO Y D	ESENCOFRADO D	F MUROS		
Rendimiento	m2/DIA 25.0000	EQ. 25.0000	Costo unitario di		33.60	
Código	Descripción Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010003	OFICIAL	hh	1.0000	0.3200	16.53	5.29
0147030081	OPERARIO ENCOFRADO	hh	1.0000	0.3200	19.94	6.38
						11.6
	Materiales					
0275010011	AGENTE DESMOLDANTE	I t		0.0030	7.53	0.0
	Equipos					0.0
0348990001	Equipos ENCOFRADO METALICO	m2		0.0200	1,046.30	20.9
0398010037	HERRAMIENTA MANUAL	%PU		3.0000	32.62	0.9
0330010031	LIEIZIONIILIATA MINIOAL	76 F O		3.0000	32.02	21.9
						21.0
Partida	04.03.03	ACERO FY= 4200	KG/CM2, GRADO	60		· · · · · · · · · · · · · · · · · · ·
Rendimiento	Kg/DIA 250.0000	EQ. 250.0000	Costo unitario d	irecto por : Kg	6.16	
Código	Descripción Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
	Mano de Obra					
0147010001	CAPATAZ	hh	0.1000	0.0032	21.93	0.0
0147010002	OPERARIO	hh	1.0000	0.0320	19.94	0.6
	OFICIAL	hh	1.0000	0.0320	16.53	0.5
0147010003						1.2
0147010003						
	Materiales					
0202000010	ALAMBRE NEGRO # 16	kg		0.0600	6.50	
		-		0.0600 1.0700	6.50 4.20	4.4
0202000010	ALAMBRE NEGRO # 16	-				4.4
0202000010 0203020003	ALAMBRE NEGRO # 16 ACERO CORRUGADO fy=4200 Equipos	kg/cm2 kg		1.0700	4.20	0.39 4.49 4.8 0
0202000010	ALAMBRE NEGRO # 16 ACERO CORRUGADO fy=4200	-				4.49

Partida	04.04.01		CONCRETO FC' =	175 KG/CM2 DE V	IGAS		
Rendimiento	m³/DIA	20.0000	EQ. 20.0000	Costo unitario di	recto por : m³	402.03	
Código	Descripci	ón Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147000022	OPERADO	OR DE EQUIPO LIVIA	NO hh	3.0000	1,2000	19.94	23.93
0147010001	CAPATAZ		hh	0.2000	0.0800	21.93	1.75
0147010002	OPERARI	0	hh	2.0000	0.8000	19.94	15.95
0147010003	OFICIAL		hh	2.0000	0.8000	16.53	13.22
0147010004	PEON		hh	10.0000	4.0000	14.86	59.44
							114.29
000500000	DIEDDA 6	Materiales	•		0.5500	05.00	05.75
0205000003		CHANCADA DE 1/2"	m3		0.5500	65.00	35.75
0205010004	ARENA G		m3		0.5400	50.00	27.00
0221000001		D PORTLAND TIPO I			8.4300	25.00	210.75
0239050000	AGUA	F!	m3		0.1800	4.50	0.81
0227040004	LIEDDAM	Equipos	0/ MO		2 0000	444.00	2.42
0337010001		IENTAS MANUALES	%MO	4.0000	3.0000	114.29	3.43
0348010011		OORA DE CONCRETO		1.0000	0.4000	10.00	4.00
0349070004	VIBRADO	R DE CONCRETO 4 I	HP 2.40" nm	1.0000	0.4000	15.00	6.00
							13.43
Partida	04.04.02		ENCOFRADO Y D	ESENCOFRADO D	FVIGAS		·
Rendimiento	m²/DIA	9.0000	EQ. 9.0000	Costo unitario d		75.53	
T to Tall The Care	1117001		24. 0.000	Coole unitario d	woodo por . IX		
Código	Descripci	ón Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
04.47040004	0101717	Mano de Obra		0.4000	0.1100	04.00	0.44
0147010001	CAPATAZ		hh	0.1238	0.1100	21.93	2.41
0147010002	OPERARI	U	hh	1.2263	1.0900	19.94	21.73
0147010003	OFICIAL		hh	1.4738	1.3100	16.53	21.65
0147010004	PEON	BB - 4 - 1 - 1 -	hh	0.5000	0.4444	14.86	6.60
000000045	AL AMPRO	Materiales	l		0.0400	0.50	4 27
0202000015		E NEGRO # 8	kg		0.2100	6.50	1.37
0202160003	CLAVO D		kg		0.2400	4.50	1.08
0243920002	MADERA	PARA ENCOFRADO	p2		6.7100	2.85	19.12
0007040004	UEDDAM	Equipos	0/110		2.0000	50.00	4 57
0337010001	HERRAM	IENTAS MANUALES	%MO		3.0000	52.39	1.57
							1.57
Partida	04.04.03		ACERO EVE 420	KG/CM2, GRADO	60		
Rendimiento	Kg/DiA	250.0000	EQ. 250.0000	Costo unitario d		6.16	
renamiento	Ng/Di/	200.000	E. 200.000	Costo dilitalio d	nooto por . rtg	0.70	
Código	Descripci	ión Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0117010001	0.0.	Mano de Obra		0.4000	0.0000	04.00	2.07
0147010001	CAPATAZ		hh	0.1000	0.0032	21.93	0.07
0147010002	OPERAR	0	hh	1.0000	0.0320	19.94	0.64
0147010003	OFICIAL		hh	1.0000	0.0320	16.53	0.53
		Matarialas					1.24
0000000010	AL AMBRI	Materiales	1.		0.0000	0.50	0.20
0202000010		E NEGRO # 16	kg		0.0600	6.50	0.39
0203020003	AUERO C	ORRUGADO fy=4200	υ kg/cm∠ kg		1.0700	4.20	4.49
		F!					4.88
0000010001		Equipos	****		0.0000	4 04	0.01
0337010001	HERRAM	IENTAS MANUALES	%MO		3.0000	1.24	0.04
							0.04

Partida	04.05.01			175 KG/CM2 EN L			
Rendimiento	m³/DIA	25.0000	EQ. 25.0000	Costo unitario di	recto por : m³	395.09	
Código	Descripció	on Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra					
0147000022	OPERADO	R DE EQUIPO LIVIANO) hh	3.0000	0.9600	19.94	19.14
0147010001	CAPATAZ		hh	0.3000	0.0960	21.93	2.11
0147010002	OPERAR!)	hh	3.0000	0.9600	19.94	19.14
0147010003	OFICIAL		hh	2.0000	0.6400	16.53	10.58
0147010004	PEON		hh	11.0000	3.5200	14.86	52.31
							103.28
		Materiales					
0205000003	PIEDRA C	HANCADA DE 1/2"	m3		0.5500	65.00	35.75
0205010004	ARENA GI	RUESA	m3		0.5400	50.00	27.00
0221000001	CEMENTO	PORTLAND TIPO I (42	2.5 kg) bls		8.4300	25.00	210.75
0239050000	AGUA		m3		0.1800	4.50	0.81
							274.31
		Equipos					
0337010001	HERRAMI	ENTAS MANUALES	%MO		3.0000	103.28	3.10
0348010011	MEZCLAD	ORA DE CONCRETO D	E 9 - hm	1.0000	0.3200	10.00	3.20
0348810006	WINCHE [DE 2 TAMBORES 37HP	hm	1.0000	0.3200	20.00	6.40
0349070004	VIBRADO	R DE CONCRETO 4 HP	2.40" hm	1.0000	0.3200	15.00	4.80
	-						17.50
Partida	04.05.02		NCOFRADO Y D	ESENCOFRADO N	ORMAL DE LOSA	ALIGERADA	
Partida Rendimiento	04.05.02 m²/DIA	12.0000	EQ. 12,0000	ESENCOFRADO N Costo unitario d		ALIGERADA 57.03	
Rendimiento	m²/DIA	12.0000	EQ. 12.0000	Costo unitario d	irecto por : m²	57.03	D
Rendimiento	m²/DIA	12.0000 ón Recurso					Parcial S
Rendimiento Código	m²/DIA Descripcio	12.0000 ón Recurso Mano de Obra	EQ. 12.0000 Unidad	Costo unitario d	irecto por : m² Cantidad	57.03 Precio S/.	
Rendimiento Código 0147010001	m²/DIA Descripcio	12.0000 ón Recurso Mano de Obra	Unidad	Costo unitario d Cuadrilla 0.1200	Cantidad 0.0800	57.03 Precio S/. 21.93	Parcial S 1.75
Código 0147010001 0147010002	m²/DIA Descripcio CAPATAZ OPERARIO	12.0000 ón Recurso Mano de Obra	Unidad hh hh	Costo unitario d Cuadrilla 0.1200 1.1550	Cantidad 0.0800 0.7700	57.03 Precio S/. 21.93 19.94	1.75 15.35
Código 0147010001 0147010002 0147010003	m²/DIA Descripcio CAPATAZ OPERARIO OFICIAL	12.0000 ón Recurso Mano de Obra	EQ. 12.0000 Unidad hh hh	Costo unitario d Cuadrilla 0.1200 1.1550 1.4850	Cantidad 0.0800 0.7700 0.9900	57.03 Precio S/. 21.93 19.94 16.53	1.75 15.35 16.36
Código 0147010001 0147010002 0147010003	m²/DIA Descripcio CAPATAZ OPERARIO	12.0000 ón Recurso Mano de Obra	Unidad hh hh	Costo unitario d Cuadrilla 0.1200 1.1550	Cantidad 0.0800 0.7700	57.03 Precio S/. 21.93 19.94	1.75 15.35 16.36 6.54
Código 0147010001 0147010002 0147010003	m²/DIA Descripcio CAPATAZ OPERARIO OFICIAL	n Recurso Mano de Obra	EQ. 12.0000 Unidad hh hh	Costo unitario d Cuadrilla 0.1200 1.1550 1.4850	Cantidad 0.0800 0.7700 0.9900	57.03 Precio S/. 21.93 19.94 16.53	1.75 15.35
Rendimiento Código 0147010001 0147010002 0147010003 0147010004	m²/DIA Descripcio CAPATAZ OPERARIO OFICIAL PEON	n Recurso Mano de Obra	EQ. 12.0000 Unidad hh hh hh	Costo unitario d Cuadrilla 0.1200 1.1550 1.4850	Cantidad 0.0800 0.7700 0.9900 0.4400	57.03 Precio S/. 21.93 19.94 16.53 14.86	1.75 15.35 16.36 6.54 40.0 0
Rendimiento Código 0147010001 0147010002 0147010003 0147010004	m²/DIA Descripcio CAPATAZ OPERARIO OFICIAL PEON ALAMBRE	12.0000 on Recurso Mano de Obra O Materiales NEGRO # 16	Unidad hh hh hh hh	Costo unitario d Cuadrilla 0.1200 1.1550 1.4850	Cantidad 0.0800 0.7700 0.9900 0.4400	57.03 Precio S/. 21.93 19.94 16.53 14.86	1.76 15.36 16.36 6.54 40.0 0
Rendimiento Código 0147010001 0147010002 0147010003 0147010004 0202000010 0202160005	m²/DIA Descripcia CAPATAZ OPERARIO OFICIAL PEON ALAMBRE CLAVO DE	n Recurso Mano de Obra Materiales NEGRO # 16 E 2 1/2"	EQ. 12.0000 Unidad hh hh hh kg kg	Costo unitario d Cuadrilla 0.1200 1.1550 1.4850	Cantidad 0.0800 0.7700 0.9900 0.4400 0.1000 0.1100	57.03 Precio S/. 21.93 19.94 16.53 14.86 6.50 4.50	1.75 15.35 16.36 6.54 40.0 0 0.66
Rendimiento Código 0147010001 0147010002 0147010003 0147010004 0202000010 0202160005	m²/DIA Descripcia CAPATAZ OPERARIO OFICIAL PEON ALAMBRE CLAVO DE	12.0000 on Recurso Mano de Obra O Materiales NEGRO # 16	Unidad hh hh hh hh	Costo unitario d Cuadrilla 0.1200 1.1550 1.4850	Cantidad 0.0800 0.7700 0.9900 0.4400	57.03 Precio S/. 21.93 19.94 16.53 14.86	1.75 15.35 16.36 6.54 40.0 0 0.66 0.50
Rendimiento Código 0147010001 0147010002 0147010003 0147010004	m²/DIA Descripcia CAPATAZ OPERARIO OFICIAL PEON ALAMBRE CLAVO DE	Mano de Obra Materiales NEGRO # 16 E 2 1/2" PARA ENCOFRADO	EQ. 12.0000 Unidad hh hh hh kg kg	Costo unitario d Cuadrilla 0.1200 1.1550 1.4850	Cantidad 0.0800 0.7700 0.9900 0.4400 0.1000 0.1100	57.03 Precio S/. 21.93 19.94 16.53 14.86 6.50 4.50	1.75 15.35 16.36 6.54 40.0 0 0.66 0.50
Rendimiento Código 0147010001 0147010002 0147010003 0147010004 0202000010 0202160005	m²/DIA Descripcia CAPATAZ OPERARIO OFICIAL PEON ALAMBRE CLAVO DE MADERA	n Recurso Mano de Obra Materiales NEGRO # 16 E 2 1/2"	EQ. 12.0000 Unidad hh hh hh kg kg	Costo unitario d Cuadrilla 0.1200 1.1550 1.4850	Cantidad 0.0800 0.7700 0.9900 0.4400 0.1000 0.1100	57.03 Precio S/. 21.93 19.94 16.53 14.86 6.50 4.50	1.75 15.35 16.36 6.54 40.0 0 0.66

Partida	04.05.03		O DE ARCILLA DE			
Rendimiento	und/DiA 1,600.0000	EQ. 1,600.00	Costo unitario dir	ecto por : und	2.15	
Código	Descripción Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010001	Mano de Obs CAPATAZ	ra hh	0.1000	0.0005	21.93	0.01
0147010001	OPERARIO .	hh	1.0000	0.0050	19.94	0.01
0147010002	OFICIAL	hh	1.0000	0.0050	16.53	0.08
0147010004	PEON	hh	9.0000	0.0450	14.86	0.67
3717010001	(2011	****	0.0000	0.0400	11.00	0.86
	Materiales	•				
0217010021	LADRILLO ARCILLA HUECO	DE 15X30; und		1.0500	1.20	1.26
	Equipos					1.26
0337010001	HERRAMIENTAS MANUALE	S %MO		3.0000	0.86	0.03
	·					0.03
Partida	04.05.04	ACERO EY= 4200	KG/CM2, GRADO	60		
Rendimiento	Kg/DIA 250.0000	EQ. 250.0000	Costo unitario d		6.16	
Código	Descripción Recurso Mano de Ob	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial Si
0147010001	CAPATAZ	ra hh	0.1000	0.0032	21.93	0.07
0147010001	OPERARIO	hh	1.0000	0.0320	19.94	0.64
0147010002	OFICIAL	hh	1.0000	0.0320	16.53	0.5
0147010003	OFICIAL	1111	1.0000	0.0320	10.55	1.24
	Materiales					
0202000010	ALAMBRE NEGRO # 16	kg		0.0600	6.50	0.39
0203020003	ACERO CORRUGADO fy=42	200 kg/cm2 kg		1.0700	4.20	4.49
	Equipos					4.88
0337010001	HERRAMIENTAS MANUALE	ES %MO		3.0000	1.24	0.04
						0.04
Partida	04.06.01	CONCRETO ECI	= 175 KG/CM2 DE E	SCALEDA		
Rendimiento	m³/DIA 12.0000	EQ. 12.0000	Costo unitario d		502.04	
Código	Descripción Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
	Mano de Ob	_				
0147000022	OPERADOR DE EQUIPO LI		3.0000	2.0000	19.94	39.88
0147010001	CAPATAZ	hh	0.3000	0.2000	21.93	4.39
0147010002	OPERARIO OFICIAL	hh	2.0000	1.3333	19.94	26.59
0147010003	OFICIAL	hh	2.0000	1.3333	16.53	22.04
0147010004	PEON	hh	10.0000	6.6667	14.86	99.07 191.9 7
	Materiales	i				
				0.5500	65.00	35.75
0205000003	PIEDRA CHANCADA DE 1/2	2" m3		0.5500		
0205000003 0205010004		2" m3 m3		0.5400	50.00	
	PIEDRA CHANCADA DE 1/2	m3		0.5400 8.4300	50.00 25.00	210.75
0205010004	PIEDRA CHANCADA DE 1/2 ARENA GRUESA	m3		0.5400	50.00	210.75 0.81
0205010004 0221000001	PIEDRA CHANCADA DE 1/2 ARENA GRUESA CEMENTO PORTLAND TIPO AGUA	m3 O I (42.5 kg) bls		0.5400 8.4300	50.00 25.00	210.75 0.8
0205010004 0221000001	PIEDRA CHANCADA DE 1/2 ARENA GRUESA CEMENTO PORTLAND TIPO	m3 O I (42.5 kg) bls m3		0.5400 8.4300	50.00 25.00	210.75 0.8 ² 274.3 ²
0205010004 0221000001 0239050000	PIEDRA CHANCADA DE 1/2 ARENA GRUESA CEMENTO PORTLAND TIPO AGUA Equipos	m3 O I (42.5 kg) bls m3 ES %MO	1.0000	0.5400 8.4300 0.1800	50.00 25.00 4.50	210.75 0.8' 274.3 ' 5.76
0205010004 0221000001 0239050000 0337010001	PIEDRA CHANCADA DE 1/2 ARENA GRUESA CEMENTO PORTLAND TIPO AGUA Equipos HERRAMIENTAS MANUALE	m3 O I (42.5 kg) bls m3 ES %MO ETO DE 9 - hm	1.0000 1.0000	0.5400 8.4300 0.1800 3.0000	50.00 25.00 4.50	210.75 0.81 274.3 1 5.76 6.67
0205010004 0221000001 0239050000 0337010001 0348010011	PIEDRA CHANCADA DE 1/2 ARENA GRUESA CEMENTO PORTLAND TIPO AGUA Equipos HERRAMIENTAS MANUALE MEZCLADORA DE CONCRE	m3 O I (42.5 kg) bls m3 ES %MO ETO DE 9 - hm 37HP hm		0.5400 8.4300 0.1800 3.0000 0.6667	50.00 25.00 4.50 191.97 10.00	27.00 210.75 0.81 274.31 5.76 6.67 13.33

Partida	04.06.02		ENCOFRADO Y D	ESENCOFRADO N	ORMAL DE ESCA	ILERA	
Rendimiento	m²/DIA	6.0000	EQ. 6.0000	Costo unitario di	recto por : m²	102.91	
Código	Descripcio	ón Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial :
		Mano de Obra					
0147010001	CAPATAZ		hh	0.1200	0.1600	21.93	3.5
0147010002	OPERARIO	0	hh	1.2150	1.6200	19.94	32.3
0147010003	OFICIAL		h h	1.5450	2.0600	16.53	34.0
0147010004	PEON		hh	0.6675	0.8900	14.86	13.2
							83.0
		Materiales					
0202000010	ALAMBRE	NEGRO # 16	kg		0.0800	6.50	0.5
0202160003	CLAVO DE	∃ 3"	kg		0.1000	4.50	0.4
0243920002	MADERA	PARA ENCOFRADO	p2		5.7400	2.85	16.3
		•					17.3
		Equipos					
0337010001	HERRAMI	ENTAS MANUALES	% M O		3.0000	83.09	2.4
0337010001	HERRAMI	ENTAS MANUALES	%MO 		3.0000	83.09	
0337010001 Partida	04.06.03		ACERO FY'= 4200	KG/CM2 , GRADO		83.09	2.4 2.4
		ENTAS MANUALES 250.0000		KG/CM2 , GRADO Costo unitario di	60	6.16	
Partida	04.06.03 Kg/DIA		ACERO FY'= 4200	•	60		2.4
Partida Rendimiento	04.06.03 Kg/DIA	250.0000	ACERO FY'= 4200 EQ. 250.0000	Costo unitario di	60 irecto por : Kg	6.16	2.4
Partida Rendimiento	04.06.03 Kg/DIA	250.0000 ón Recurso Mano de Obra	ACERO FY'= 4200 EQ. 250.0000	Costo unitario di	60 irecto por : Kg	6.16	2.4
Partida Rendimiento Código	04.06.03 Kg/DIA Descripci	250.0000 ón Recurso Mano de Obra	ACERO FY'= 4200 EQ. 250.0000 Unidad	Costo unitario di	irecto por : Kg Cantidad	6.16 Precio S/.	Parcial 5
Partida Rendimiento Código 0147010001	04.06.03 Kg/DIA Descripcion	250.0000 ón Recurso Mano de Obra	ACERO FY'= 4200 EQ. 250.0000 Unidad	Cuadrilla 0.1000	60 irecto por : Kg Cantidad 0.0032	6.16 Precio S/. 21.93	Parcial : 0.0 0.6
Partida Rendimiento Código 0147010001 0147010002	04.06.03 Kg/DIA Descripcion CAPATAZ OPERARI	250.0000 ón Recurso Mano de Obra	ACERO FY'= 4200 EQ. 250.0000 Unidad hh hh	Cuadrilla 0.1000 1.0000	60 irecto por : Kg Cantidad 0.0032 0.0320	6.16 Precio S/. 21.93 19.94	Parcial : 0.0 0.6 0.5
Partida Rendimiento Código 0147010001 0147010002	04.06.03 Kg/DIA Descripcion CAPATAZ OPERARI	250.0000 ón Recurso Mano de Obra	ACERO FY'= 4200 EQ. 250.0000 Unidad hh hh	Cuadrilla 0.1000 1.0000	60 irecto por : Kg Cantidad 0.0032 0.0320	6.16 Precio S/. 21.93 19.94	Parcial : 0.0 0.6 0.5
Partida Rendimiento Código 0147010001 0147010002	04.06.03 Kg/DIA Descripcion CAPATAZ OPERARIO	250.0000 ón Recurso Mano de Obra	ACERO FY'= 4200 EQ. 250.0000 Unidad hh hh	Cuadrilla 0.1000 1.0000	60 irecto por : Kg Cantidad 0.0032 0.0320	6.16 Precio S/. 21.93 19.94	Parcial : 0.0 0.6 0.5 1.2
Partida Rendimiento Código 0147010001 0147010002 0147010003	04.06.03 Kg/DIA Descripci CAPATAZ OPERARI OFICIAL ALAMBRE	250.0000 ón Recurso Mano de Obra	ACERO FY'= 4200 EQ. 250.0000 Unidad hh hh hh	Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320 0.0320	6.16 Precio S/. 21.93 19.94 16.53	Parcial: 0.0 0.6 0.5 1.2
Pertida Rendimiento Código 0147010001 0147010002 0147010003	04.06.03 Kg/DIA Descripci CAPATAZ OPERARI OFICIAL ALAMBRE	250.0000 ón Recurso Mano de Obra O Materiales E NEGRO # 16	ACERO FY'= 4200 EQ. 250.0000 Unidad hh hh hh	Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320 0.0320 0.0600	6.16 Precio S/. 21.93 19.94 16.53	Parcial 0.0 0.0 1.1
Partida Rendimiento Código 0147010001 0147010002 0147010003	04.06.03 Kg/DIA Descripci CAPATAZ OPERARI OFICIAL ALAMBRE	250.0000 ón Recurso Mano de Obra O Materiales E NEGRO # 16	ACERO FY'= 4200 EQ. 250.0000 Unidad hh hh hh	Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320 0.0320 0.0600	6.16 Precio S/. 21.93 19.94 16.53	Parcial : 0.0 0.6 0.5 1.2 0.3 4.4
Pertida Rendimiento Código 0147010001 0147010002 0147010003	04.06.03 Kg/DIA Descripci CAPATAZ OPERARI OFICIAL ALAMBRE ACERO C	250.0000 ón Recurso Mano de Obra O Materiales E NEGRO # 16 ORRUGADO fy=4200	ACERO FY'= 4200 EQ. 250.0000 Unidad hh hh hh	Cuadrilla 0.1000 1.0000	Cantidad 0.0032 0.0320 0.0320 0.0600	6.16 Precio S/. 21.93 19.94 16.53	

ANEXO 2.8. Diseño de mezcla concreto celular f'c=175 kg/cm² y ensayo de compresión de testigos.

DISEÑO DE MEZCLAS DEL CONCRETO CELULAR

PROYECTO:

VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA CONCRETO CELULAR

HECHO POR:

GONGORA ROJAS HITLER PEDRO.

FECHA

Setiembre 2015

NOTA:

HUAMAN MAS FERNANDO

REVISADO POR:

Ing. Jhon Hilmer Saldaña Nuñez

Los datos del Agregado

fino de fueron obtenidos

del dieño de mezclas de la obra "CREACION DE PISTAS, VEREDAS Y DRENAJE PLUVIAL DE LAS CALLES: JR. COLON, JR. ALTO PERU, JR. ALFONSO UGARTE Y JR. BOLIVAR

DE LA LOCALIDAD DE

LAMUD, PROVINCIA DE

LUYA - AMAZONAS"

(procedencia Rio

Uctubamaba)

UBICACIÓN: Distrito: CHACHAPOYAS Provincia: CHACHAPOYAS Región: AMAZONAS

DISEÑO DE MEZCLAS DEL CONCRETO CELULAR

A) DATOS

Masa unitaria del concreto celular

1760 kg/m3

Densidad espuma

90 kg/m3

Caracteristicas del Agregado fino

Descripcion	A. fino
Peso unitario suelto seco	1650
Peso especifico de masa seca	2.72
Contenidode humedad	2.5
Porcentaje de absorcion	2

Cantidad de materiales :

Cemento Agua 400 Kg/m3 140 Lts/m3

Calculo de la dosificacion de 1m3 de concreto celular

MU=

1800 Kg/m3

Vol. Mortero convencional:

0.978 m3

Por tanto tenemos:

Material	Volumen
Relleno (espuma)	0.022
Mortero convencional	0.978

Entonces:

Agua

136.89 Lts/m3

Arena

1263.11 Kg/m3

Calculo de agua corregidad por absorcion de arena:

Cemento

400 Kg

9.41 Bolsas

Arena

1238.3 Kg

 $= 0.75 m_3$

Agua de diseño = $181.82 + \left(\left(\frac{2.5-2}{100} \right) \cdot 1816.4 \right) =$

143.20 Lts

Calculo de espuma que vamos a tener en 1m3:

Espuma∋

200

0.36

Proporciones en peso:

1

3.10

Cantidad de aditivo Sika Ligthcrete para 1m3

Voilumen aparente de los ma		Densidad	Kg	Lts		
Cen	Cemento 9.41 pie3		ie3	800	4.00	4.2
Arer	na	26.50 pi	ie3	1000	3.64	3.822
Agu	а	143.20 lts	s	1200	3.28	3.444
				1400	2.92	3.066
Proporcion en volumen:				1600	2.56	2.688
9 8	282 /	15:22 lts	s/bolsa	1800	0.50	0.525

GOBIERNO REGIONAL DE AMAZONAS

DIRECCIÓN REGIONAL DE TRANSPORTES

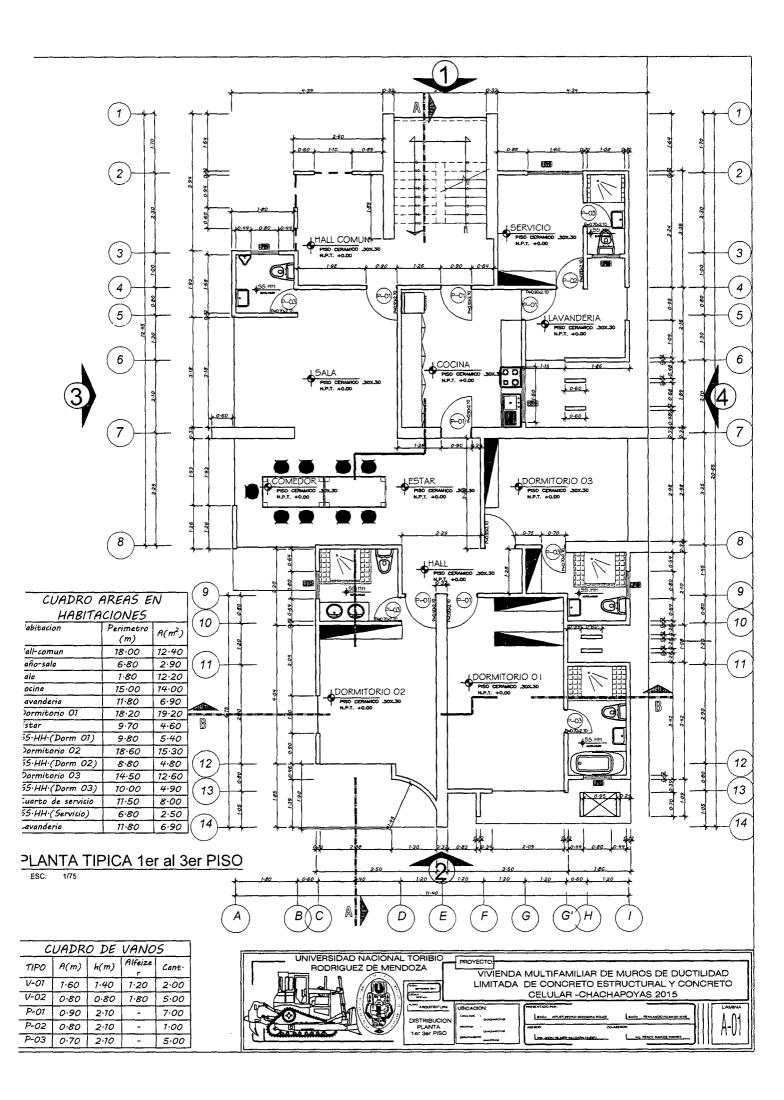
Y COMUNICACIONES - AMAZONAS LABORATORIO DE MECANICA DE SUELOS Y PAVIMENTOS Direccion: Km 01 Carretera Rodriguez de Mendoza Telefonos: (041) 477163 ANEXO 121 RU:20392327747 OBRA: " ANALISIS Y DISEÑO ESTRUCTURAL COMPARATIVO DE UNA VIVIENDA MULTIFAMILIAR DE MUROS DE DUCTILIDAD LIMITADA NORMA: DE CONCRETO CELULAR Y CONCRETO ESTRUCTURAL EN CHACHAPOYAS - 2015" MTC E 704 - 2000. CLIENTE: HITLER PEDRO GONGORA ROJAS Y FERNANDO HUAMAN MAS LOCALIZACION: DISTRITO DE CHACHAPOYAS - PROVINCIA DE CHACHAOYAS - REGION AMAZONAS. DESCRIPCION: DISEÑO DE MEZCLA DE 175Kg/cm2 FECHA RECIBO: Jueves, 19 de noviembre de 2015 FECHA ENTREGA: 26/11/2015 INDICADO OBSERVACIONES. EL LABORATORIO NO SE RESPONSABILIZA DE LAS CARACTERISTICAS FISICAS, QUIMICAS Y ALTERACIONES DE LOS TESTIGOS,

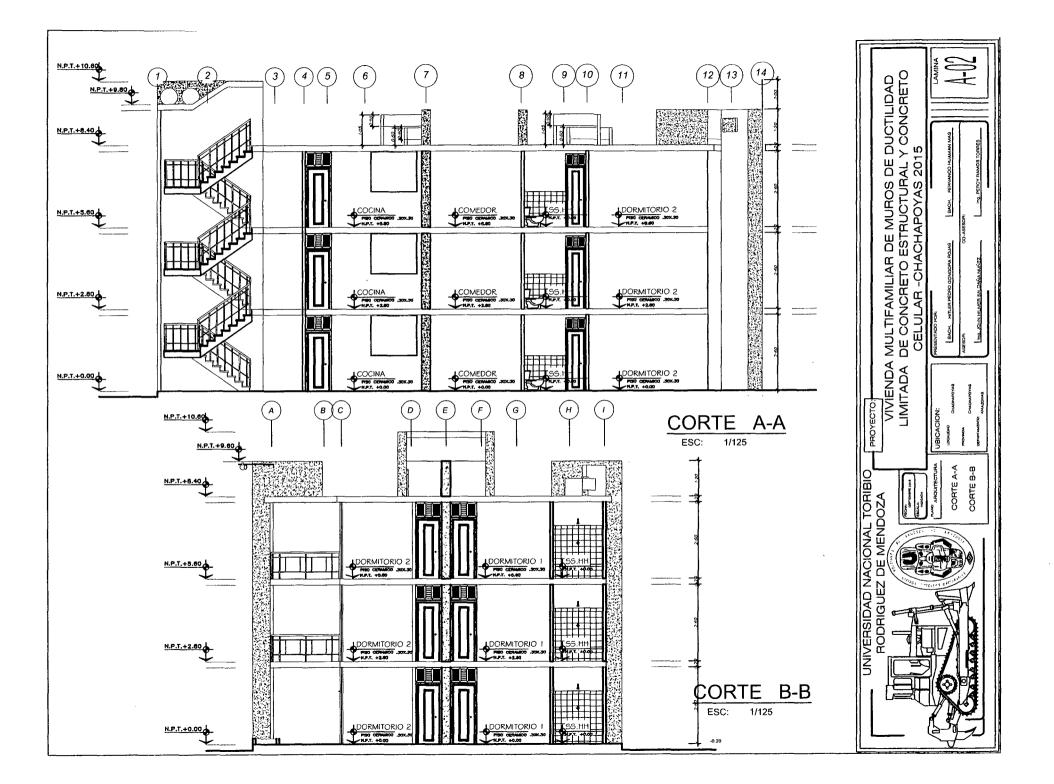
ENSAYO DE RESISTENCIA A LA COMPRESION EN CILINDROS.

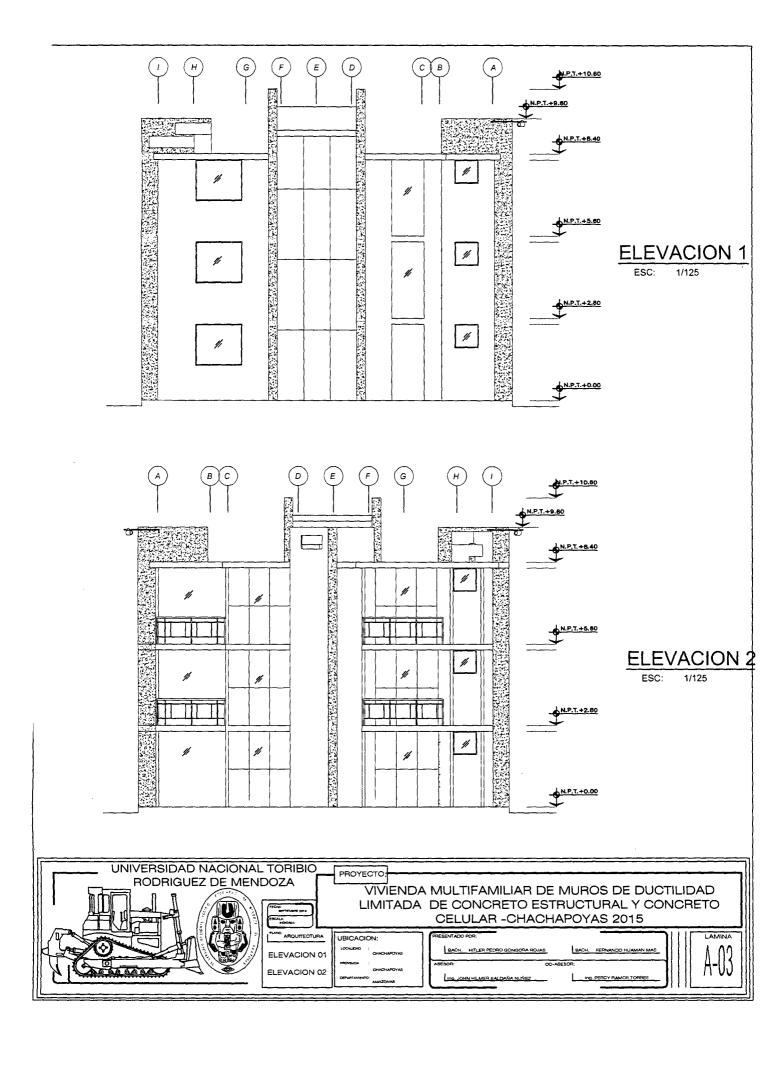
CONTRATO/ ESTRUCTURA/ELEMENTO.	FECHA DE TOMA DE MUESTRA	Nº DE CILINDRO	DIAS DE CURADO	FECHAS DE ROTURA	DIAMETR O (cm)	ALTURA (cm)	AREA (cm²)	VOLUMEN (cm²)	PESO (gr)	DENSIDAD (gr/cm²)	CARGA APLICADA (Kg)	RESIS	TENCIA A LA FECHA		E FALLA		7
	04/11/2015	1	15	19/11/2015	14.27	29.12	159.93	4,657.26	8645	1.86	27570	172.38	175	х			
MUESTRA DE CONCRETO CELULAR														 			_
oeedenik.																\vdash	\dashv
																\dashv	
																	\dashv
																	ㅣ

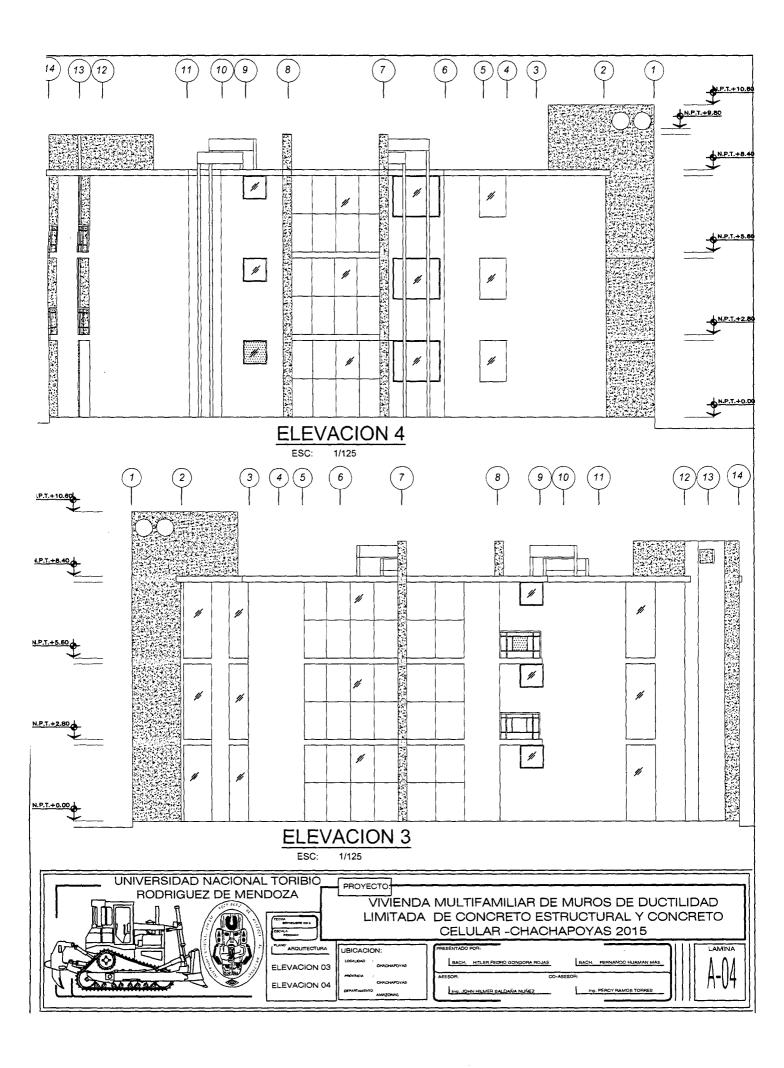
NOTA: ESTE LABORATORIO DE SUELOS Y CONCRETO NO INTERVINO EN	LA OBTENCION DE LAS MUESTRAS
CIRCODIC CONTROL CONTR	GOBIERNO REGIONAL AMAZONAS DIRECTION FIGURAL AMAZONAS DIRECTION FIGURAL AMAZONAS DIRECTION FIGURAL AMAZONAS JORGE LUIS TRIGOSO ECHAIZ FIG. ENTEDIRECTIONES Y MECANICA DE SUELF Jefe de Liaboratorio

ANEXO 03: PLANOS


ANEXO 3.1. Planos de arquitectura


A01: Distribución planta 1er al 3er piso.


A02: Corte A-A y Corte B-B.


A03: Elevación 01 y Elevación 02.

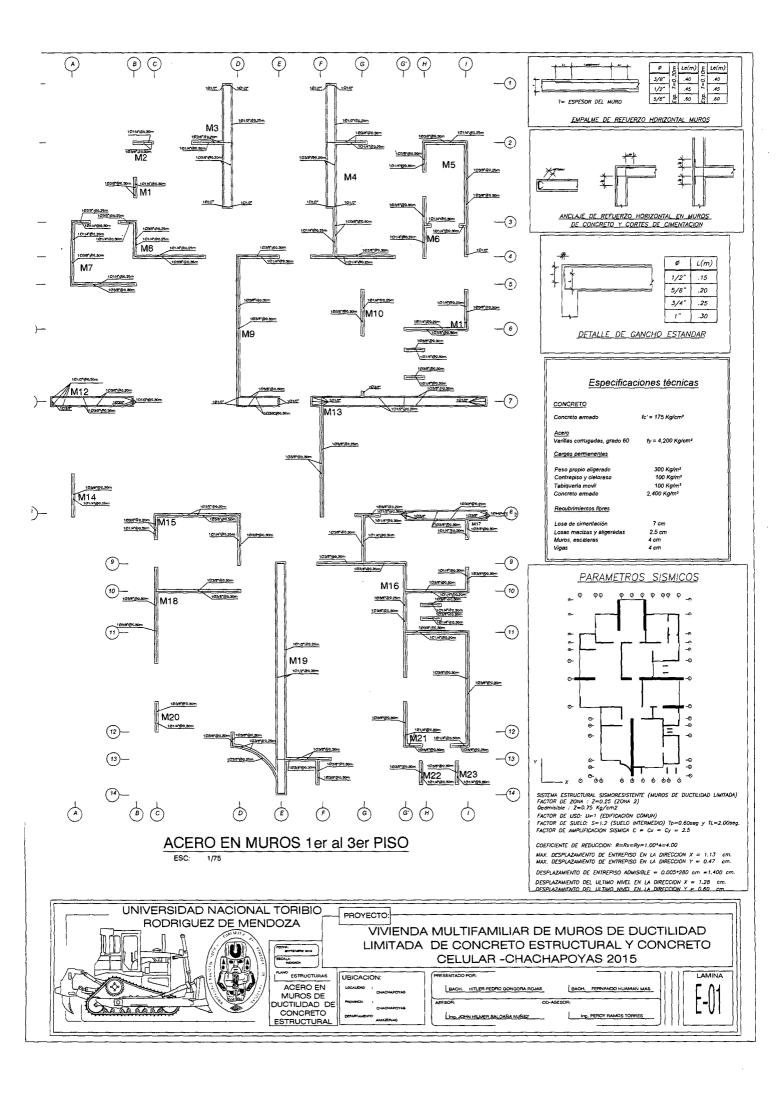
A04: Elevación 03 y Elevación 04.

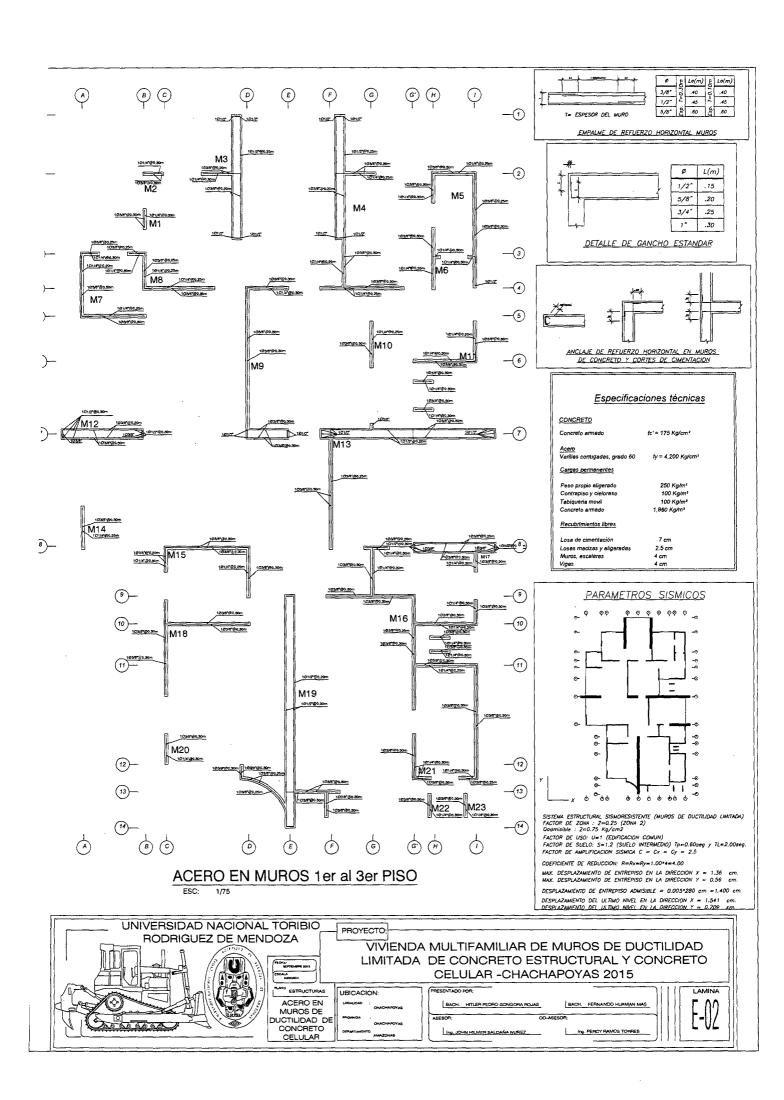
ANEXO 3.2. Planos de estructuras

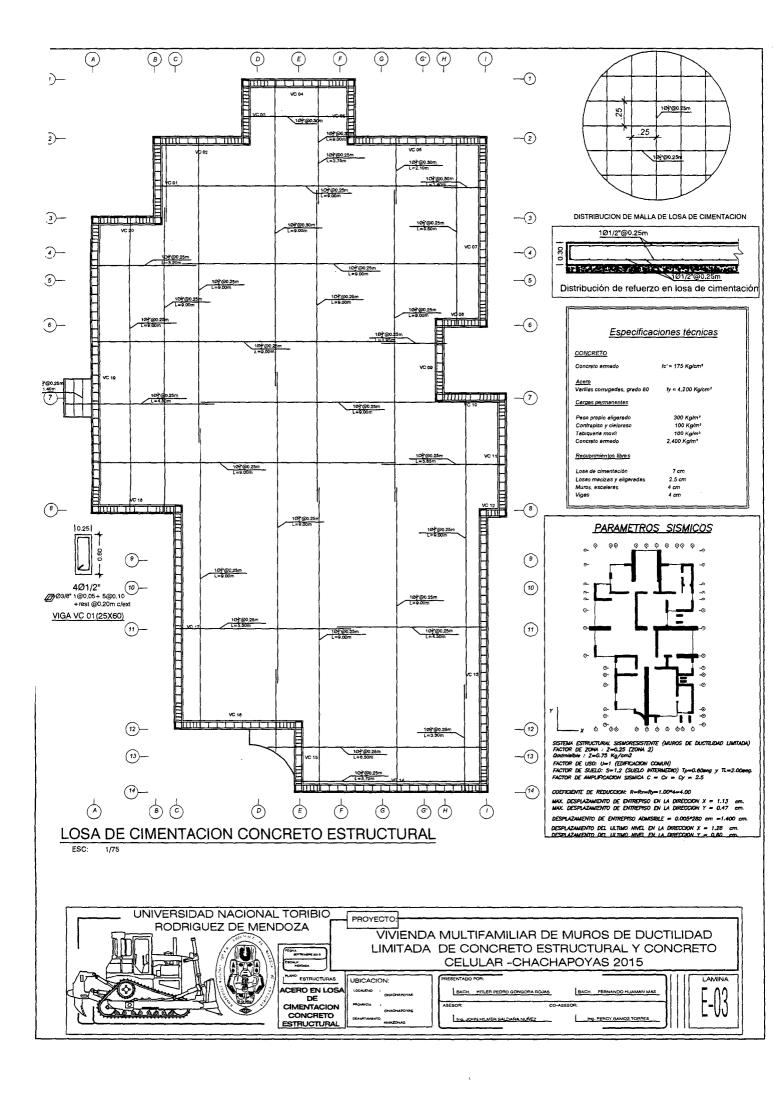
E01: Acero en muros de ductilidad de concreto estructural.

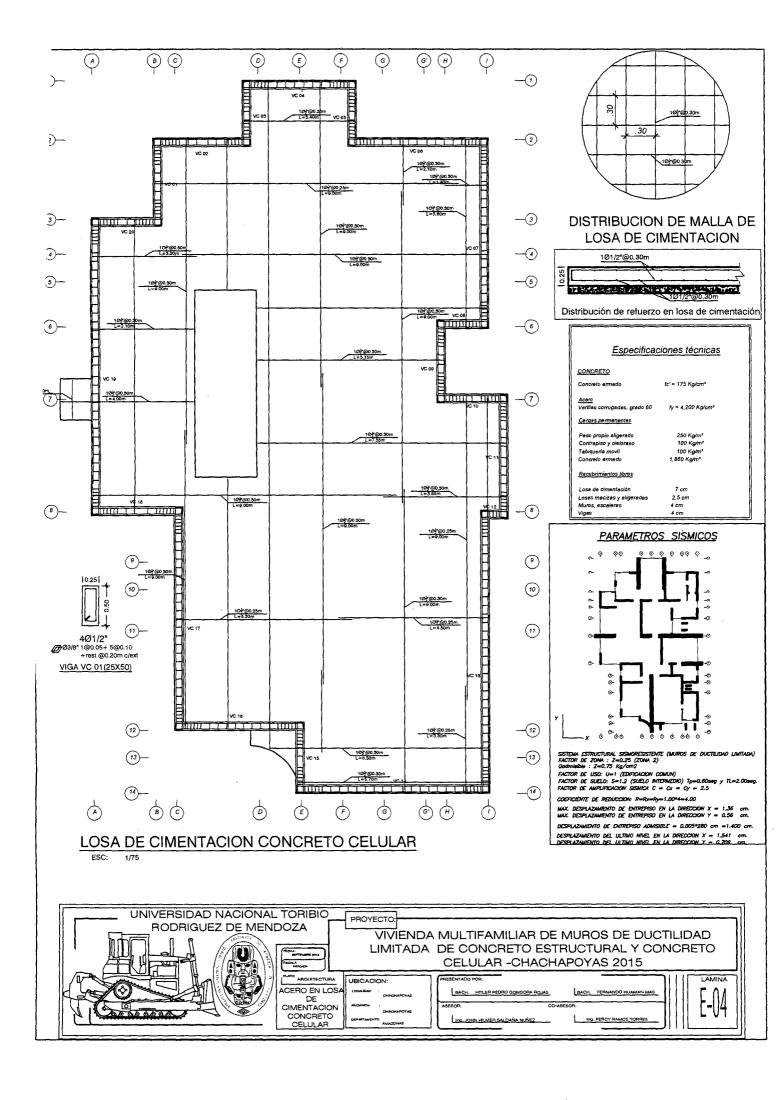
E02: Acero en muros de ductilidad de concreto celular.

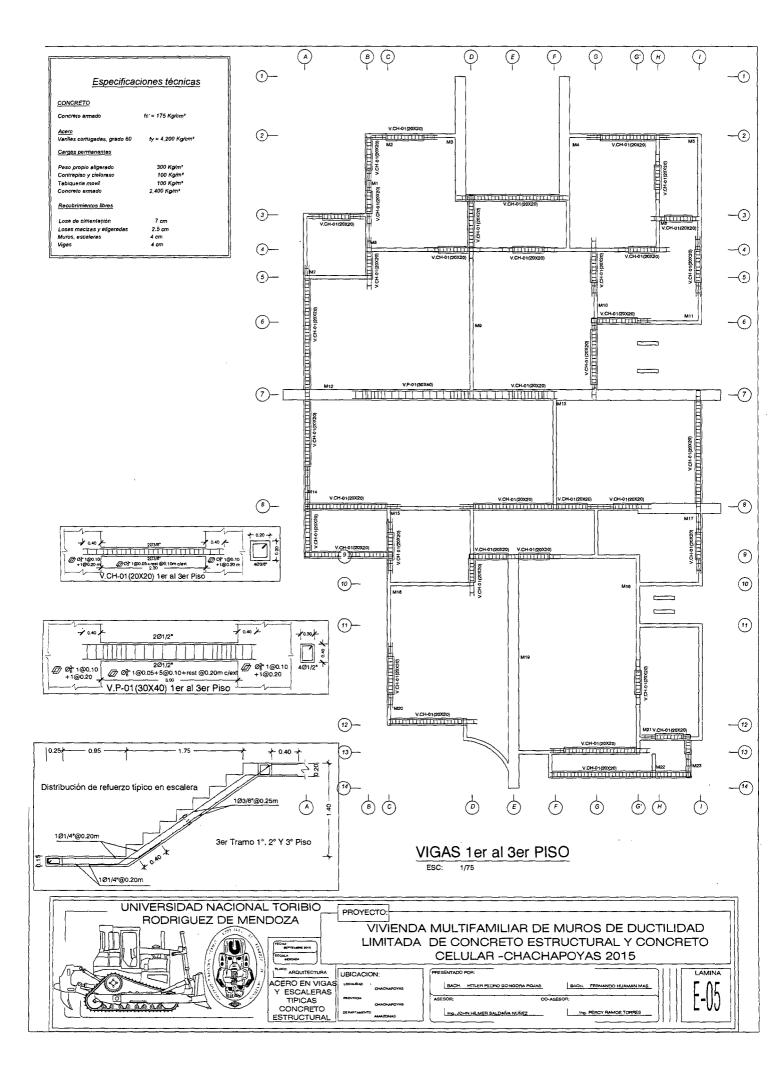
E03: Acero en losa de cimentación concreto estructural.


E04: Acero en losa de cimentación concreto celular.


E05: Acero en vigas y escalera típica concreto estructural.


E06: Acero en vigas y escalera típica concreto celular.


E07: Acero en losa aligerada para concreto estructural.


E08: Acero en losa aligerada para concreto celular.

