

UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE INGENIERÍA ZOOTECNISTA, AGRONEGOCIOS Y BIOTECNOLOGÍA

ESCUELA PROFESIONAL DE INGENIERÍA ZOOTECNISTA

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE

INGENIERO ZOOTECNISTA

EVALUACIÓN DE LA DISPONIBILIDAD DE MATERIA SECA EN PRADERAS MIXTAS (RYE GRASS + TRÉBOL) UTILIZANDO EL MÉTODO TRADICIONAL Y EL EQUIPO GRASSMASTER PRO, EN EL SECTOR SANTA CRUZ DEL TINGO, DISTRITO DE MOLINOPAMPA

Autor: Bach. Walter Mas Portocarrero

Asesor: Dr. Elías Alberto Torres Armas

CHACHAPOYAS – PERÚ

2019

UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE INGENIERÍA ZOOTECNISTA, AGRONEGOCIOS Y BIOTECNOLOGÍA

ESCUELA PROFESIONAL DE INGENIERÍA ZOOTECNISTA

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE

INGENIERO ZOOTECNISTA

EVALUACIÓN DE LA DISPONIBILIDAD DE MATERIA SECA EN PRADERAS MIXTAS (RYE GRASS + TRÉBOL) UTILIZANDO EL MÉTODO TRADICIONAL Y EL EQUIPO GRASSMASTER PRO, EN EL SECTOR SANTA CRUZ DEL TINGO, DISTRITO DE MOLINOPAMPA

Autor: Bach. Walter Mas Portocarrero

Asesor: Dr. Elías Alberto Torres Armas

CHACHAPOYAS – PERÚ

2019

DEDICATORIA

A mis padres, Edison Mas Mirano y Teresa Portocarrero Chichipe, por su inmenso apoyo moral y económico y ser los promotores para lograr el sueño más anhelado de ser profesional. A mis hermanos y amigos por su gran apoyo incondicional.

AGRADECIMIENTO

Agradezco a Dios por darme vida y salud. Para lograr mí objetivo

Brindar mi más sincero agradecimiento, reconocimiento y cariño a mis padres Edison y Teresa, por todo el esfuerzo, sacrificio y paciencia que me brindaron durante todos estos años de mi formación académica, por darme el apoyo y las fuerzas necesarias para culminar mi proceso de formación profesional.

A la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), por acogerme en sus aulas, a los profesores de la FIZAB por compartirme su conocimiento para lograr mi formación profesional.

Al laboratorio de Agua y Suelos de la UNTRM, por facilitarme el uso de su ambiente y sus equipos para procesar las muestras correspondientes a la investigación.

A mi asesor Dr. Elías Alberto Torres Armas, agradecerle por su paciencia, dedicación, motivación, apoyo en la elaboración, así como también en su ejecución.

También agradezco a mis amigos por brindarme su amistad y apoyo incondicional.

AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

Ley de creación N° 27347

Dr. Policarpio Chauca Valqui

RECTOR

Dr. Miguel Ángel Barrena Gurbillón
VICERRECTOR ACADÉMICO

Dra. Flor Teresa García Huamán VICERRECTOR DE INVESTIGACIÓN

M.Sc. Nilton Luis Murga Valderrama

DECANO (e) DE LA FACULTAD DE INGENIERÍA ZOOTECNISTA,

AGRONEGOCIOS Y BIOTECNOLOGÍA

VISTO BUENO DEL ASESOR

Yo, MsC. Elías Alberto Torres Armas, docente a tiempo completo de la carrera profesional de Ingeniería Zootecnista, hace constar que he asesorado el proyecto de tesis titulado "EVALUACIÓN DE LA DISPONIBILIDAD DE MATERIA SECA EN PRADERAS MIXTAS (RYE GRASS + TRÉBOL) UTILIZANDO EL MÉTODO TRADICIONAL Y EL EQUIPO GRASSMASTER PRO, EN EL SECTOR SANTA CRUZ DEL TINGO, DISTRITO DE MOLINOPAMPA" presentado por el bachiller Walter Mas Portocarrero, egresado de la Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología de la UNTRM, dando el visto bueno a la presente tesis.

Se expide la presente, a solicitud del interesado para los fines que se estimen convenientes.

MsC. Elías Alberto Torres Armas

Asesor

JURADO EVALUADOR

PRESIDENTE

MsC. Hugo Frias Torres

SECRETARIO

Ing. Nelson Oswaldo Pajares Quevedo

VUCA

Ing. César Augusto Maravi Carmen

DECLARACIÓN JURADA DE NO PLAGIO

Secretaría General
OFICINA DE GRADOS Y TÍTULOS

ANEXO 3-K

DECLARACIÓN JURADA DE NO PLAGIO DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL

YO WALTER MAS PORTOCAPRERO
identificado con DNI N° . 73 588150 Estudiante()/Egresado (x) de la Escuela Profesional de
ING ENTERÍO 2007ECNISTA de la Facultad de
MYGENIERIA ZOOTECHISTA, AGRONEGOCIOS Y BIOTECNOLOGIA
de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas.
DECLARO BAJO JURAMENTO QUE:
1. Soy autor de la Tesis titulada: EUPLUACIÓN DE LA DISPONIBILIDAD DE FIATERIA
SECA EN PRODERAS MIXTAS CREE GRASS + TREBOL) UTILIZANDO EL
METORO TRAPICIONAL Y EL EQUIRO GRASSMASTER PRO, EN EL SECTOR
SPHTD CRUZ DEC TINGO, DISTRITO DE MOLINOPPIAPA
obtener el Título Profesional de: MEENIERO 2007.ECNISTA

- 2. La Tesis no ha sido plagiada ni total ni parcialmente, y para su realización se han respetado las normas internacionales de citas y referencias para las fuentes consultadas.
- 3. La Tesis presentada no atenta contra derechos de terceros.
- La Tesis presentada no ha sido publicada ni presentada anteriormente para obtener algún grado académico previo o título profesional.
- 5. La información presentada es real y no ha sido falsificada, ni duplicada, ni copiada.

Por lo expuesto, mediante la presente asumo toda responsabilidad que pudiera derivarse por la autoría, originalidad y veracidad del contenido de la Tesis para obtener el Título Profesional, así como por los derechos sobre la obra y/o invención presentada. Asimismo, por la presente me comprometo a asumir además todas las cargas pecuniarias que pudieran derivarse para la UNTRM en favor de terceros por motivo de acciones, reclamaciones o conflictos derivados del incumplimiento de lo declarado o las que encontraren causa en el contenido de la Tesis.

De identificarse fraude, piratería, plagio, falsificación o que la Tesis para obtener el Título Profesional haya sido publicado anteriormente; asumo las consecuencias y sanciones civiles y penales que de mi acción se deriven.

Chachapoyas, 15 de didembre de 2019

Firma del(a) tesista

ACTA DE EVALUACIÓN DE SUSTENTACIÓN DE TESIS

Secretaría General OFICINA DE GRADOS Y TÍTULOS

ANEXO 3-N

ACTA DE EVALUACIÓN DE SUSTENTACIÓN DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL

En la ciudad de Chachapoyas, el día 17 de Diciembre del año 2019, siendo
las 15.00 horas, el aspirante Walter Mas Portocarrero
defiende en sesión pública la Tesis titulada: Evalvación de la disposibilidas
de materia seca en praderar mixtar (Que eros +
tresol) utilizando al metodo tradicional y el
equipo grass marter Pro, en el sector Santa Croz del Tingo, distrito de Molino pampa para obtener el Título Profesional de Lugemien Zooteonista
para obtener el Título Profesional de Lugerico Zosteenista
a ser otorgado por la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, ante el Jurado
Evaluador, constituido por:
Presidente: M. Sc. Hugo Frias Torres.
Secretario: Ing. Nelson Oswalds Pajare, Quevedo,
Secretario: Ing. Nelson Oswaldo Pajare, Quevedo. Vocal: Ing Cesar Augusto Maran Carmen.
Procedió el aspirante a hacer la exposición de la Introducción, Material y método, Resultados, Discusión y Conclusiones, haciendo especial mención de sus aportaciones originales. Terminada la defensa de la Tesis presentada, los miembros del Jurado Evaluador pasaron a exponer su opinión sobre la misma, formulando cuantas cuestiones y objeciones consideraron oportunas, las cuales fueron contestadas por el aspirante.
Tras la intervención de los miembros del Jurado Evaluador y las oportunas respuestas del aspirante, el Presidente abre un turno de intervenciones para los presentes en el acto, a fin de que formulen las cuestiones u objeciones que consideren pertinentes.
Seguidamente, a puerta cerrada, el Jurado Evaluador determinó la calificación global concedida la Tesis para obtener el Título Profesional, en términos de: Aprobado (>>) Desaprobado ()
Otorgada la calificación, el Secretario del Jurado Evaluador lee la presente Acta en sesión pública. A continuación se levanta la sesión.
Siendo las Abonas del mismo día y fecha, el Jurado Evaluador concluye el acto de sustentación de la Tesis para obtener el Título Profesional.
SESSEPPRIO PARTIDENTE
// VOCAL
OBSERVACIONES:
<i>Y</i>

ÍNDICE GENERAL

DEDICATORIA	iii
AGRADECIMIENTO	iv
AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRÍGUE MENDOZA DE AMAZONAS	
VISTO BUENO DEL ASESOR	vi
JURADO EVALUADOR	vi
DECLARACIÓN JURADA DE NO PLAGIO	viii
ACTA DE EVALUCION DE SUSTENTACION DE TESIS	ix
ÍNDICE GENERAL	X
ÍNDICE DE TABLAS	xi i
ÍNDICE DE FIGURAS	xiii
ÍNDICE DE ANEXOS	xiv
RESUMEN	XV
ABSTRACT	xv i
I. INTRODUCCIÓN	17
II. MATERIAL Y MÉTODOS	21
2.1. Área de estudio	21
2.2. Materiales y equipos utilizados	22
2.3. Metodología	22
2.4. Población y muestra	25
Variables de estudio	25
2.5. Medición de la variable	25
2.6. Análisis estadístico	26
III. RESULTADOS	27
IV. DISCUSIÓN	32
V. CONCLUSIONES	33

VI. RECOMENDACIONES	34
VII. REFERENCIAS BIBLIOGRÁFICA	35
ANEXOS	

ÍNDICE DE TABLAS

Tabla 1. Disponibilidad de materia seca por método de evaluación, por pradera y	
de evaluación	
Tabla 2. Análisis de varianza para materia seca (KgMs/ha)	29
Tabla 3. Materia seca (KgMs/ha) por método de evaluación	30
Tabla 4. Materia seca (KgMs/ha) por días de evaluación	30
Tabla 5. Materia seca (KgMs/ha) por pradera	31

ÍNDICE DE FIGURAS

Figura. 1. Mapa geográfico del sector el Tingo, Distrito de Molinopampa,	, región
Amazonas	21
Figura. 2. Kilogramos de materia seca disponible por hectárea evaluada con el	método
tradicional y el equipo GrassMaster Pro a los 20 días.	27
Figura. 3. Kilogramos de materia seca disponible por hectárea evaluada con el	método
tradicional y el equipo GrassMaster Pro a los 40 días.	28
Figura. 4. Kilogramos de materia seca disponible por hectárea evaluada con el	método
tradicional y el equipo GrassMaster Pro a los 60 días.	28
Figura. 5: Disponibilidad de materia seca por método de evaluación	29

ÍNDICE DE ANEXOS

Anexo 1: Pruebas de normalidad	37
Anexo 2: Materia seca (kgMs/ha) por método de evaluación	37
Anexo 3. Kilogramos de materia seca disponible por hectárea evaluada con el método	
tradicional y el GrassMaster Pro	37
Anexo 4. Datos obtenidos con el GrassMaster Pro en la primera evaluación (20 días de	
edad del forraje)	39
Anexo 5. Continuación del anexo 3	40
Anexo 6. Continuación del anexo 3	41
Anexo 7. Continuación del anexo 3	42
Anexo 8. Datos obtenidos con el GrassMaster Pro en la segunda evaluación (40 días de	
edad del forraje)	43
Anexo 9. Continuación del anexo 7.	44
Anexo 10. Continuación del anexo 7.	45
Anexo 11. Continuación del anexo 7.	46
Anexo 12. Datos obtenidos con el GrassMaster Pro en la tercera evaluación (60 días de	
edad del forraje).	47
Anexo 13. continuación del anexo 11	48
Anexo 14. Continuación del anexo 11.	49
Anexo 15. Continuación del anexo 11	50
Anexo 16. Registro de muestras en laboratorio	51
Anexo 17. Panel fotográfico.	53

RESUMEN

El propósito de la investigación fue evaluar la disponibilidad de materia seca en praderas para proveer al ganadero de Santa Cruz del Tingo, Chachapoyas, un método práctico, confiable y no invasivo, que le permita tomar decisiones de un buen uso de su pradera y del alimento al animal; se usó el método tradicional y el de capacitancia electrónica con el equipo GrassMaster Pro bajo la hipótesis de que uno de los dos métodos satisface el propósito de la investigación, a través del diseño en bloque completo al azar con dos fuentes de variación: 5 praderas, 3 periodos de evaluación, 20, 40 y 60 días, y el promedio de 15 unidades de observación por pradera; el análisis de varianza y comparaciones múltiples de promedios permitió concluir que el método de capacitancia electrónica reporta mediciones promedio de materia seca en pradera significativamente superiores al método tradicional y tiene todas las características deseables y concordantes para uso del ganadero.

Palabras clave: Praderas, materia seca, Capacitancia electrónica.

ABSTRACT

The purpose of the research was to evaluate the availability of dry matter in grasslands to provide the farmer of Santa Cruz del Tingo, Chachapoyas, with a practical, reliable and non-invasive method, which allows him to make decisions on the proper use of his prairie and food to the animal; the traditional and electronic capacitance method was used with the GrassMaster Pro equipment under the hypothesis that one of the two methods satisfies the purpose of the investigation, through randomized complete block design with two sources of variation: 5 grasslands, 3 evaluation periods, 20, 40 and 60 days, and the average of 15 observation units per meadow; the analysis of variance and multiple comparisons of averages allowed us to conclude that the electronic capacitance method reports average measurements of dry matter in prairie significantly superior to the traditional method and has all the desirable and concordant characteristics for use of the farmer.

Keywods: Meadows, dry matter, electronic capacitance.

I. INTRODUCCIÓN

Realidad problemática

En la actualidad Molipampa, es una cuenca ganadera de vacunos, principalmente de producción lechera que está creciendo de manera significativa, y la explotación de este potencial animal, requiere de una alimentación adecuada, que cubra sus requerimientos nutricionales para su producción, tanto leche, como de carne. Se ha observado que los productores ganaderos no evalúan la disponibilidad de materia seca, que tiene la pradera, a fin de dar diariamente la cantidad de alimento necesario para el crecimiento y producción del animal, porque no cuenta el procedimiento práctico de evaluación y tampoco tiene, las competencias suficientes de evaluación de nutrientes que necesita la dieta del animal; por lo tanto se existe la necesidad de proveer al ganadero de un método de evaluación no invasivo y práctico y fácil de usar para determinar la cantidad de materia seca que cuantifique la instante la disponibilidad de materia seca por hectárea (kgMs/ha). Cuyas praderas del sector el Tingo, estuvo compuesto de pasto de rye grass Trébol.

Antecedentes de la investigación

La ocupación del productor de Molinopampa, muestra que el 74.6% de las personas se dedican principalmente a la agricultura de pequeña escala y a la ganadería orientada a la producción de leche, basada en una crianza extensiva (pastoril) a base de pastos naturales (15434 has) con un bajo nivel tecnológico (Escobar, 2018). A diferencia de otros lugares con crianza intensiva que usan recursos, como granos, concentrados o subproductos de diferente tipo.

Las praderas son, sin duda alguna el alimento más económico y abundante para la alimentación (Pérez, 2017); los altos costos de producción han determinado que el pastoreo de praderas sea el principal sistema de utilización económica en la explotación bovina (Chasipanta, 2016); en los sistemas pastoriles, un aspecto central en el manejo lo constituye la disponibilidad de forraje para los animales, y el conocimiento de la disponibilidad de materia seca permite ajustar los sistemas y establecer los criterios de manejo en cada caso (Hepp, 2017); lo cual permite determinar la carga animal por pradera.

Las pasturas constituyen un factor fundamental en la producción ganadera; principalmente pasturas, naturales y mejoradas, pastoreadas directamente por los animales fueron y continúan siendo el alimento notoriamente más económico y parece muy difícil que esto cambie a demas la productividad de las pasturas mejoradas depende de una gran cantidad de factores siendo la fertilidad de los suelos uno de los factores fundamentales por tanto, toda tecnologia que contribuya a maximizar su producción, manteniendo la categoría de "alimento más económico", es una contribución al desarrollo de este sector (Quilligana, 2016).

En la actualidad la mayoria de las praderas, en su mayor parte, están compuestas por mezclas entre gramíneas como el rye grass y leguminosas como el trébol, que son una fuente barata y confiable para la alimentación de las vacas lecheras y aumenta la producción animal; esto asegura que los ganaderos puedan generan buena rentabilidad del negocio (Arenas, 2012).

En la medida que los sistemas de producción buscan aumentar su eficiencia productiva, se hace necesario tomar mayor conciencia de la importancia de la pradera como base fundamental de la alimentación en los sistemas ganaderos; el hecho de que las praderas sean un recurso más utilizado, no significa que se esten manejando en forma eficiente. En muchos de los casos, se desconoce su disponibilidad de forraje (en Kg/MS/Ha) que permita realizar los cálculos para manejar una correcta carga animal, que a su vez posibilite desarrollar al máximo el potencial de los animales, que beneficie a la productividad y duración de la pradera (Gebauer, 2004).

En cultivos de forraje donde se realiza el pastoreo de animales, se hace necesario obtener una estimación del rendimiento estacional y anual de materia seca para calcular la superficie a pastar, la tasa crecimiento, utilización y de un sistema de pastoreo (Castro *et al.*, 2011).

El uso de praderas compuestas por varias especies es una alternativa simple de desarrollar al trabajar sobre praderas naturalizadas; esta situación presenta ventajas relacionadas a balance de nutrientes, menor incidencia de plagas y mayor resistencia a condiciones adversas de clima, (diversidad genética) (Opazo, 2001).

Del mismo modo la determinación del contenido en agua de los alimentos es esencial para los nutricionistas y el ganadero (De la Roza *et al*, 2002); de tal modo que, al conocer la disponibilidad de forraje de la pradera, se pueden tomar mejores decisiones con respecto al manejo tanto de la pradera como de los animales, ya que es posible cuantificar y evaluar las variables que influyen directamente en el proceso del pastoreo; esto nos permitirá desarrollar al máximo el potencial productivo de los animales, beneficiando la productividad y persistencia de la pradera y por ende, asegurando el mayor retorno económico del sistema pecuario (Balocchi, 2016).

En consecuencia es imprescindible medir la disponibilidad de materia seca en la pradera directamente o estimarse a través de metodologías sencillas y prácticas que el ganadero pueda manejar fácilmente. Tal es así, que el instrumento de medición indirecta de disponibilidad de materia seca en praderas permanentes (GrassMaster Pro), es cada vez más frecuentemente usado en los predios ganaderos de la región sur del país (Chile) con el objetivo de sistematizar, controlar y aumentar la eficiencia de utilización del forraje en los sistemas pastoriles (Balocchi, 2016).

Justificación e importancia de la investigación

El motivo que nos llevó a investigar la disponibilidad de materia seca de las praderas, fue, debido a que los productores no realizan una evaluación la disponibilidad de materia seca de sus praderas antes del pastoreo. Pretendemos entonces usar una técnica fácil y confiable de la evaluación que es la capacitancia electrónica con el uso del equipo GrassMaster Pro, que el mismo productor lo puede poner en práctica ya el uso del equipo es fácil, le permite conocer, la carga animal por pradera, la edad correcta de pastoreo; de tal modo que puede darle un uso más eficiente a su pradera.

La información precedente fue la base para la presente investigación que pretendió dar respuesta a la siguiente pregunta ¿Los datos obtenidos con el equipo GrassMaster Pro, coinciden con los datos obtenidos con valor real obtenido con el método tradicional?, con el objetivo general de comparar la disponibilidad materia seca disponible en una pradera evaluado con el método de capacitancia electrónica con el uso del equipo GrassMaster Pro comparado con la evaluación del método tradicional (Metro cuadrado), asociado a los siguientes objetivos específicos: 1. Determinar

disponibilidad de materia seca en praderas rye grass + trébol utilizando el método tradicional (cuadrante), 2. Determinar la disponibilidad de materia seca en praderas rye grass + trébol con el uso de GrassMaster Pro, 3. Realizar un análisis de varianza de comparación de medidas sobre la disponibilidad de materia seca en praderas establecidas.

II. MATERIAL Y MÉTODOS

2.1. Área de estudio

La investigación se llevó a cabo en el sector Santa Cruz del Tingo, distrito de Molinopampa, Amazonas; limita por el norte con el distrito de Quinjalca y el distrito de Granada, por el suroeste con la provincia de Rodríguez de Mendoza, por el suroeste con el distrito de San Francisco de Daguas y el distrito de Sonche a 2407 msnm; con una temperatura promedio anual de 14.5 °C y una precipitación promedio anual de 1200 mm/año.

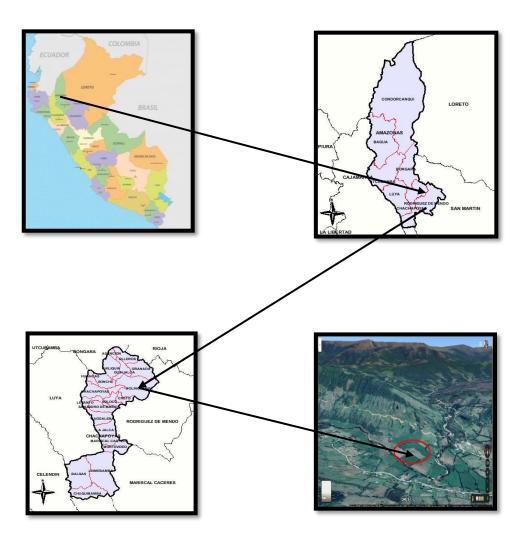


Figura 1. Mapa geográfico del sector el Tingo, Distrito de Molinopampa, región Amazonas.

2.2. Materiales y equipos utilizados

2.2.1. Material experimental.

- GrassMaster Pro.
- Tubos de PVC de 0.50 x 0.50 m para el muestreo tradicional.
- Balanza digital (KD-8B Max=5kg d=1g)
- Hoz
- Bolsas plásticas.
- Plumón indeleble.
- Libreta de apuntes.

2.2.2. Material de laboratorio.

- Estufa.
- Cajas de cartón.
- Balanza digital (KD-8B Max=5kg d=1g).
- Cartillas.

2.3. Metodología

La metodología fue experimental, aplicada y conducida en un diseño en bloque completo al azar con el modelo lineal aditivo definido por la siguiente expresión:

$$Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$

Donde:

 $\mathbf{Y}_{ij}=$ rendimiento de kg/MS/ha en la i-ésimo método de evaluación y del j-ésima pradera ganadera.

 μ = Media general

α_i = Efecto del método de evaluación

 β_j = Efecto de la pradera ganadera

 $\mathbf{\epsilon}_{ij} = \text{Error}$ aleatorio en el i-ésimo rendimiento de kg/MS/ha del j-ésima pradera ganadera.

Nivel de significancia: ($\alpha = 5\%$).

El factors del experimento fue: Método de evaluación; **1.** Método tradicional **2.** Método de capacitancia electrónica.

1. Método tradicional con muestras de forraje llevadas a laboratorio.

La cuantificación de la disponibilidad de materia seca mediante el método tradicional es el procedimiento exacto y objetivo, para la evaluación utiliza un marco cuadrado con una dimensión de 0.5 m²; se delimita el forraje en toda la pradera con el marco cuadrado, se corta el forraje; se recolecta el forraje cortado, se guarda en bolsas plásticas, se identifica (fecha, nombre o número del potrero, número de la muestra, etc.); finalmente se lleva la muestra a laboratorio, donde se utilizan hornos de ventilación forzada a temperatura de 105°C por 24 horas, para que la muestra obtenga un peso constante; es un proceso lento, pero asegura que el forraje no sufra alteraciones la composición nutricional.

2. Capacitancia electrónica con el equipo GrassMaster Pro.

El método de capacitancia electrónica que se realiza con el equipo Grass Master Pro, estima la disponibilidad materia seca a través de la conductividad eléctrica que produce un capacitómetro electrónico sobre la pradera, el capacitómetro consiste básicamente en un tubo de aluminio que envía una frecuencia eléctrica a través del forraje desde un generador, que produce un campo electrónico alrededor del tubo que se extiende cerca de 100 mm de radio por 400 mm de alto.

Este método usa la densidad de la pradera más la altura para estimar la cantidad de forraje disponible; recomendado su uso en praderas en crecimiento activo, ya que no funciona correctamente cuando existe excesivo material senescente o cuando el forraje tiene exceso de humedad. A continuación, se describe los pasos a seguir para usar el equipo:

El instrumento debe estar con suficiente carga; encender apretando el botón "Power/Exit"; seleccionar el sector que se desea medir usando las flechas (up/down) y apretar "Measure/Enter" para seleccionar; el instrumento va a requerir una lectura aérea. Para ello colocarlo horizontalmente en el aire, lejos de los pies y de otros objetos que puedan obstaculizar esta lectura; el instrumento

estará listo para iniciar la caminata; en cada punto posicionar el bastón tocando el suelo aplicando una pequeña fuerza para indicar al equipo que tome la lectura. Luego levantar el instrumento hasta el próximo punto. Si la lectura se tomó adecuadamente de escuchará un sonido "bip". En el visor se verá el número de la muestra y la disponibilidad en ese punto; tomar las lecturas caminando por el potrero o sector; si se requiere, es posible pausar (apretar "Menu/Pause" una vez; repetir para continuar); si se requiere, es posible borrar la lectura anterior mediante presionando "Undo/Next"; al terminar la caminata, presionar "Measure/Enter" y en el visor se indicará el promedio de disponibilidad de materia seca en kg/ha. Este valor se mantendrá en la memoria del equipo, para el potrero indicado; el equipo estará listo para un nuevo recorrido.

2.3.1. Métodos de Muestreo.

El proceso de muestreo fue el siguiente:

1. Con el método tradicional, se procedió así:

Se lanzó al azar el marco cuadrado de PVC (0.50 x 0.50 cm) sobre la pradera; se cortó 20 gr de forraje a 7 cm del suelo, con ayuda de una hoz; a continuación, se pesó las muestras con una balanza digital; las muestras se colocaron las bolsas plásticas con su correcta identificación; finalmente se llevó los 20 gr de muestra a una estufa de la UNTRM a 105°C por 24 horas. Para su cálculo se empleó la siguiente formula (tos, 2013).

$$MS = \frac{peso\ final}{peso\ inicial} \times 100$$

 Con el método de capacitancia electrónica con el equipo GrassMaster Pro, se procedió así:

Antes de cortar el forraje, se usó el equipo GrassMaster Pro, según las indicaciones antes señaladas y se registró los datos de materia seca y la lectura obtenida se guardó en la memoria del equipo.

2.4. Población y muestra

Población

El universo o población fue conformado por todas las praderas establecidas de rye grass + trébol, ubicado en el sector Santa Cruz del Tingo, distrito de Molinopampa, Amazonas.

Muestra

La muestra estuvo conformada por 5 praderas que tenían las características especificadas para el estudio.

Muestreo

La selección de la muestra fue a criterio, es decir se tenía que tener en cuenta, que la pradera tenga una cobertura homogénea de rye grass + trébol, así como también el periodo de descanso. (20, 40 y 60 días de edad después del pastoreo).

Variables de estudio

Variable independiente

Tipos de métodos de evaluación

- Tipo 1: Método tradicional con muestras de forraje llevadas a laboratorio.
- Tipo 2: Método capacitancia electrónica con el equipo GrassMaster Pro.

Dos fuentes de variación:

- Pradera (pradera 1, pradera 2, pradera 3, pradera 4, pradera 5).
- Periodo de evaluación (20 días, 40 días, 60 días).

Variable dependiente

Rendimiento de materia seca (kg/MS/ha).

2.5. Medición de la variable

La medición de la variable se realizó en kg/MS/ ha. a los 20, 40 y 60 días.

2.6. Análisis estadístico

Diseño en bloque completo al azar con dos fuentes de variación.

Los datos fueron digitados en Excel y exportado a Spss y statgraphics, con el que se realizó la evaluación de los supuestos del modelo lineal aditivo, con la prueba de Shapiro – Wilk para la normalidad de las observaciones para ambos tratamientos, prueba de Levene para homogeneidad de varianza y luego se realizó el análisis de varianza y comparaciones de rendimiento promedio de materia seca entre los dos métodos de evaluación de quien de separar el efecto de pradera (bloque) y días de evaluación.

Análisis de datos

Los datos obtenidos fueron sometidos a una prueba de comparación entre el valor real de materia seca obtenidos con el método tradicional y los datos obtenidos con el GrassMaster Pro. Para esto se realizó un análisis de varianza con la finalidad de encontrar diferencia significativa entre ambos métodos de evaluación de materia seca.

III. RESULTADOS

Tabla 1. Disponibilidad de materia seca por método de evaluación, por pradera y días de evaluación.

dias de evaluación.		Método de eval	luación
			Capacitancia
Evaluación	Pradera Bloque	Tradicional	Electrónica
	Pradera 1	2613.33	2302.27
	Pradera 2	2660.00	2600.73
20 días (27/05/19)	Pradera 3	2706.67	3182.53
	Pradera 4	2753.33	3236.13
	Pradera 5	2706.67	3197.20
	Pradera 1	2870.00	3257.73
	Pradera 2	2870.00	3507.73
40 días (16/06/19)	Pradera 3	3570.00	3882.67
	Pradera 4	3430.00	4181.47
	Pradera 5	3430.00	4481.20
	Pradera 1	4584.87	5200.00
	Pradera 2	4483.53	4853.33
60 días (06/07/19)	Pradera 3	4402.87	5113.33
	Pradera 4	4883.07	5200.00
	Pradera 5	4791.13	4940.00

Fuente: datos de campo

En las figuras 2, 3 y 4, se muestran la disponibilidad materia seca obtenido con el método tradicional y el método de capacitancia electrónica con el equipo Grass Master Pro. Durante los 60 días de evaluación que duró la investigación.

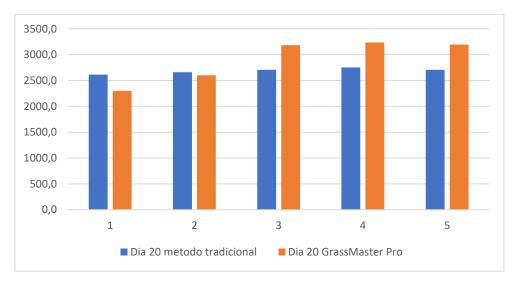


Figura 2. Kilogramos de materia seca disponible por hectárea evaluada con el método tradicional y el equipo GrassMaster Pro a los 20 días.

Fuente: Datos de campo.

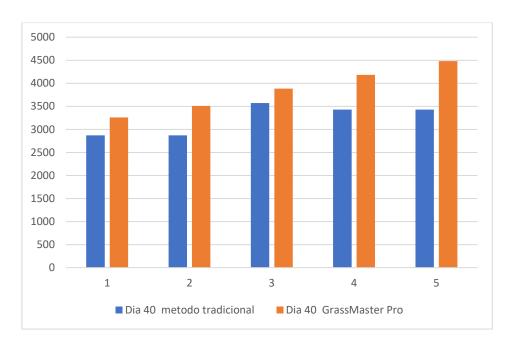


Figura 3. Kilogramos de materia seca disponible por hectárea evaluada con el método tradicional y el equipo GrassMaster Pro a los 40 días.

Fuente: Datos de campo.

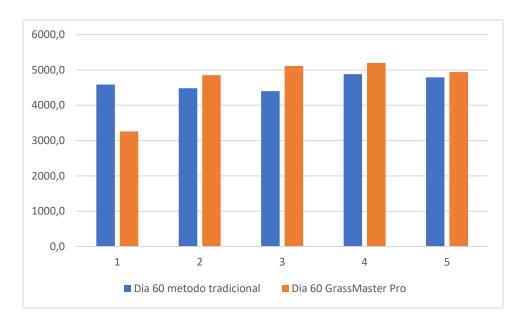


Figura 4. Kilogramos de materia seca disponible por hectárea evaluada con el método tradicional y el equipo GrassMaster Pro a los 60 días.

Fuente: Datos de campo.

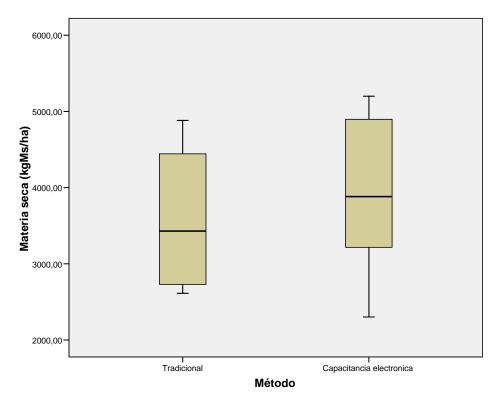


Figura 5. Disponibilidad de materia seca por método de evaluación Fuente: Tabla 1, datos de campo

El modelo lineal aditivo del experimento fue en DBCA con dos fuentes de variación, días de evaluación y pradera. No se detectó evasión de supuestos básicos del modelo, es decir, normalidad de las observaciones (p>0.01, prueba de Shapiro-Wilk) y homogeneidad de varianzas (p>0.01, prueba de Levene)

Tabla 2. Análisis de varianza para materia seca (KgMs/ha)

	Suma de		Media				
Fuente	cuadrados	gl	cuadrática	F	Significación	5%	1%
Evaluación	21,493,636.621	2	10,746,818.310	172.688	0.000	*	**
Pradera	1,278,364.171	4	319,591.043	5.135	0.004	*	**
Método	1,357,174.891	1	1,357,174.891	21.808	0.000	*	**
Error	1,369,118.660	22	62,232.666				
Total,	25,498,294.342	20	_	•		•	
corregida	23,490,294.342	29					

Fuente: Tabla 1, datos de campo

La prueba F del análisis de varianza indica que existe diferencia altamente significativa entes ambos métodos de evaluación de materia seca, o al menos uno de los dos métodos reporta una medición promedio de materia seca significativamente diferente que el otro; después de separar las fuentes de variación correspondientes a días de evaluación y pradera; lo cual implica realizar una prueba de comparación de promedios para saber cuál es el método de mayor o menor medición promedio.

Tabla 3. Materia seca (KgMs/ha) por método de evaluación

Método	Media ¹	N	Desv. típ.
Tradicional	3517.03b	15	872.25248
Capacitancia electrónica	3942.42a	15	981.60139
Total	3,729.73	30	937.68413

¹⁾ Letras iguales indican diferencias no significativas p>0.05. Prueba Duncan

La prueba Duncan de comparación múltiple de promedios indica que el método de capacitancia electrónica con el equipo Grass Master es el que reporta una medición promedio mayor que el método tradicional.

Tabla 4. Materia seca (KgMs/ha) por días de evaluación.

Evaluación	Media ¹	N	Desv. típ.	
20 días	2795.89c	10	308.33344	
40 días	3548.08b	10	518.30158	
60 días	4845.21a	10	285.05425	
Total	3,729.73	30	937.68413	

¹⁾ Letras iguales indican diferencias no significativas p>0.05. Prueba Duncan

Así mismo la prueba Duncan, reportó una mayor medición promedio de materia seca a los 60 días.

Tabla 5. Materia seca (KgMs/ha) por pradera

Pradera	Media ¹	N	Desv. típ.
P1	3471.37b	6	1,160.89270
P2	3495.89b	6	970.56459
P3	3809.68a	6	863.02954
P4	3947.33a	6	969.40031
P5	3924.37a	6	932.61010
Total	3,729.7300	30	937.68413

¹⁾ Letras iguales indican diferencias no significativas p>0.05. Prueba Duncan

Y las praderas que presentan mayor producción de materia seca fueron las praderas 3, 4, y 5.

IV. DISCUSIÓN

Los resultados obtenidos en las mediciones con el método tradicional presentaron una diferencia de 425.4 KgMs/ha en promedio, con respecto al método de capacitancia electrónica, comparado con (Calvache, 2013), que encontró una diferencia de tan solo 25,64 KgMs/a en condiciones similares a nuestra evaluación, pero con diferente ecuación.

En un estudio realizado por (Gebauer, 2004). Donde evaluó la disponibilidad de materia seca de praderas con el equipo GrassMaster Pro, en época de primavera, se encontró una similitud con nuestra investigación, obteniendo una diferencia entre ambos métodos de evaluación.

Los datos encontrados en nuestra investigación de evaluación con el equipo Grassmaster pro, no coinciden con el valor real debido a que las muestras se recolectaron en presencia de humedad y esto queda corroborado según (Gabriels y Van Den Berg, 1993), donde confirman la dificultad del equipo para calcular materia seca en presencia de humedad o presencia de agua sobre la vegetación.

Del análisis de varianza entre ambos métodos para evaluar materia seca de pradera, encontramos diferencias significativas entre métodos de evaluación, así como entre tratamientos y bloques, debido a que la ecuación está dada para ser usado en praderas propias de Nueva Zelanda, país de origen del Grassmaster Pro, ya que en este país podemos encontrar praderas con un buen manejo de pastoreo, manejo de la pradera y una buena fertilización, lo que conlleva a que la densidad de la pradera sea mayor obteniendo mayor número de macollos por metro cuadrado (White, 1999).

V. CONCLUSIONES

Los resultados obtenidos en la medición de materia seca de praderas con el método tradicional presentan diferencia con respecto al método de capacitancia electrónica realizado con el equipo GrassMaster Pro; obteniendo mayores resultados con el GrassMaster Pro.

La disponibilidad de materia seca por pradera evaluado con el método tradicional (metro cuadrado), se encontró un promedio de 2688.00, 3234.00, 4629.09 de Kg/Ms/ha, para los días 20, 40, 60 respectivamente.

La disponibilidad de materia seca por pradera evaluado con el método de capacitancia electrónica con el equipo GrassMaster Pro, se encontró un promedio de 2903.77, 3862.16, 5061.33 de Kg/Ms/ha, para los días 20, 40, 60 respectivamente.

Las praderas, 3, 4 y 5 presentan más disponibilidad de materia seca con respecto a las praderas 1 y 2, debido a que estas praderas cuentan con una población más densa de Rye grass + trébol.

Es posible evaluar la disponibilidad de materia seca, sin embrago el método de capacitancia electrónica presenta dificultades de precisión en el lugar donde se realizó la investigación, debido a que el lugar de origen del equipo presenta un buen manejo de sus pasturas en comparación al sector Santa Cruz del Tingo.

VI. RECOMENDACIONES

Para las próximas investigaciones a realizar con el equipo GrassMaster Pro, en primer lugar, se tiene que calibrar el equipo para obtener una ecuación que arroje datos más confiables, acercándose al valor real del contenido de materia seca.

Se recomienda realizar ecuaciones de calibración en diferentes épocas del año, dado que las condiciones climáticas afectan la toma de datos de disponibilidad de materia seca.

Al realizar estudios con el uso del GrassMaster Pro, se aconseja tener en cuenta la humedad y precipitación dado que estos son factores limitantes para un muestreo adecuado de la disponibilidad de materia seca.

Los datos obtenidos con el método tradicional en la investigación, nos sirven para mejorar y generar nuevas ecuaciones para que el uso del equipo GrassMaster Pro nos brinde una lectura confiable y precisa.

El equipo GrassMaster Pro es una herramienta de fácil manejo y adquisición por parte del productor ganadero, ya que con su uso facilita al productor tomar decisiones adecuadas sobre su pradera, determinando así, de la cantidad de animales a pastorear por pradera, edad de pastoreo.

VII. REFERENCIAS BIBLIOGRÁFICA

- Arenas, J. (2012). Asociación de gramíneas y leguminosas en praderas. Lucta.
- Balocchi, O., y Demanet, R. (2016). *Determinacion de la disponibilidad de materia seca de praderas en pastoreo*. ResearchGate.
- Calvache, I. (2013). calibracion del Del Rising Plate Meter para estimar la disponibilidad de materia seca en praderas mixtas (lolium perenne pennisetum clandestinum) en el municipio de Cota, Cundinamarca. Cota, Cundinamarca, Colombia.
- Castro, R., Hernández, A, Aguilar, B. y Ramírez, O. (2011). Comparación de métodos para estimar el rendimiento de forraje en praderas asociadas. Naturaleza y desarrollo, 9(1).
- Chasipanta, C.(2016). Evaluación de tres frecuencias de defoliación y tres horas de aprovechamiento diario sobre la acumulacion de cabrohidratos solubles en pasturas de rye grass perenne (lolium perenne) y trébol blanco (trifolium repens) en época de invierno (fase i). Trabajo final de titulación. Quito.
- De la Roza, B., Martinéz, A., y Argamentería Gutiérrez, A. (2002). Determinación de materia seca en pastos y forrajes a partir del de la temperatura de secado para análisis. Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA).
- Escobar, L. (2018). Productividad y Calidad Nutritiva de pastos en sistemas silvopastoriles con diferentes especies arboreas en la microcuenta de Molinopampa. Chachapoyas, Chachapoyas, Peru.
- Gabriels, p., y Van Den, j. (1993). *Calibration of two techniques for estimating*. Grass and Forage Science, 48, 329-335.
- Gebauer, O. (2004). Evaluación de los metodos de altura comprimida y capacitancia electrónica para estimar la disponibilidad de forraje en praderas de pastoreo. Valdivia Chile.
- Hepp, C., y Reyes, C. (2017). Determinación de la disponibilidad de materia seca en praderas a pastoreo en la patagonia húmeda (Región Aysén). Coyhaique, Chile: Temuco.
- Linares, M., y Cárdenas, A. (2013). Calibración del Rising plate meter para estimar la disponiblidad de materia seca en praderas mixtas lolium perenne -pennisetum clandestinum en el municipi de Cota, Cundinamarca. Bogota.
- Opazo R., Teuber N., y Siebald, E. (2001). *Seminario de leche. INIA Remehue*. Osorno, Chile.

- Pérez, M. (2017). Comparación del método del plato medidor de la altura comprimida y el método del cuadrante para la determinación del rendimiento de materia seca en praderas sobre los tres mil metros de altitud. Informe final de titulación. Quito, Ecuador.
- Quilligana, P. (2016). Comparación productiva de tres cultivares de ryegrass perenne (Lolium perenne), en términos de producción y calidad. Tesis de titulacion. Quito, Ecuador.
- Toledo, J., Burns, J., Lucas, H., y Angelone, A. (1980). *Herbaje measurement in situ by electronics. CAlibration, characterization and field application of the earth plate forage capatitance meter.* Grass asn Forage Science, 35, 189-196.
- White, J., y Hodgson, j. (1999). New Zealand Pasture and Crop. Science Auckland.

ANEXOS

Anexo 1. Pruebas de normalidad

	Método de Evaluación	Kolmogoro	v-Sm	irnov(a)	Shapir	o-Wil	k
		Estadístic			Estadístic		
		0	gl	Sig.	0	gl	Sig.
Materia seca (kgMs/ha)	Tradicional	.238	15	.023	.837	15	.011
	Capacitancia electrónica	.157	15	.200(*	.917	15	.172

^{*} Este es un límite inferior de la significación verdadera. a Corrección de la significación de Lilliefors.

Anexo 2. Materia seca (kgMs/ha) por método de evaluación

Estadístico de Levene	gl1	gl2	Sig.
.438	1	28	.513

Anexo 3. Kilogramos de materia seca disponible por hectárea evaluada con el método tradicional y el GrassMaster Pro

Praderas	N° de la	20 días (27/05/19)	40 días (16/06/19)	60 días (06/07/19)
evaluadas	muestra	método	GrassMaster	método	GrassMaster	método	GrassMaste
evaluadas	maestra	tradicional	Pro	tradicional	Pro	tradicional	Pro
	1	2100	1776	3150	2725	4856	5200
	2	2800	2620	3150	3353	5254	5200
	3	2800	2352	3150	3023	4767	6500
	4	2800	1817	3150	3484	4313	5200
	5	2800	1739	2100	2726	4783	5200
	6	2100	2274	3150	3705	3509	6500
	7	2100	2712	2100	3517	4229	5200
Pradera 1	8	2800	2502	3150	3269	3380	5200
	9	2800	2021	3150	2762	3605	3900
	10	2800	2032	2100	2746	5324	5200
	11	3500	2514	2100	2588	4989	5200
	12	2100	2433	3150	3264	3825	5200
	13	2800	2664	4200	4239	6251	5200
	14	2800	2882	2100	3723	4937	3900
	15	2100	2196	3150	3742	4751	5200
	1	2800	2493	3150	2915	4293	3900
	2	2800	2852	2100	4094	5163	5200
	3	2800	2522	3150	3082	3828	3900
	4	2800	2664	2100	3266	5307	3900
	5	2800	2447	3150	3368	3560	6500
	6	2800	3552	2100	4242	4471	5200
	7	2800	3673	2100	3875	3342	5200
Pradera 2	8	2800	2320	3150	3757	4496	6500
	9	2100	2514	3150	3077	4653	3900
	10	2800	2062	2100	3722	5408	3900
	11	2100	2307	3150	3156	4104	6500
	12	2800	2076	3150	3447	5331	3900
	13	2100	2730	3150	3398	4781	3900
	14	2800	2619	4200	3497	4080	5200
	15	2800	2180	3150	3720	4436	5200

	1	2800	3314	3150	3982	4363	6500
	2	2800	2733	4200	2987	4413	2600
	3	2800	3052	2100	3781	3925	6500
	4	2800	3510	3150	3668	5236	6500
	5	3500	2688	3150	2909	3690	3900
	6	2800	2365	3150	3734	4173	3900
	7	2800	2807	4200	4010	4740	5200
Pradera 3	8	2100	3448	3150	3398	4431	5200
	9	2800	2940	5250	3779	4367	6500
	10	2800	3943	4200	4063	4786	6500
	11	2100	2699	4200	5336	3731	3900
	12	2800	4060	4200	4044	4450	5200
	13	2100	3007	4200	4685	5120	5200
	14	2800	3935	3150	3027	3727	3900
	15	2800	3237	2100	4837	4891	5200
	1	2800	2698	3150	3804	4419	5200
	2	2800	3312	4200	3881	4992	5200
	3	2800	2885	3150	3889	5299	5200
	4	2800	4134	2100	4821	4636	5200
	5	2100	4067	4200	4124	4836	5200
	6	2100	3350	3150	4063	3925	5200
	7	2800	3081	3150	3725	5098	3900
Pradera 4	8	3500	3795	4200	4576	5464	5200
Tradera T	9	2800	2372	4200	4605	5414	5200
	10	2800	2950	3150	4649	4911	5200
	11	2800	3454	5250	4535	4212	3900
	12	2800	2890	2100	4574	4649	6500
	13	2800	2373	3150	3505	5101	6500
	14	3500	4080	3150	3915	5878	5200
	15	2100	3101	3150	4056	4412	5200
	1	2100	3170	4200	5126	6894	5200
	2	3500	2987	3150	4563	4476	5200
	3	2800	3500	2100	4201	4535	5200
		2800		4200	4098	4141	5200
	4	2800	3182	2100		5145	5200 5200
	5		3193		5196		6500
	6	2800	2770	3150	4166	5347	
Dundaya F	7	2800	3478	4200	4068	4083	3900
Pradera 5	8	2800	3320	3150	4510 4135	4395	2600
	9	2800	3105	4200	4135	4711	2600
	10	2100	3030	2100	3867	4541	3900
	11	2800	2816	3150	3977	4165	5200
	12	2100	3431	4200	5194	5681	6500
	13	2800	3502	4200	4612	4524	6500
	14	2800	3376	3150	5288	4920	3900
	15	2800	3098	4200	4217	4309	6500

Anexo 4. Datos obtenidos con el GrassMaster Pro en la primera evaluación (20 días de edad del forraje)

GM Paddock #	Name	Area (ha)	Entry date	Soil CMR	Raw air CMR	Sample count	Grass CMR	Grass Type	Dry matter %	Temperature (°C)	Average dry matter (kg/ha)	Dowload date	GrassMaster version	Equation slope	Equation intercept	Equation units
1	Paddock 001	0	27/05/2019 10:50	0	23507	3	4325	1	0	99.9	1776	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
2	Paddock 002	0	27/05/2019 10:54	0	23449	3	6085	1	0	99.9	2620	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
3	Paddock 003	0	27/05/2019 10:56	0	23522	3	5526	1	0	99.9	2352	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
4	Paddock 004	0	27/05/2019 11:14	0	23486	3	4391	1	0	99.9	1807	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
5	Paddock 005	0	27/05/2019 11:15	0	23473	3	4248	1	0	99.9	1739	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
6	Paddock 006	0	27/05/2019 11:16	0	23473	3	5363	1	0	99.9	2274	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
7	Paddock 007	0	27/05/2019 11:18	0	23466	3	6276	1	0	99.9	2712	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
8	Paddock 008	0	27/05/2019 11:19	0	23478	3	5839	1	0	99.9	2502	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
9	Paddock 009	0	27/05/2019 11:21	0	23475	3	4837	1	0	99.9	2021	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
10	Paddock 010	0	27/05/2019 11:23	0	23454	3	4859	1	0	99.9	2032	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
11	Paddock 011	0	27/05/2019 11:26	0	23431	3	5863	1	0	99.9	2514	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
12	Paddock 012	0	27/05/2019 11:27	0	23428	3	5694	1	0	99.9	2433	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
13	Paddock 013	0	27/05/2019 11:29	0	23492	3	6175	1	0	99.9	2664	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
14	Paddock 014	0	27/05/2019 11:31	0	23450	3	6631	1	0	99.9	2882	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
15	Paddock 015	0	27/05/2019 11:33	0	23478	3	5201	1	0	99.9	2196	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
16	Paddock 016	0	27/05/2019 11:37	0	23445	3	5820	1	0	99.9	2493	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
17	Paddock 017	0	27/05/2019 11:38	0	23460	3	6568	1	0	99.9	2852	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 5. Continuación del anexo 3

18	Paddock 018	0	27/05/2019 11:40	0	23444	3	5880	1	0	99.9	2522	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
19	Paddock 019	0	27/05/2019 11:41	0	23447	3	6177	1	0	99.9	2664	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
20	Paddock 020	0	27/05/2019 11:43	0	23461	3	5723	1	0	99.9	2447	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
21	Paddock 021	0	27/05/2019 11:44	0	23479	3	8027	1	0	99.9	3552	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
22	Paddock 022	0	27/05/2019 11:45	0	23481	3	8278	1	0	99.9	3673	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
23	Paddock 023	0	27/05/2019 11:47	0	23481	3	5459	1	0	99.9	2320	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
24	Paddock 024	0	27/05/2019 11:48	0	23495	3	5863	1	0	99.9	2514	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
25	Paddock 025	0	27/05/2019 11:50	0	23483	3	4921	1	0	99.9	2062	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
26	Paddock 026	0	27/05/2019 11:51	0	23500	3	5432	1	0	99.9	2307	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
27	Paddock 027	0	27/05/2019 11:53	0	23503	3	4951	1	0	99.9	2076	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
28	Paddock 028	0	27/05/2019 11:55	0	23474	3	6314	1	0	99.9	2730	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
29	Paddock 029	0	27/05/2019 11:56	0	23495	3	6082	1	0	99.9	2619	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
30	Paddock 030	0	27/05/2019 11:59	0	23458	3	5167	1	0	99.9	2180	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
31	Paddock 031	0	27/05/2019 12:33	0	23494	3	7530	1	0	99.9	3314	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
32	Paddock 032	0	27/05/2019 12:35	0	23488	3	6320	1	0	99.9	2733	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
33	Paddock 033	0	27/05/2019 12:36	0	23676	3	6985	1	0	99.9	3052	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
34	Paddock 034	0	27/05/2019 12:37	0	23544	3	7938	1	0	99.9	3510	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
35	Paddock 035	0	27/05/2019 12:38	0	23506	3	6225	1	0	99.9	2688	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
36	Paddock 036	0	27/05/2019 12:39	0	23567	3	5554	1	0	99.9	2365	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
37	Paddock 037	0	27/05/2019 12:41	0	23560	3	6473	1	0	99.9	2807	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 6. Continuación del anexo 3

38	Paddock 038	0	27/05/2019 12:42	0	23548	3	7809	1	0	99.9	3448	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
39	Paddock 039	0	27/05/2019 12:43	0	23540	3	6750	1	0	99.9	2940	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
40	Paddock 040	0	27/05/2019 12:44	0	23510	3	8840	1	0	99.9	3943	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
41	Paddock 041	0	27/05/2019 12:45	0	23521	3	6249	1	0	99.9	2699	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
42	Paddock 042	0	27/05/2019 12:47	0	23519	3	9084	1	0	99.9	4060	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
43	Paddock 043	0	27/05/2019 12:48	0	23522	3	6890	1	0	99.9	3007	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
44	Paddock 044	0	27/05/2019 12:49	0	23576	3	8824	1	0	99.9	3935	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
45	Paddock 045	0	27/05/2019 12:50	0	23566	3	7369	1	0	99.9	3237	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
46	Paddock 046	0	27/05/2019 12:57	0	23525	3	6247	1	0	99.9	2698	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
47	Paddock 047	0	27/05/2019 12:58	0	23533	3	7525	1	0	99.9	3312	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
48	Paddock 048	0	27/05/2019 01:00	0	23493	3	6636	1	0	99.9	2885	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
49	Paddock 049	0	27/05/2019 01:01	0	23507	3	9239	1	0	99.9	4134	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
50	Paddock	0	27/05/2019	0	23529	3	9098	1	0	99.9	4067	29/05/2019 10:11	GrassMaster	0.48	-300	kg
51	050 Paddock	0	01:02 27/05/2019	0	23593	3	7605	1	0	99.9	3350	29/05/2019	Pro 3.03 GrassMaster	0.48	-300	kg
52	051 Paddock	0	01:03 27/05/2019	0	23459	3	7045	1	0	99.9	3081	10:11 29/05/2019	Pro 3.03 GrassMaster	0.48	-300	kg
53	052 Paddock	0	01:04 27/05/2019	0	23472	3	8532	1	0	99.9	3795	10:11 29/05/2019	Pro 3.03 GrassMaster	0.48	-300	kg
54	053 Paddock	0	01:06 27/05/2019	0	23505	3	5567	1	0	99.9	2372	10:11 29/05/2019	Pro 3.03 GrassMaster	0.48	-300	kg
55	054 Paddock	0	01:07 27/05/2019	0	23502	3	6772	1	0	99.9	2950	10:11 29/05/2019	Pro 3.03 GrassMaster	0.48	-300	kg
56	055 Paddock	0	01:08 27/05/2019	0	23481	3	7821	1	0	99.9	3454	10:11 29/05/2019	Pro 3.03 GrassMaster	0.48	-300	kg
57	056 Paddock 057	0	01:10 27/05/2019 01:11	0	23496	3	6646	1	0	99.9	2890	10:11 29/05/2019 10:11	Pro 3.03 GrassMaster Pro 3.03	0.48	-300	kg

Anexo 7. Continuación del anexo 3

58	Paddock 058	0	27/05/2019 01:12	0	23473	3	5570	1	0	99.9	2373	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
59	Paddock 059	0	27/05/2019 01:14	0	23509	3	9126	1	0	99.9	4080	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
60	Paddock 060	0	27/05/2019 01:15	0	23526	3	7086	1	0	99.9	3101	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
61	Paddock 061	0	27/05/2019 01:28	0	23491	3	7230	1	0	99.9	3170	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
62	Paddock 062	0	27/05/2019 01:29	0	23491	3	6848	1	0	99.9	2987	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
63	Paddock 063	0	27/05/2019 01:30	0	23484	3	7917	1	0	99.9	3500	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
64	Paddock 064	0	27/05/2019 01:31	0	23473	3	7256	1	0	99.9	3182	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
65	Paddock 065	0	27/05/2019 01:32	0	23455	3	7279	1	0	99.9	3193	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
66	Paddock 066	0	27/05/2019 01:33	0	23485	3	6396	1	0	99.9	2770	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
67	Paddock 067	0	27/05/2019 01:34	0	23499	3	7872	1	0	99.9	3478	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
68	Paddock 068	0	27/05/2019 01:36	0	23487	3	7543	1	0	99.9	3320	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
69	Paddock 069	0	27/05/2019 01:37	0	23468	3	7095	1	0	99.9	3105	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
70	Paddock 070	0	27/05/2019 01:38	0	23499	3	6938	1	0	99.9	3030	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
71	Paddock 071	0	27/05/2019 01:39	0	23462	3	6492	1	0	99.9	2816	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
72	Paddock 072	0	27/05/2019 01:40	0	23485	3	7774	1	0	99.9	3431	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
73	Paddock 073	0	27/05/2019 01:41	0	23507	3	7921	1	0	99.9	3502	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
74	Paddock 074	0	27/05/2019 01:42	0	23513	3	7660	1	0	99.9	3376	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg
75	Paddock 075	0	27/05/2019 01:43	0	23497	3	7081	1	0	99.9	3098	29/05/2019 10:11	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 8. Datos obtenidos con el GrassMaster Pro en la segunda evaluación (40 días de edad del forraje)

GM Paddock #	Name	Area (ha)	Entry date	Soil CMR	Raw air CMR	Sample count	Grass CMR	Grass Type	Dry matter %	Temperature (°C)	Average dry matter (kg/ha)	Dowload date	Grass Master version	Equation slope	Equation intercept	Equation units
1	Paddock 001	0	16/06/2019 10:18	0	23627	3	6303	1	0	99.9	2725	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
2	Paddock 081	0	16/06/2019 10:20	0	23464	3	7612	1	0	99.9	3353	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
3	Paddock 082	0	16/06/2019 10:22	0	23464	3	6923	1	0	99.9	3023	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
4	Paddock 083	0	16/06/2019 10:24	0	23378	3	7884	1	0	99.9	3484	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
5	Paddock 084	0	16/06/2019 10:26	0	23476	3	6306	1	0	99.9	2726	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
6	Paddock 085	0	16/06/2019 10:27	0	23427	3	8345	1	0	99.9	3705	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
7	Paddock 086	0	16/06/2019 10:29	0	23805	3	7954	1	0	99.9	3517	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
8	Paddock 087	0	16/06/2019 10:31	0	23651	3	7437	1	0	99.9	3269	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
9	Paddock 088	0	16/06/2019 10:32	0	23600	3	6380	1	0	99.9	2762	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
10	Paddock 089	0	16/06/2019 10:33	0	23730	3	6347	1	0	99.9	2746	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
11	Paddock 090	0	16/06/2019 10:34	0	23777	3	6017	1	0	99.9	2588	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
12	Paddock 091	0	16/06/2019 10:35	0	23900	3	7425	1	0	99.9	3264	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
13	Paddock 092	0	16/06/2019 10:36	0	23802	3	9458	1	0	99.9	4239	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
14	Paddock 093	0	16/06/2019 10:39	0	23748	3	8383	1	0	99.9	3723	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
15	Paddock 094	0	16/06/2019 10:40	0	23645	3	8421	1	0	99.9	3742	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
16	Paddock 095	0	16/06/2019 10:42	0	23735	3	6698	1	0	99.9	2915	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
17	Paddock 096	0	16/06/2019 10:44	0	23717	3	9156	1	0	99.9	4094	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
18	Paddock 097	0	16/06/2019 10:45	0	23738	3	7046	1	0	99.9	3082	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 9. Continuación del anexo 7.

19	Paddock 098	0	16/06/2019 10:46	0	23715	3	7430	1	0	99.9	3266	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
20	Paddock 099	0	16/06/2019 10:47	0	23816	3	7642	1	0	99.9	3368	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
21	Paddock 100	0	16/06/2019 10:49	0	24167	3	9464	1	0	99.9	4242	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
22	Paddock 101	0	16/06/2019 10:50	0	24122	3	8699	1	0	99.9	3875	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
23	Paddock 102	0	16/06/2019 10:51	0	24176	3	8453	1	0	99.9	3757	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
24	Paddock 103	0	16/06/2019 10:53	0	23902	3	7036	1	0	99.9	3077	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
25	Paddock 104	0	16/06/2019 10:55	0	23596	3	8380	1	0	99.9	3722	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
26	Paddock 105	0	16/06/2019 10:56	0	23793	3	7200	1	0	99.9	3156	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
27	Paddock 106	0	16/06/2019 10:57	0	23932	3	7808	1	0	99.9	3447	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
28	Paddock 107	0	16/06/2019 10:58	0	23693	3	7705	1	0	99.9	3398	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
29	Paddock 108	0	16/06/2019 10:59	0	23516	3	7912	1	0	99.9	3497	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
30	Paddock 109	0	16/06/2019 11:00	0	23518	3	8376	1	0	99.9	3720	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
31	Paddock 110	0	16/06/2019 11:32	0	23454	3	8921	1	0	99.9	3982	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
32	Paddock 111	0	16/06/2019 11:33	0	23552	3	6849	1	0	99.9	2987	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
33	Paddock 112	0	16/06/2019 11:34	0	23470	3	8503	1	0	99.9	3781	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
34	Paddock 113	0	16/06/2019 11:34	0	23612	3	8268	1	0	99.9	3668	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
35	Paddock 114	0	16/06/2019 11:36	0	23482	3	6687	1	0	99.9	2909	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
36	Paddock 115	0	16/06/2019 11:36	0	23639	3	8405	1	0	99.9	3734	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
37	Paddock 116	0	16/06/2019 11:38	0	23476	3	8987	1	0	99.9	4013	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
38	Paddock 117	0	16/06/2019 11:38	0	23530	3	7706	1	0	99.9	3398	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 10. Continuación del anexo 7.

39	Paddock 118	0	16/06/2019 11:39	0	23538	3	8498	1	0	99.9	3779	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
40	Paddock 119	0	16/06/2019 11:41	0	23572	3	9090	1	0	99.9	4063	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
41	Paddock 120	0	16/06/2019 11:42	0	23689	3	11742	1	0	99.9	5336	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
42	Paddock 121	0	16/06/2019 11:42	0	23638	3	9050	1	0	99.9	4044	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
43	Paddock 122	0	16/06/2019 11:43	0	23723	3	10387	1	0	99.9	4685	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
44	Paddock 123	0	16/06/2019 11:44	0	23750	3	6933	1	0	99.9	3027	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
45	Paddock 124	0	16/06/2019 11:45	0	23665	3	10704	1	0	99.9	4837	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
46	Paddock 125	0	16/06/2019 11:48	0	23703	3	8551	1	0	99.9	3804	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
47	Paddock 126	0	16/06/2019 11:49	0	24622	3	8712	1	0	99.9	3881	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
48	Paddock 127	0	16/06/2019 11:49	0	23648	3	8729	1	0	99.9	3889	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
49	Paddock 128	0	16/06/2019 11:50	0	23653	3	10670	1	0	99.9	4821	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
50	Paddock 129	0	16/06/2019 11:51	0	23827	3	9217	1	0	99.9	4124	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
51	Paddock 130	0	16/06/2019 11:52	0	23734	3	9090	1	0	99.9	4063	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
52	Paddock 131	0	16/06/2019 11:53	0	23705	3	8387	1	0	99.9	3725	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
53	Paddock 132	0	16/06/2019 11:54	0	23708	3	10160	1	0	99.9	4576	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
54	Paddock 133	0	16/06/2019 11:55	0	23692	3	10220	1	0	99.9	4605	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
55	Paddock 134	0	16/06/2019 11:56	0	23693	3	10312	1	0	99.9	4649	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
56	Paddock 135	0	16/06/2019 11:58	0	23725	3	10074	1	0	99.9	4535	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
57	Paddock 136	0	16/06/2019 11:59	0	23789	3	10156	1	0	99.9	4574	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
58	Paddock 137	0	16/06/2019 12:00	0	23841	3	7929	1	0	99.9	3505	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 11. Continuación del anexo 7

59	Paddock 138	0	16/06/2019 12:01	0	24371	3	8782	1	0	99.9	3915	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
60	Paddock 139	0	16/06/2019 12:03	0	23840	3	9075	1	0	99.9	4056	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
61	Paddock 140	0	16/06/2019 12:04	0	23946	3	11306	1	0	99.9	5126	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
62	Paddock 141	0	16/06/2019 12:04	0	23800	3	10132	1	0	99.9	4563	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
63	Paddock 142	0	16/06/2019 12:05	0	23982	3	9379	1	0	99.9	4201	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
64	Paddock 143	0	16/06/2019 12:06	0	23944	3	9164	1	0	99.9	4098	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
65	Paddock 144	0	16/06/2019 12:07	0	23888	3	11452	1	0	99.9	5196	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
66	Paddock 145	0	16/06/2019 12:08	0	23880	3	9306	1	0	99.9	4166	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
67	Paddock 146	0	16/06/2019 12:09	0	23722	3	9100	1	0	99.9	4068	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
68	Paddock 147	0	16/06/2019 12:10	0	23697	3	10022	1	0	99.9	4510	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
69	Paddock 148	0	16/06/2019 12:11	0	24030	3	9241	1	0	99.9	4135	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
70	Paddock 149	0	16/06/2019 12:12	0	23869	3	8683	1	0	99.9	3867	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
71	Paddock 150	0	16/06/2019 12:13	0	23763	3	8911	1	0	99.9	3977	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
72	Paddock 151	0	16/06/2019 12:14	0	23783	3	11446	1	0	99.9	5194	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
73	Paddock 152	0	16/06/2019 12:16	0	23993	3	10234	1	0	99.9	4612	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
74	Paddock 153	0	16/06/2019 12:17	0	23601	3	11642	1	0	99.9	5288	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg
75	Paddock 154	0	16/06/2019 12:18	0	23557	3	9412	1	0	99.9	4217	18/06/2019 10:56	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 12. Datos obtenidos con el GrassMaster Pro en la tercera evaluación (60 días de edad del forraje).

GM Paddock #	Name	Area (ha)	Entry date	Soil CMR	Raw air CMR	Sample count	Grass CMR	Grass Type	Dry matter %	Temperature (°C)	Average dry matter (kg/ha)	Dowload date	GrassMaster versión	Equation slope	Equation intercept	Equation units
1	Paddock 001	0	8/07/2019 09:59	0	23395	3	10743	1	0	99.9	4856	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
2	Paddock 002	0	8/07/2019 10:00	0	23579	3	11571	1	0	99.9	5254	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
3	Paddock 003	0	8/07/2019 10:00	0	23525	3	10558	1	0	99.9	4767	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
4	Paddock 004	0	8/07/2019 10:01	0	23503	3	9612	1	0	99.9	4313	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
5	Paddock 005	0	8/07/2019 10:01	0	23565	3	10591	1	0	99.9	4783	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
6	Paddock 006	0	8/07/2019 10:02	0	23616	3	7936	1	0	99.9	3509	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
7	Paddock 007	0	8/07/2019 10:02	0	23681	3	9436	1	0	99.9	4229	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
8	Paddock 008	0	8/07/2019 10:03	0	23625	3	7668	1	0	99.9	3380	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
9	Paddock 009	0	8/07/2019 10:04	0	23643	3	8137	1	0	99.9	3605	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
10	Paddock 010	0	8/07/2019 10:04	0	23668	3	11718	1	0	99.9	5324	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
11	Paddock 011	0	8/07/2019 10:05	0	23616	3	11019	1	0	99.9	4989	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
12	Paddock 012	0	8/07/2019 10:05	0	23623	3	8595	1	0	99.9	3825	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
13	Paddock 013	0	8/07/2019 10:06	0	23795	3	13648	1	0	99.9	6251	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
14	Paddock 014	0	8/07/2019 10:06	0	23838	3	10912	1	0	99.9	4937	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
15	Paddock 015	0	8/07/2019 10:07	0	23703	3	10523	1	0	99.9	4751	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
16	Paddock 016	0	8/07/2019 10:07	0	23804	3	9569	1	0	99.9	4293	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
17	Paddock 017	0	8/07/2019 10:08	0	23630	3	11382	1	0	99.9	5163	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
18	Paddock 018	0	8/07/2019 10:09	0	23825	3	8602	1	0	99.9	3828	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 13. Continuación del anexo 11.

19	Paddock 019	0	8/07/2019 10:09	0	23707	3	11683	1	0	99.9	5307	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
20	Paddock 020	0	8/07/2019 10:10	0	23643	3	8043	1	0	99.9	3560	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
21	Paddock 021	0	8/07/2019 10:11	0	23606	3	9941	1	0	99.9	4471	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
22	Paddock 022	0	8/07/2019 10:11	0	23642	3	7589	1	0	99.9	3342	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
23	Paddock 023	0	8/07/2019 10:12	0	23590	3	9993	1	0	99.9	4496	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
24	Paddock 024	0	8/07/2019 10:12	0	23956	3	10320	1	0	99.9	4653	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
25	Paddock 025	0	8/07/2019 10:13	0	23966	3	11893	1	0	99.9	5408	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
26	Paddock 026	0	8/07/2019 10:14	0	23795	3	9175	1	0	99.9	4104	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
27	Paddock 027	0	8/07/2019 10:14	0	23570	3	11732	1	0	99.9	5331	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
28	Paddock 028	0	8/07/2019 10:15	0	23640	3	10587	1	0	99.9	4781	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
29	Paddock 029	0	8/07/2019 10:15	0	23815	3	9125	1	0	99.9	4080	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
30	Paddock 030	0	8/07/2019 10:16	0	23602	3	9868	1	0	99.9	4436	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
31	Paddock 031	0	8/07/2019 11:39	0	23406	3	9715	1	0	99.9	4363	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
32	Paddock 032	0	8/07/2019 11:40	0	23595	3	9819	1	0	99.9	4413	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
33	Paddock 033	0	8/07/2019 11:40	0	23924	3	8803	1	0	99.9	3925	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
34	Paddock 034	0	8/07/2019 11:41	0	23714	3	11534	1	0	99.9	5236	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
35	Paddock 035	0	8/07/2019 11:41	0	23597	3	8313	1	0	99.9	3690	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
36	Paddock 036	0	8/07/2019 11:42	0	23753	3	9319	1	0	99.9	4173	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
37	Paddock 037	0	8/07/2019 11:42	0	23641	3	10502	1	0	99.9	4740	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
38	Paddock 038	0	8/07/2019 11:43	0	23646	3	9858	1	0	99.9	4431	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 14. Continuación del anexo 11.

39	Paddock 039	0	8/07/2019 11:43	0	23682	3	9724	1	0	99.9	4367	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
40	Paddock 040	0	8/07/2019 11:44	0	23676	3	10596	1	0	99.9	4786	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
41	Paddock 041	0	8/07/2019 11:45	0	23500	3	8398	1	0	99.9	3731	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
42	Paddock 042	0	8/07/2019 11:45	0	23764	3	9897	1	0	99.9	4450	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
43	Paddock 043	0	8/07/2019 11:46	0	23564	3	11292	1	0	99.9	5120	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
44	Paddock 044	0	8/07/2019 11:46	0	23603	3	8390	1	0	99.9	3727	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
45	Paddock	0	8/07/2019	0	23859	3	10815	1	0	99.9	4891	8/07/2019	GrassMaster	0.48	-300	kg
46	045 Paddock	0	11:47 8/07/2019	0	23820	3	9833	1	0	99.9	4419	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
47	046 Paddock	0	11:48 8/07/2019	0	23939	3	11026	1	0	99.9	4992	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
48	047 Paddock	0	11:48 8/07/2019	0	23628	3	11665	1	0	99.9	5299	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
49	048 Paddock	0	11:49 8/07/2019	0	23600	3	10285	1	0	99.9	4636	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
50	049 Paddock	0	11:49 8/07/2019	0	23614	3	10700	1	0	99.9	4836	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
51	050 Paddock	0	11:50 8/07/2019	0	23632	3	8804	1	0	99.9	3925	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
52	051 Paddock	0	11:50 8/07/2019	0	23540	3	11247	1	0	99.9	5098	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
53	052 Paddock	0	11:51 8/07/2019	0	23566	3	12010	1	0	99.9	5464	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	
	053 Paddock		11:51 8/07/2019	ŭ								11:01 8/07/2019	Pro 3.03 GrassMaster			kg
54	054 Paddock	0	11:52 8/07/2019	0	23673	3	11905	1	0	99.9	5414	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
55	055 Paddock	0	11:52 8/07/2019	0	23673	3	10857	1	0	99.9	4911	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
56	056 Paddock	0	11:53 8/07/2019	0	23548	3	9402	1	0	99.9	4212	11:01 8/07/2019	Pro 3.03 GrassMaster	0.48	-300	kg
57	057	0	11:53	0	23520	3	10312	1	0	99.9	4649	11:01	Pro 3.03	0.48	-300	kg
58	Paddock 058	0	8/07/2019 11:54	0	23622	3	11254	1	0	99.9	5101	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 15. Continuación del anexo 11.

59	Paddock 059	0	8/07/2019 11:54	0	23680	3	12872	1	0	99.9	5878	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
60	Paddock 060	0	8/07/2019 11:58	0	23399	3	9817	1	0	99.9	4412	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
61	Paddock 061	0	8/07/2019 11:59	0	23551	3	14989	1	0	99.9	6894	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
62	Paddock 062	0	8/07/2019 11:59	0	23845	3	9950	1	0	99.9	4476	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
63	Paddock 063	0	8/07/2019 11:59	0	23567	3	10073	1	0	99.9	4535	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
64	Paddock 064	0	8/07/2019 12:00	0	24022	3	9254	1	0	99.9	4141	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
65	Paddock 065	0	8/07/2019 12:00	0	23560	3	11345	1	0	99.9	5145	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
66	Paddock 066	0	8/07/2019 12:01	0	23497	3	11765	1	0	99.9	5347	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
67	Paddock 067	0	8/07/2019 12:01	0	23536	3	9133	1	0	99.9	4083	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
68	Paddock 068	0	8/07/2019 12:01	0	23484	3	9783	1	0	99.9	4395	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
69	Paddock 069	0	8/07/2019 12:02	0	23697	3	10440	1	0	99.9	4711	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
70	Paddock 070	0	8/07/2019 12:02	0	23541	3	10087	1	0	99.9	4541	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
71	Paddock 071	0	8/07/2019 12:03	0	23572	3	9304	1	0	99.9	4165	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
72	Paddock 072	0	8/07/2019 12:03	0	23555	3	12462	1	0	99.9	5681	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
73	Paddock 073	0	8/07/2019 12:03	0	23531	3	10050	1	0	99.9	4524	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
74	Paddock 074	0	8/07/2019 12:04	0	23676	3	10877	1	0	99.9	4920	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg
75	Paddock 075	0	8/07/2019 12:04	0	23507	3	9604	1	0	99.9	4309	8/07/2019 11:01	GrassMaster Pro 3.03	0.48	-300	kg

Anexo 16. Registro de muestras en laboratorio

ID	PESO INICAL	PESO DE LA CAJA	PESO CAJA + MUESTRA	PESO SECO	% ms	Kg Ms/ha método. Tradicional	Valores de equipo (3 muestras)	Kg Ms/ha GRASSMASTER
H1M1								
H1M2								
H1M3								
H1M4								
H1M5								
H1M6								
H1M7								
H1M8								
H1M9								
H1M10								
H1M11								
H1M12								
H1M13								
H1M14								
H1M15								
H2M1								
H2M2								
H2M3								
H2M4								
H2M5								
H2M6								
H2M7								
H2M8								
H2M9								
H2M10								
H2M11								
H2M12								
H2M13								
H2M14								
H2M15								
H3M1								
H3M2								
Н3М3								
H3M4								
H3M5								
НЗМ6								

H3M7						
H3M8						
H3M9						
H3M10						
H3M11						
H3M12						
H3M13						
H3M14						
H3M15						
H4M1						
H4M2						
H4M3						
H4M4						
H4M5						
H4M6						
H4M7						
H4M8						
H4M9						
H4M10						
H4M11						
H4M12						
H4M13						
H4M14						
H4M15						
H5M1						
H5M2						
H5M3						
H5M4						
H5M5						
H5M6						
H5M7						
H5M8						
H5M9						
H5M10						
H5M11						
H5M12						
H5M13						
H5M14						
H5M15						
			L	l .	l .	

H=hato; M=muestra

Anexo 17. Panel fotográfico

Materiales usados para el muestreo

Muestreo del forraje

Corte y pesado de la muestra

Identificación de las muestras

Muestreo con el GrassMaster Pro

Colocando el forraje en las cajas debidamente identificadas

Picado y pesaje del forraje

Muestras en la estufa