UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

ESCUELA DE POSGRADO

TESIS PARA OBTENER EL GRADO ACADÉMICO DE MAESTRO EN GESTIÓN PARA EL DESARROLLO SUSTENTABLE

ANÁLISIS DE LA DEGRADACIÓN DE PASTIZALES BASADO EN IMÁGENES MULTIESPECTRALES UAS-SENTINEL PARA LA GESTIÓN SOSTENIBLE DE LAS MICROCUENCAS POMACOCHAS Y VENTILLA, AMAZONAS – PERÚ

Autor: Bach. Jhonsy Omar Silva López

Asesor: Dr. Héctor Vladimir Vásquez Pérez

Registro: (.....)

CHACHAPOYAS - PERÚ

2022

AUTORIZACIÓN DE PUBLICACIÓN DE LA TESIS EN EL REPOSITORIO **INSTITUCIONAL DE LA UNTRM**

	UNTRM REGLAMENTO GENER DARA EL OTORGAMIENTO DEL GRADO ACADÉMICO BACHILLER, MAESTRO O DOCTOR Y DEL TÍTULO PROFESIO
	ANEXO 6-H
	AUTORIZACIÓN DE PUBLICACIÓN DE LA TESIS DE MAESTRÍA (χ)/DOCTORADO () EN EL REPOSITORIO INSTITUCIONAL DE LA UNTRM
1.	Datos de autor 1 Apellidos y nombres (tener en cuenta las tildes):
	Datos de autor 2 Apellidos y nombres (tener en cuenta las tildes): DNI N°:
	Correo electrónico: Nombre de la Maestría () / Doctorado ():
2.	Título de la tesis para obtener el grado académico de Maestro (1) / Doctor () Analisis Del La Degnamión De Pastizales Basado En Inaceres Muziespectoalec UAS-SENTINEC () Cestión Costeniele De Las Microcuencas Polyprocenas y Venerica, Angalona, - PERÓ
3.	Datos de asesor 1 Apellidos y nombres: haraus Penz Hictor Vladimin
	Open Research and Contributor-ORCID (https://orcid.org/0000-0002-9670-0970) https://orcid.org/0000-0003-4657-13
	Datos de asesor 2 Apellidos y nombres: DNI, Pasaporte, C.E. N°:
	Open Research and Contributor-OKCID https://orcid.org/000-0002-9670-0970
4.	Campo del conocimiento según Organización para la Cooperación y el Desarrollo Económicos- OCDE (ejemplo: Ciencias médicas, Ciencias de la Salud-Medicina básica-Inmunología) https://catalogos.concytec.gob.pe/vocabulario/ocde ford.html
	105.03 - Curves de la Tivero, Cinvers Afrikantales
5.	Originalidad del Trabajo Con la presentación de esta ficha, el(la) autor(a) o autores(as) señalan expresamente que la obra es original, ya que sus contenidos son producto de su directa contribución intelectual. Se reconoce también que todos los datos y las referencia pateinles un ublicado está a debidemente identificado acesto parte conoce también que todos los datos y las referencia

 Autorización de publicación El(los) titular(es) de los derechos de autor otorga a la Universidad Nacional Toribio Rodríguez de Mendoza de A mazonas Ellos titularles) de los derecnos de autor otorga a la Universidad Nacional Toribio Nooriguez de Mendoza de A mazonas (UNTRM), la autorización para la publicación del documento indicado en el punto 2, bajo la *Licencia creative commons* de tipo BY-NC: Licencia que permite distribuir, remezclar, retocar, y crear a partir de su obra de forma no comercial por lo que la Universidad deberá publicar la obra poniéndola en acceso libre en el repositorio institucional de la UNTRM y a su vez en el Registro Nacional de Trabajos de Investigación -RENATI, dejando constancia que el archivo digital que se está entregando, contiene la versión final del documento sustentado y aprobado por el Jurado Evaluador.

12022 Chachapoyas, 20 1 nonumbre

Firma de autor 1 Firma del Asesor 1

Firma del autor 2

Firma del Asesor 2

DEDICATORIA

A MI FAMILIA

A mis papas, Miguel H. Silva Ramos y Iraida López de Silva, y a mis hermanos, Ceiner, Sayra M., Jovy, Rocio, Elita y Aniluz que gracias a su valioso consejo y apoyo han contribuido a mi formación profesional. Mi infinito amor a ellos.

A MIS AMIGOS

A mis colegas del laboratorio de Geomática y Teledetección del Inde-ces, docentes, amigos Nilton B., Jhordy, Jhovana y Eli que en el trascurso de mi formación han contribuido de diferentes maneras.

Jhonsy O. Silva

AGRADECIMIENTO

A Dios, por concederme la vida, la esperanza para seguir adelante y con su inmensa sabiduría ha puesto en mi camino a buenas personas. Asimismo, por proveerme a mi familia con un padre y una madre que, con su apoyo incondicional, han permitido guiarme por el camino del bien.

Al Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (FONDECYT) por el financiamiento de esta investigación a través del Proyecto "Desarrollo de una metodología basada en drones e imágenes multiespectrales de alta resolución para la identificación y monitoreo de praderas degradadas por efecto de la ganadería extensiva como estrategia de mitigación al cambio climático en las microcuencas ganaderas de Pomacochas y Molinopampa, Amazonas" – RPAStures mediante contrato N° 444-2019-FONDECYT, ejecutado por el Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (Indes-ces). Asimismo, al gran equipo RPAStures: Nilton A., Renzo, Jhon, Mirtha, Darwin, Manolito, Julissa e ing. Rolando S.

Al asesor, Dr. Héctor Vladimir Vásquez Pérez, porque brindó las facilidades para ejecutar esta tesis, su amistad, confianza, paciencia y tiempo para dotar del conocimiento práctico y científico de manejo de pastizales.

A los docentes miembros del jurado, Dr. Segundo Manuel Oliva Cruz, Mg. Santos Triunfo Leiva Espinoza y Mg. Wigoberto Alvarado Chuqui, por cada uno de sus recomendaciones y/o sugerencias al proyecto de tesis e informe, dando la oportunidad de aclarar las ideas y presentarlas en un lenguaje entendible para cualquier lector.

Y a todos aquellos que, con solo una palabra de aliento, recargaron mi energía para perseverar.

AUTORIDADES DE LA UNIVERCDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

Ph.Dr. Jorge Luis Maicelo Quintana

Rector

Dr. Oscar Andrés Gamarra Torres

Vicerrector Académico

Dra. MARÍA NELLY LUJÁN ESPINOZA

Vicerrectora de Investigación

Dr. Efraín Manuelito Castro Alayo

Director de la Escuela de Posgrado

VISTO BUENO DE ASESOR DE LA TESIS

ANEXO 6-L

VISTO BUENO DEL ASESOR DE TESIS PARA OBTENER EL

GRADO ACADÉMICO DE MAESTRO (X)/ DOCTOR ()

El que suscribe el presente, docente de la UNTRM ()/Profesional externo (), hace constar que ha 10 Dechadación de Pastnall Analisis d asesorado la realización de la Tesis titulada UAS-Fostenikle Basado emp Hultiespectralin fontinel Para estion on Imaes Yonacochan y Venbilla Amaronas Microaumas as HONSY OMAR SILVA OPE2 cuyo autor es estudiante del ciclo/egresado (X) de la Escuela de Posgrado, Maestría (X) / Doctorado () en Glohan Yor e Desarrollo Hestentable ODRI La, con correo electrónico institucional Thoray silvo epg QUNhrm. edu p llonsy. sille Ountrm. edu pe

El suscrito da el Visto Bueno a la Tesis mencionada, dándole pase para que sea sometida a la revisión por el Jurado Evaluador, comprometiéndose a supervisar el levantamiento de observaciones que formulen en Acta en conjunto, y estar presente en la sustentación.

Chachapoyas, 19 de noviembel de 2022

Firma y nombre completo del Asesor HECTOR N. VASQUEZ PEREZ

JURADO EVALUADOR

Dr. Segundo Manuel Oliva Cruz Presidente

Mg. Santos Triunfo Leiva Espinoza Secretario

Mg. Wigoberto Alvarado Chuqui Vocal

CONSTANCIA DE ORIGINALIDAD DE LA TESIS

ANEXO 6-Q

CONSTANCIA DE ORIGINALIDAD DE LA TESIS PARA OBTENER EL GRADO ACADÉMICO DE MAESTRO (X) / DOCTOR ()

Los suscritos, miembros del Jurado Evaluador de la Tesis titulada: VAS-SENTINGE PANA poportavor de Vastindle Basado en Imoguns Multispictual Amazonas Plan li los Missourcas di Teorocochos sostinitile presentada por el estudiante ()/egresado (x) Silla mon Farn de la Escuela de Posgrado, Maestría (X) / Doctorado () en Desaviolto Kestentable con correo electrónico institucional honsy silva Quntim edu pe Honsy sille epgav después de revisar con el software Turnitin el contenido de la citada Tesis, acordamos:

- a) La citada Tesis tiene <u>20</u>% d e similitud, según el reporte del software Turnitin que se adjunta a la presente, el que es menor (X) / igual () al 25% de similitud que es el máximo permitido en la UNTRM.
- b) La citada Tesis tiene ______% de similitud, según el reporte del software Turnitin que se adjunta a la presente, el que es mayor al 25% de similitud que es el máximo permitido en la UNTRM, por lo que el aspirante debe revisar su Tesis para corregir la redacción de acuerdo al Informe Turnitin que se adjunta a la presente. Debe presentar al Presidente del Jurado Evaluador su Tesis corregida para nueva revisión con el software Turnitin.

Chachapoyas, <u>04</u> de <u>portumbr</u> del <u>2022</u> <u>Jean</u> SECRETARIO VOCAL OBSERVACIONES:

ACTA DE SUSTENTACIÓN DE LA TESIS

ANEXO 6-S

ACTA DE SUSTENTACIÓN DE TESIS PARA OBTENER EL GRADO ACADÉMICO DE MAESTRO (X) / DOCTOR ()

En la ciudad de Chachapoyas, el día 21 de Dictembre del año 2022, siendo las 11.20 horas, el aspirante Thonsy Omar Silva Lopez _____, Asesorado por Dr. Hector Vladmir Vasquez Perez, defiende en sesión pública presencial (x)/a distancia () la Tesis titulada: Análisis de la degradación de Pastizales basado en imagenes multiespectales UAS-Sentinel Para la gestion Sostanible de Las more acencas Pomacechon y Ventila, para obtener el Grado Académico de Maestro (x)/Doctor () en Gestion Para el Denarollo Sustendable. a ser otorgado por la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas; ante el Jurado Evaluador, conformado por: Presidente: Dr. Segundo Manuel Oliva Auz

Secretario: Mg. Santos Tsiunfo Leiva Espinoza Vocal: Mg. Wigoberlo Alvarado Chuqu'

Procedió el aspirante a hacer la exposición de la Introducción, Material y método, Resultados, Discusión y Conclusiones, haciendo especial mención de sus aportaciones originales. Terminada la defensa de la Tesis presentada, los miembros del Jurado Evaluador pasaron a exponer su opinión sobre la misma, formulando cuantas cuestiones y objeciones consideraron oportunas, las cuales fueron contestadas por el aspirante.

Tras la intervención de los miembros del Jurado Evaluador y las oportunas respuestas del aspirante, el Presidente abre un turno de intervenciones para los presentes en el acto de sustentación, para que formulen las cuestiones u objeciones que consideren pertinentes.

Seguidamente, a puerta cerrada, el Jurado Evaluador determinó la calificación global concedida a la sustentación de la Tesis de Maestría (X)/Doctorado (), en términos de: A probado (X) por Unanimidad (X)/Mayoría ()

Desaprobado ()

Otorgada la calificación, el Secretario del Jurado Evaluador lee la presente Acta en esta misma sesión pública. A continuación se levanta la sesión.

Siendo las 12.25 horas del mismo día y fecha, el Jurado Evaluador concluye el acto de sustentación de la Tesis para obtener el Grado Académico de Maestro (X)/Doctor ().

PRESIDEN SECRETARIO the VOCAL OBSERVACIONES:

CONTENIDO

AUTORIZACIÓN DE POBLICACIÓN DE LA TESIS EN EL REPOSITORIO INSTITUCIONAL DE LA UNTRM. iii DEDICATORIA iiii AGRADECIMIENTO iv AUTORIDADES DE LA UNIVERCDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS. vv VISTO BUENO DE ASESOR DE LA TESIS vii CONSTANCIA DE ORIGINALIDAD DE LA TESIS vii CONTENIDO x ÍNDICE DE TABLAS vii ÍNDICE DE FIGURAS XII ÍNTRODUCCIÓN I. INTRODUCCIÓN 21. Área de estudio 22. 23. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22. 23.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.4.1. Metreo de parcelas 26 27 24.2. Obtención y procesamiento de datos stelitales y fotogramétricos para evaluar la degradación de pastizales 28 2	ALTODIZACIÓN DE DUDI ICACIÓN DE LA TREGICIEN EL	DEDOGUTODIO
INSTITUCIONAL DE LA UNTRM	AUTORIZACION DE PUBLICACION DE LA TESIS EN EI	
DEDICATORIA iii AGRADECIMIENTO iv AUTORIDADES DE LA UNIVERCDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS v MENDOZA DE AMAZONAS vi JURADO EVALUADOR vi JURADO EVALUADOR vi CONSTANCIA DE ORIGINALIDAD DE LA TESIS vii ACTA DE SUSTENTACIÓN DE LA TESIS vii CONTENIDO x ÍNDICE DE TABLAS xii ÍNDICE DE FIGURAS xii RESUMEN xv ABSTRACT xvi I. INTRODUCCIÓN I. INTRODUCCIÓN 11. MATERIAL Y MÉTODOS 21. Área de estudio 22. Proceso metodológico 22. Proceso metodológico 23. Luso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 23. J. Altos espaciales de entrada 23. J. Altoretica de arcelas 23. J. Muestreo de parcelas 24. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar la degradación de pastizales 26 24.1. Muestreo de parcelas	INSTITUCIONAL DE LA UNTRM	ii
AGRADECIMIENTO iv AUTORIDADES DE LA UNIVERCDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS v VISTO BUENO DE ASESOR DE LA TESIS vi JURADO EVALUADOR vi CONSTANCIA DE ORIGINALIDAD DE LA TESIS vii ACTA DE SUSTENTACIÓN DE LA TESIS vii CONTENIDO x ÍNDICE DE TABLAS xii ÍNDICE DE FIGURAS xii RESUMEN xv ABSTRACT xvi I. INTRODUCCIÓN 17 II. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3. Juestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 1a degradación de pastizales 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de p	DEDICATORIA	iii
AUTORIDADES DE LA UNIVERCDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS v VISTO BUENO DE ASESOR DE LA TESIS vi JURADO EVALUADOR vi CONSTANCIA DE ORIGINALIDAD DE LA TESIS vii ACTA DE SUSTENTACIÓN DE LA TESIS vii CONTENIDO x ÍNDICE DE TABLAS xii ÍNDICE DE FIGURAS xii RESUMEN xv ABSTRACT xvi I. INTRODUCCIÓN 17 I. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 23 2.3.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 14 1a degradación de pastizales 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 28 25. Degrad	AGRADECIMIENTO	iv
MENDOZA DE AMAZONAS. v VISTO BUENO DE ASESOR DE LA TESIS. vi JURADO EVALUADOR vi CONSTANCIA DE ORIGINALIDAD DE LA TESIS vii ACTA DE SUSTENTACIÓN DE LA TESIS. vii CONTENIDO x ÍNDICE DE TABLAS. xii ÍNDICE DE FIGURAS xiii RESUMEN xv ABSTRACT xvi I. INTRODUCCIÓN. 17 II. MATERIAL Y MÉTODOS. 21 2.1. Área de estudio. 21 2.2. Proceso metodológico. 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3. Juestreo de parcelas 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 1a degradación de pastizales 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentin	AUTORIDADES DE LA UNIVERCDAD NACIONAL TORIBIO	RODRÍGUEZ DE
VISTO BUENO DE ASESOR DE LA TESIS	MENDOZA DE AMAZONAS	V
JURADO EVALUADOR	VISTO BUENO DE ASESOR DE LA TESIS	vi
CONSTANCIA DE ORIGINALIDAD DE LA TESIS vii ACTA DE SUSTENTACIÓN DE LA TESIS viii CONTENIDO x ÍNDICE DE TABLAS xii ÍNDICE DE FIGURAS xiii RESUMEN xv ABSTRACT xvi I. INTRODUCCIÓN 17 II. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 23 2.3.1. Datos espaciales de entrada 23 23 2.3.2. Muestreo de parcelas 23 23 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 26 2.4.1. Muestreo de parcelas 26 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 29	JURADO EVALUADOR	vi
ACTA DE SUSTENTACIÓN DE LA TESIS	CONSTANCIA DE ORIGINALIDAD DE LA TESIS	vii
CONTENIDO x ÍNDICE DE TABLAS xii ÍNDICE DE FIGURAS xiii RESUMEN xv ABSTRACT xvi I. INTRODUCCIÓN 17 II. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3. Luso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 23 2.3. Luso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 24 2.4. Obtención de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar la degradación de pastizales 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización del suelo a información visual 31	ACTA DE SUSTENTACIÓN DE LA TESIS	viii
ÍNDICE DE TABLAS xii ÍNDICE DE FIGURAS xiii RESUMEN xv ABSTRACT xvi I. INTRODUCCIÓN 17 II. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 21	CONTENIDO	x
ÍNDICE DE FIGURAS xiii RESUMEN xv ABSTRACT xvi I. INTRODUCCIÓN 17 II. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar la degradación de pastizales 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización del suelo a información visual 31	ÍNDICE DE TABLAS	xii
RESUMEN xv ABSTRACT xvi I. INTRODUCCIÓN 17 II. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 23 2.3.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 1a degradación de pastizales 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización del suelo a información y visual 31	ÍNDICE DE FIGURAS	xiii
ABSTRACT xvi I. INTRODUCCIÓN 17 II. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 23 2.3.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 21	RESUMEN	XV
I. INTRODUCCIÓN 17 II. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 21	ABSTRACT	xvi
II. MATERIAL Y MÉTODOS 21 2.1. Área de estudio 21 2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 21	I. INTRODUCCIÓN	17
2.1. Área de estudio	II. MATERIAL Y MÉTODOS	21
2.2. Proceso metodológico 22 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B 22 2.3.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar la degradación de pastizales 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un leguaje de aprendizaje semi-automático 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización del suelo a información visual 31	2.1. Área de estudio	21
 2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B22 2.3.1. Datos espaciales de entrada	2.2. Proceso metodológico	
2.3.1. Datos espaciales de entrada 23 2.3.2. Muestreo de parcelas 23 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización 31	2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes	Sentinel- 2B 22
2.3.2. Muestreo de parcelas232.3.3. Identificación de "Pastizales" y "No Pastizales"242.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluarla degradación de pastizales262.4.1. Muestreo de parcelas272.4.2. Obtención y procesamiento de datos fotogramétricos282.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un292.4.1. Recopilación de datos en campo: composición florística, caracterización31	2.3.1. Datos espaciales de entrada	
 2.3.3. Identificación de "Pastizales" y "No Pastizales" 24 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar la degradación de pastizales 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un leguaje de aprendizaje semi-automático 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización del suelo e información visual 31 	2.3.2. Muestreo de parcelas	
 2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar la degradación de pastizales	2.3.3. Identificación de "Pastizales" y "No Pastizales"	
la degradación de pastizales 26 2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un leguaje de aprendizaje semi-automático 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización del suelo e información visual 31	2.4. Obtención y procesamiento de datos satelitales y fotogramé	tricos para evaluar
2.4.1. Muestreo de parcelas 27 2.4.2. Obtención y procesamiento de datos fotogramétricos 28 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un leguaje de aprendizaje semi-automático 29 2.4.1. Recopilación de datos en campo: composición florística, caracterización del suelo e información visual 31	la degradación de pastizales	
 2.4.2. Obtención y procesamiento de datos fotogramétricos	2.4.1. Muestreo de parcelas	
 2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un leguaje de aprendizaje semi-automático	2.4.2. Obtención y procesamiento de datos fotogramétricos	
leguaje de aprendizaje semi-automático	2.5. Degradación de pastizales basado en imágenes UAS y S	Sentinel-2B en un
2.4.1. Recopilación de datos en campo: composición florística, caracterización	leguaje de aprendizaje semi-automático	
del suelo e información visual 31	2.4.1. Recopilación de datos en campo: composición florístic	a, caracterización
	del suelo e información visual	

	2.4.2. Determinación de la degradación de pastizales mediante	índice de
	vegetación CVP	33
III.	RESULTADOS	34
3.1.	Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 21	B 34
3.2.	Obtención y procesamiento de datos satelitales, fotogramétricos, eda	ufológico y
com	posición florística para evaluar la degradación de pastizales	36
	3.1.1. Productos satelitales y fotogramétricos	
	3.1.2. Datos edafológicos y de composición de florística	
3.3.	Degradación de pastizales	41
	3.2.1. Generación de código de degradación de pastizales	
	3.2.2. Distribución de la degradación de pastizales mediante	imágenes
	satelitales	
IV.	DISCUSIÓN	47
V.	CONCLUSIONES	49
VI.	REFERENCIAS BIBLIOGRÁFICAS	50
ANE	EXOS	55

ÍNDICE DE TABLAS

Tabla 1. Características generales y número de imágenes de sentinel 2B y Planet 23
Tabla 2. Índices espectrales utilizados para la estimación
Tabla 3. Estratificación Altitudinal 27
Tabla 4. Características de los RPAS empleados
Tabla 5. Uso y Cobertura de la Tierra (LULC) por cada microcuenca
Tabla 6. Análisis de caracterización de suelos en la microcuenca ganadera de Pomacochas.
Tabla 7. Análisis de caracterización de suelos en la microcuenca ganadera de Ventilla 38
Tabla 8. Composición florística y abundancia de pastizales en la microcuenca Pomacochas.
Tabla 9. Composición florística y abundancia de pastizales en la microcuenca Ventilla. 40
Tabla 10. Presencia de malezas y pastizales en las microcuencas de Pomacochas y Ventilla
Tabla 11. Degradación de pastizales según parcela evaluada para ambas microcuencas
ganaderas
Tabla 12. Degradación de pastizales según microcuencas ganaderas
Tabla 13 Parcelas evaluadas
Tabla 14. Estimación del rendimiento de los pastizales utilizando datos de teledetección
satelital, los ejemplos de la literatura se agrupan de acuerdo con los modelos/métodos
aplicados por Ali et al.(2016).,,,,,61

ÍNDICE DE FIGURAS

Figura 1. Localización y gradiente altitudinal de las dos microcuencas ganaderas.
Pomacochas y Ventilla
Figura 2. Diagrama metodológico para analizar la degradación de pastizales basado en
imágenes multiespectrales UAS-Sentinel para la gestión sostenible de las microcuencas
Pomacochas y Ventilla, Amazonas – Perú
Figura 3. Delimitación de parcelas y registro de datos de entrenamiento utilizando el
receptor GPS en las microcuencas Pomacochas y Ventilla
Figura 4. Muestreo no probabilístico en la microcuenca de Pomacochas mediante parcelas de
30x30m. Parcelas de Pomacochas
Figura 5. "RedEdge-MX Dual Camera System" en comparación con otros sensores ópticos29
Figura 6. Flujograma metodológico para evaluar la degradación de pastizales
Figura 7. Pastizales identificados en la microcuenca Pomacochas. Izquierda: muestreo de
suelos en cada parcela evaluada. Derecha: Método del transecto (cada 50 cm) para evaluar
composición florística
Figura 8. Mapas de cobertura de pastizales a 2021. a) microcuenca Pomacochas y b)
microcuenca Ventilla
Figura 9. Procesamiento fotogramétrico
Figura 10. Imágenes satelitales Sentinel 2B descargadas y corregidas. Asimismo, las
imágenes Planet mediante licencia de estudiante. Procesadas ArcGIS 10.5
Figura 11. Aplicación de algoritmos de clasificación: Random Forest (RF), Máquinas de
Vectores de Soporte (SVM) y Regresión Logística (LR) para las microcuencas de
Poamcochas y Ventilla
Figura 12. Correlación de variables de suelo
Figura 13. Clasificación y validación de los modelos mediante el análisis de la curva
ROC
Figura 14. Distribución de la degradación de pastizales, mediante CVP para Pomacochas
y Ventilla
Figura 15. Incorporación de puntos de entrenamiento en los mosaicos de la microcuenca
Pomacochas y Ventilla respectivamente. Imagen correspondiente a Ventilla55
Figura 16. Estratos altitudinales de la microcuenca Pomacochas y Ventilla
respectivamente
Figura 17. Características del sensor RedEdge-MX Dual Camera System57

figura 18. Preparación de equipos para los vuelos fotogramétricos57
Figura 19. Preparación de equipos para los vuelos fotogramétricos58
Figura 20 Materiales empleados para la inspección visual y la evaluación de composición
florística a través de muestras de pastizales
figura 21 Uso de Google Earth Pro para ubicarse dentro de las microcuencas Pomacochas
y Ventilla
Figura 22. Primeros pasos para procesamiento de imágenes fotogramétricas: alineación
e imágenes60
Figura 23. Generación de ortomosaico como producto fotogramétrico60
Figura 23. Generación de ortomosaico como producto fotogramétrico60 Figura 24. Índice de salud del pastizal 1 – 5 en relación al modelo paso a paso de
Figura 23. Generación de ortomosaico como producto fotogramétrico60 Figura 24. Índice de salud del pastizal 1 – 5 en relación al modelo paso a paso de degradación del pastizal basado en Milton et al. (1998)
Figura 23. Generación de ortomosaico como producto fotogramétrico
Figura 23. Generación de ortomosaico como producto fotogramétrico

RESUMEN

En Perú, realizar un monitoreo de pastizales es cada vez más esencial para apoyar a los productores agropecuarios y fortalecer nuevas políticas públicas enmarcadas a un manejo sostenible de pastizales en las cuencas hidrográficas. En este sentido, esta investigación buscó evaluar la degradación de pastizales en las microcuencas de Pomacochas y Ventilla, Amazonas – Perú. Para ello, se utilizaron imágenes de un Remotely Piloted Aircraft (RPA) y satelital correspondientes a Sentinel 2B / Planet e índices de vegetación: Indice de vegetación de diferencia normalizada (NDVI), Índice de Vegetación mejorado (EVI), Índice de Vegetación Ajustado al Suelo (SAVI) y de Cobertura Vegetal de Pastizales (CVP). Los datos se procesaron en i) Google Earth Engine (GEE) mediante el uso del algoritmo de clasificación Random Forest (RF) y ii) Google Colab (Python) usando RF, Máquinas de Vectores de Soporte (SVM) y Regresión Logística (LR). Además, de otros softwares como ArcGIS, QGIS y Agisofth Metshape. Esto permitió el mapeo superficial de "pastizales" con presiones superiores al 86% en ambas microcuencas. Por su parte, la degradación de pastizales estuvo en el rango "S4-Fuertemente" (CVP, <40%) para la microcuenca Pomacochas es de 2.6 % esto representa un 93.4 ha, sin embargo, en Ventilla se obtuvo un 0.4 %, esto representa el 8.9 ha un incremento de 18%. En efecto, este estudio pretende brindar información útil para la planificación territorial y con potencial replicabilidad para otras cuencas ganaderas del país.

Palabras clave: Pastizales; ganadería sostenible;GEE; RPA; Sentinel; Planet, multiespectral y teledetección.

ABSTRACT

In Peru, monitoring pastures is increasingly essential to support agricultural producers and strengthen new public policies framed for sustainable management of pastures in watersheds. In this sense, this research sought to evaluate the degradation of grasslands in the micro-watersheds of Pomacochas and Ventilla, Amazonas - Peru. For this, images from a Remotely Piloted Aircraft (RPA) and satellites corresponding to Sentinel 2B / Planet and vegetation indices were used: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Vegetation Index Adjusted to Soil (SAVI) and Grassland Vegetation Cover (CVP). The data was processed in *i*) Google Earth Engine (GEE) by using the Random Forest (RF) classification algorithm and *ii*) Google Colab (Python) using RF, Support Vector Machines (SVM) and Logistic Regression (LR). In addition, other software such as ArcGIS, QGIS and Agisoft Metshape. This allowed the superficial mapping of "grasslands" with pressures higher than 86% in both micro-watersheds. For its part, the degradation of pastures was in the "S4-Strongly range" (CVP, <40%) for the Pomacochas micro-basin is 2.6%, this represents 93.4 ha, however, in Ventilla 0.4% was obtained, this represents the 8.9 has an increase of 18%. Indeed, this study aims to provide useful information for territorial planning and with potential replicability for other cattle basins in the country.

Key words: Grasslands; sustainable livestock;GEE; RPA; Sentinel; Planet, multispectral and remote sensing.

I. INTRODUCCIÓN

En el mundo, existe más de 3 900 millones de hectáreas que son pastizales (Tivy & Tivy, 2019). Estos cubren el 26% de la superficie terrestre global, siendo el ecosistema terrestre más extenso del mundo y son una fuente importante de alimento para el ganado (Ali *et al.*, 2016). Sin embargo, se enfrentan a la degradación, siendo una de las principales causas las actividad antropogénica como: sobrepastoreo, inadecuadas prácticas agrícolas y pecuarias en cuencas hidrográficas (Ramankutty *et al.*, 2008), sumado a ello las contribuciones del cambio climático (Gang *et al.*, 2014). De modo que, la degradación de pastizales demuestra ser un proceso complejo que depende de la productividad, cobertura vegetal, estructura fisiológica vegetal, biodiversidad edafológica y otros que son afectados (Veldman *et al.*, 2015). Sin embargo, Davidson *et al.* (2009) mencionan que la "degradación" es más y que está mal definida y tiene diferentes enfoques para los ganaderos, ecologistas y legisladores. Por tanto, la degradación de pastizales es asociada al tipo de orientación del investigador. Asimismo, se estima que, más del 40 % de pastizales del mundo se encuentran degradados y está asociado a la pérdida de fertilidad del suelo (Padilla & Sardiñas, 2009)

Debido, a la presión sobre los factores ambientales por el hombre, incluida la sobrepoblación, el pastoreo excesivo del ganado y el transporte, amenazan el adecuado funcionamiento de ecosistema de pastizales (Qian *et al.*, 2017). De modo que, es de gran importancia comprender los patrones de cambios a largo plazo de la vegetación de pastizales mediante modelos analíticos avanzados (Wang *et al.*, 2018). La teledetección tiene el potencial de mejorar nuestra capacidad para mapear y monitorear la degradación de los pastizales (Numata *et al.*, 2007). Sin embargo, presenta limitaciones para la evaluación temporal, resolución espacial ante las imágenes de Sistema de Aeronaves no Tripuladas (UAS) (Gruen, 2012).

La degradación de los pastizales de manera convencional se estudia a través de la investigación en campo, pero este método requiere mucho tiempo y una elevada inversión para superficies extensas (Yu *et al.*, 2019). La teledetección ofrece numerosas tecnologías para monitorear la degradación de los pastizales. En la última década se ha demostrado que, mediante uso de sensores remotos como Landsat, Sentinel, SPOT, MODIS y otros se ha logrado monitorear pastizales enfocados a cambios de superficie en determinados periodos (*Seaquist et al.*, (2003); Zhou *et al.*, (2017) and Li *et al.*, (2017)). Sin embargo,

estos no son lo necesariamente suficientes, a nivel de detalle (baja resolución espacial y temporal) para analizar la degradación. Por ello, con el creciente interés de UAS y cámaras de alta resolución espacial y espectral y la aplicabilidad en diferentes estudios de agricultura de presión, topografía, vigilancia (Goodbody *et al.* (2017); Lima *et al.* (2017); Riihimäki, Luoto, and Heiskanen (2019)). Además, de nuevos métodos de extracción de información de la vegetación basados en los UAS (Zhang *et al.*, 2019). Presenta facilidades para evaluar pastizales degradados y el desarrollo de nuevas metodologías mediante el uso de software de código abierto (Python, QGIS y otros) para el post-procesamiento. Existen pocos estudios en degradación de pastizales; debido, a limitaciones, que los siguientes autores al ejecutar sus investigaciones presentaron.

Yan *et al.* (2019) mediante el uso de aprendizaje automático realizó la evaluación de pastizales degradados. A fin, de conocer el número de imágenes necesario para realizar una clasificación, construyeron datos de estimación de degradación automática de pastizales (AGDE-Dataset), mediante imágenes de pastizales capturadas. Sus hallazgos implicaron hacer uso de *i*) Segmentación semántica: diseñaron una red neuronal profunda con una estructura de codificador-decodificador mejorada para implementar la segmentación semántica de imágenes de pastizales y *ii*) Estimación de la degradación: proporcionamos la estimación de la degradación de los pastizales con base en los resultados de la segmentación semántica.

Yu *et al.* (2019), evaluaron la degradación de los pastizales por su calidad, cantidad y patrón espacial en el oeste semiárido de Jilin, China. Teniendo en cuenta la salinización del suelo, conductividad eléctrica (CE), índice con ANPP a fin de evaluar la degradación de los pastizales. Emplearon el algoritmo de *Random Forest* (RF) como método de selección y regresión de variables para predecir EC y ANPP. Los resultados confirman la influencia positiva de los proyectos de conservación ecológica patrocinados por el gobierno.

Mansour *et al.* (2016) evaluaron pastos degradados en sudáfrica. Utilizando indicadores de especies de pastos y factores edáficos. Los datos multiespectrales de SPOT 5 para producir un mapa de degradación de pastizales basado en la distribución espacial de especies decrecientes (*Themeda triandra*) e incrementadoras (*Hyparrhenia hirta*). Recolectaron, muestras y así analizar el contenido de nutrientes. Como estadístico usaron la prueba t-student y el algoritmo de clasificación de *Random Forest* (RF), para la

selección y clasificación de variables utilizando datos de SPOT 5 y variables edáficas. El estudio demostró que la integración de datos multiespectrales y variables edáficas, incrementar la precisión en un 13%. De modo que, es adecuado cuando se adopta la teledetección para monitorear la degradación de los pastizales.

Paudel and Andersen (2010) buscaron cartografiar y discriminar la degradación de los pastizales de los efectos de la variabilidad de la precipitación. De este modo, identificar las fuerzas impulsoras de la degradación en las áreas de pastoreo en Nepal. Mediante un análisis temporal de imágenes Landsat MSS, TM, ETM y SPOT (1976–2008). Con una resolución de 8 km y el uso de la serie de tiempo residual de la regresión lineal NDVI / precipitación, sobre la productividad de la vegetación e identificar la degradación de pastizales a una escala local. En efecto determinaron que la presión de pastoreo de un sitio es el producto de la densidad neta anual de población y la inversa de la fricción total del movimiento del ganado.

Davidson *et al.* (2009), indican que la degradación de los pastos para el ganado es una preocupación de gestión en la Amazonia. Analizaron la degradación de los pastos mediante indicadores de vegetación fotosintética (PV), vegetación no fotosintética (VPN) y suelo expuesto (S) derivados de imágenes Landsat. Emplearon mediciones de reflectancia espectral satelital en estimaciones de subpíxeles de las coberturas de PV, VPN y S en ranchos de la Amazonia occidental y oriental. Se demostró que, el manejo intensivo mantuvo el suelo expuesto a una cobertura de menor a 40%. Asimismo, el nnúmero de tratamientos de encalado, herbicida y descascarado aplicados a cada unidad de manejo de pasturas se correlacionó positivamente con el VPN y negativamente con el PV. El análisis de las propiedades espectrales es prometedor para identificar áreas donde la intensidad del pastoreo ha excedido los insumos de manejo, aumentando así la cobertura de follaje senescente y suelo expuesto.

Gao *et al.* (2006) realizaron uno de los estudios más prometedores mediante el uso de índices espectrales. Este estudio seleccionó, calculó el índice de degradación de pastizales (GDI) y estableció el sistema de monitoreo y evaluación por teledetección para la degradación de pastizales en el norte del Tíbet, basado en datos de detección como los datos NDVI de una imagen de la NOAA / AVHRR (pixel de 8 km), de SPOT / VGT (pixel de 1 km) y de MODIS (pixel de 0.25 km). El resultado indicó que la degradación de los pastizales en el norte del Tíbet es muy grave, y el valor medio de GDI en los últimos

20 años es de 2,54 (degradación grave). De 1981 a 2004, el IDG presentó variaciones de degradabilidad de pastos. Determinaron que la degradación de los pastizales fue grave, especialmente en la zona de Naqu, Biru y Jiali. la cabecera del río Yangtze en la montaña nevada y los glaciares de Galadandong, el área a lo largo de la carretera y el ferrocarril Qinghai-Tibet, y las áreas alrededor de las montañas nevadas y glaciares Tanggula y Nianqingtanggula. Por lo tanto, demostrando que los pastizales son sensibles al cambio climático. Este estudió presento limitaciones, debido a la baja resolución de las imágenes satelitales para la aplicabilidad efectiva del índice GDI que emplearon.

Liu *et al.* (2004) en China evaluaron a partir de una imagen Landsat *Thematic Mapper* (TM) junto con muestras in situ del porcentaje de cobertura de pasto y la proporción (en peso) de pastos desagradables (PUG) recolectados en parcelas de muestreo de 1 m². Mediante el uso de 10 índices de vegetación se derivaron de las bandas 3 y 4 de TM, y de los datos de reflectancia espectral en las longitudes de onda que se corresponden más estrechamente con las de TM3 y TM4. La regresión que emplearon, mostró que NDVI y SAVI son los indicadores más confiables de cobertura de pasto y PUG. Asimismo, integraron estos mapas para formar uno de degradación con un R² de 91,7%.

La presente investigación busca analizar la degradación de pastizales basado en imágenes multiespectrales UAS-Sentinel para la gestión sostenible de las microcuencas Pomacochas y Ventilla, Amazonas – Perú. Por ello, se *i*) analizará el uso y cobertura de la tierra (LULC), basado en imágenes UAS-Sentinel para las microcuencas de Pomacochas y Ventilla; *ii*) combinará imágenes UAS-Sentinel basado en un leguaje de aprendizaje automático para identificar la degradación de pastizales y se *iii*) determinará la degradación de pastizales basado en características edafológicas y fisiológicas. El resultado de la investigación permitirá ofrecer datos de apoyo para la toma de decisiones, en el manejo de pastizales degradados y promover la rehabilitación de la vegetación a nivel de cuencas hidrográficas (*Unidades de Respuesta Hidrológica* - HRU) en el departamento de Amazonas. Asimismo, la adopción de nuevas tecnologías para los agropecuarios como los UAS-Sentinel de gran aplicabilidad en la gestión de los recursos naturales.

II. MATERIAL Y MÉTODOS

2.1. Área de estudio

La región Amazonas se ubica el Norte (N) del Perú, predomina una temperatura promedio entre 6.4 a 27.1 °C y precipitaciones pluviales entre los 382 a 2 708 mm al año. Presenta un potencial desarrollo de la actividad ganadera que se desarrolla desde los 1581-2881 m s. n. m (Maicelo, 2017). Este proyecto tiene como área de estudio las microcuencas ganaderas de Pomacochas y Ventilla ubicada, en el distrito de La Florida y Molinopampa (Figura 1). La microcuenca de Pomacochas alberga 63.70 km2 y Ventilla 224.33 km2. Estas dos microcuencas presentan una elevada composición florística, destacando los pastizales predominando el kikuyo y Siso (Oliva et al., 2019)

Figura 1

Localización y gradiente altitudinal de las dos microcuencas ganaderas. Pomacochas y Ventilla.

2.2. Proceso metodológico

La **Figura 2** indica el flujo metodológico del proyecto de investigación. Está comprendido en 3 fases a fin de analizar la degradación de pastizales basado en imágenes multiespectrales UAS-Sentinel para la gestión sostenible de las microcuencas Pomacochas y Ventilla, Amazonas – Perú.

Figura 2

Diagrama metodológico para analizar la degradación de pastizales basado en imágenes multiespectrales UAS-Sentinel para la gestión sostenible de las microcuencas Pomacochas y Ventilla, Amazonas – Perú.

2.3. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel- 2B

En la determinación del LULC, se empleó la plataforma libre de Google Earth Engine (GEE) para la clasificación supervisada de uso de suelo de ambas microcuencas mediante el uso de imágenes Sentinel 2B. En esta etapa en la plataforma GEE se hizo correcciones a las imágenes tales como atmosféricas y topográficas para obtener un mosaico rectificado al cual se le aplicará índices espectrales como Índice de Vegetación de la Diferencia Normalizada (NDVI) que está altamente asociado con el contenido de vegetación donde una mayor reflectancia en el infrarrojo cercano corresponde a una vegetación más densa y saludable (Ka & Sa, (2018); and GU. (2019)). Índice Diferencial de Agua Normalizado (NDWI) para el análisis de masas de agua, puede mejorar la información sobre el agua de manera eficiente en la mayoría de los casos (Zha *et al.*, 2003). Índice de Vegetación Ajustado al Suelo (SAVI) el cual corrige el NDVI por la influencia del brillo del suelo en áreas donde la cobertura vegetativa es baja (USGS 2020). Índice de Vegetación Mejorado (EVI) cuantifica el verdor de la vegetación corrigiendo algunas condiciones atmosféricas y el ruido de fondo del dosel y es más sensible en áreas con vegetación tupida. Realizado la estimación de índices se utilizará el algoritmo *Random Forest* (RF) el cual nos permitirá obtener los mapas de cobertura LULC considerando el flujograma de Yu *et al.* (2019). Asimismo, a los mapas se hará una validación con puntos GPS obtenidos en campo para construir una matriz de confusión y conocer el porcentaje de precisión de esta plataforma

2.3.1. Datos espaciales de entrada

Hay varios productos disponibles que permiten la identificación de pastizales para diferentes áreas del mundo. En este estudio, utilizamos datos ópticos disponibles en la plataforma GEE. Entre ellas, se recopilaron en la plataforma GEE las imágenes Sentinel multiespectrales disponibles del Centro de Estudios Geológicos de los EE.UU. Landsat Collection 1 Level 1 y Tier 1 son productos de reflectancia superficial (SR) con ortorrectificación y una resolución espacial de 30 m en bandas espectrales que son adecuados para la comparación y la detección multitemporal de cambios (Chuvieco, 2016; Masek et al., 2006). La adquisición de las imágenes incluyó el mosaico de los años 1990, 2000, 2010 y 2020 (Tabla 1). Las colectas anuales tuvieron, nubosidad máxima del 50%, 7 bandas espectrales, resolución temporal de 16 días y resolución espacial de 30m (Souza et al., 2020).

Tabla 1

Sensor	Nr. de Imágenes (cloud cover < 50%)								
School	Microcuenca Pomacochas	Microcuenca Ventilla							
Sntinel 2B (12 bandas)	2	2							
Planet (8 bandas)	1 mosaico	1 mosaico							

Características generales y número de imágenes de sentinel 2B y Planet

2.3.2. Muestreo de parcelas

El primer paso de procesamiento fue construir mosaicos anuales de imágenes Landsat sin nubes. Para este propósito, se aplicaron máscaras de nubes utilizando el algoritmo de la función de máscara (CFMASK) (Foga *et al.*, 2017), la máscara de valores atípicos oscuros temporales (TDOM) (Housman *et al.*, 2018), el

enmascaramiento de nubes y la información de evaluación de la calidad de la banda (BQA) disponible en la colección Landsat. Luego, se generaron mosaicos anuales de imágenes mediante la aplicación de reductores estadísticos usando funciones matemáticas en GEE como la mediana, el máximo y el mínimo (Souza et al., 2020). Posteriormente, se aplicaron tres índices de vegetación basados en datos de reflectancia de las bandas del Infrarrojo Cercano (NIR), rojo, azul y verde (**Tabla 2**). En concreto, el NDVI, SAVI y EVI están relacionados con el verdor de la vegetación y ayudan a identificar la cobertura vegetal (Wang et al., 2017). Además, el índice NDWI (Mcfeeters, 1996) se utilizó para delinear las características de los cuerpos de agua presentes en el área de estudio

Tabla 2

Nombre	Fórmula	Fuente
Índice de Vegetación de Diferencia Normalizada (NDVI)	$\left(\frac{NIR-Red}{NIR+Red}\right)$	(Rouse et al., 1973)
Índice de Vegetación Ajustado al Suelo (SAVI)	$\frac{(NIR - Red) * 1.5}{(NIR + Red + 0.5)}$	(Huete, 1988)
Índice de Vegetación Mejorado (EVI)	$2.5 \frac{NIR - Red * 1.5}{(NIR - 6 * Red + 7.5 * Blue) + 1}$	(Gao et al., 2003)
Índice Diferencial de Agua Normalizado (NDWI)	$\left(\frac{Green - NIR}{Green + NIR}\right)$	(Mcfeeters, 1996)

Índices espectrales utilizados para la estimación.

El NDVI define la cubierta vegetal con la diferencia en la reflectancia visible e infrarroja cercana y se usa ampliamente para monitorear la dinámica de la vegetación a diferentes escalas (Tucker, 1979; Zhu et al., 2013). El EVI fue desarrollado para optimizar la señal de vegetación con mejoras en la sensibilidad en regiones con alta biomasa y vegetación, lo que permite el monitoreo de la vegetación y reduce la influencia atmosférica (Huete *et al.*, 2002). Adicionalmente, SAVI se aplica en el análisis de la vegetación en etapas de crecimiento inicial o vegetación dispersa con exposición de la superficie terrestre (Ren et al., 2018; Rhyma et al., 2020).

2.3.3. Identificación de "Pastizales" y "No Pastizales"

Para la clasificación, se recolectaron datos de entrenamiento de campo de las clases "Pastizales" y "No Pastizales" mediante el uso de un receptor del Sistema de Satélite de Navegación Global (GNSS) y registros fotográficos (Figura 3) (Chuvieco, 2016; Wang *et al.*, 2017). El mapeo de pastizales se basó en mosaicos anuales y la aplicación de clasificación supervisada. El enfoque utilizó varias respuestas espectrales durante un año y se consideraron las mejores imágenes (sin nubes y sin sombras de nubes) (Parente y Ferreira, 2018).

Figura 3

Delimitación de parcelas y registro de datos de entrenamiento utilizando el receptor GPS en las microcuencas Pomacochas y Ventilla

El enfoque de clasificación que se utilizó fue Random Forest (RF), un algoritmo que considera la combinación de predictores de árboles de decisión basados en un voto mayoritario para elegir una clase final (Breiman, 2001). Se crearon imágenes multibanda que incluían NDVI, SAVI y EVI que mejoraron el rendimiento de los algoritmos de clasificación de imágenes al identificar las clases de pastizales y no pastizales en GEE (Tsai et al., 2018). Los resultados de la clasificación, con la probabilidad por píxel de las clases pastizales y no pastizales, se exportaron a Google Drive. Estos datos se descargaron a una estación de trabajo local y se combinaron para producir mapas interanuales de pastizales para las dos microcuencas. Para mejorar los mapas clasificados, las imágenes se compararon visualmente en combinación RGB con el mapa clasificado de cada año de análisis (FAO, 2001). Los píxeles del año uno se consideró como referencia para corregir los píxeles del año 2, además de identificar posibles errores de clasificación y descartar píxeles en cuerpos de agua y otros usos. Finalmente, para todos los mapas de pastizales, se utilizó un área cartográfica mínima de 0,5 ha (MINAM, 2014).

Los mapas finales de pastizal se evaluaron utilizando 3648 puntos distribuidos aleatoriamente por igual en las clases de pastizal y no pastizal, asumiendo un error de precisión del 2% dentro de un intervalo de confianza del 96% (Chuvieco, 2016; MINAM, 2014). Los puntos fueron inspeccionados visualmente para cada año. El uso de estos puntos permitió calcular la Precisión del Usuario (UA), que corresponde a errores de comisión (desde la perspectiva del usuario), y la Precisión del Productor (PA), que está asociada a errores de omisión (desde la perspectiva del productor). Además, se estimaron la Precisión Global (GA) y el índice Kappa (*k*) (Chuvieco, 2016; Padilla et al., 2014).

2.4. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar la degradación de pastizales

En esta fase se tomará en cuenta la metodología empleada por Ge et al. (2019) quién emplea imágenes multiespectrales de UAS con otras variables. Esta técnica se empleará con ajustes de acuerdo al área de estudio, tales como: disponibilidad de datos cartográficos, condiciones meteorológicas (porcentaje de nubes en las imágenes satelitales del sensor Sentinel 2B). Asimismo, mediante el uso del lenguaje de programación libre Python v. 3.0 se realizará el procesamiento de imágenes UAS y Satelital. La clasificación supervisada de las imágenes multiespectrales en Python será basada en el proceso metodológico dado por Ge et al. (2019) y empleo del algoritmo clasificador Random Forest (Dash et al., 2017)

2.4.1. Muestreo de parcelas

La técnica de muestreo empleada es un muestreo no probabilístico, debido a la magnitud del área de estudio (microcuencas). Para ello se invitó a dos especialistas en pastizales los cuales determinaron el número de muestras en las microcuencas de Pomacochas y Ventilla. El uso de los SIG facilita este proceso ya que permite establecer la distribución de muestras teniendo en cuenta la estratificación altitudinal (3 altitudes) (Tabla 3). Por ello, mediante el uso de una imagen Satelital Sentinel se determina el uso de pastos en ambas microcuencas ganaderas, procesado en QGIS v 3.10 mediante el plugin SCP (Leroux et al., 2018). Este uso se exporta a la plataforma de Google Earth donde se fijan los puntos de muestre.

Los puntos de muestreo representan superficies cuadradas de 30m x 30m, dónde se realizará el muestreo de suelos y se realizará el vuelo fotogramétrico. El umero de muestras establecido es de 14 (Pomacochas) y 10 (Ventilla)

Tabla 3

Microcuenca	Estrato	Altitud	Área (ha)	%	N°
		(msnm)		representa	muestras
	1	1693 - 2176	487.17	13	1
Pomacochas	2	2176 - 2435	1024.11	59	9
	3	2435 - 3049	2151.18	28	4
	r	Fotal	3662.46	100	14
	1	2018 - 2561	971.82	40	4
Ventilla	2	2561 - 2739	866.16	36	3
	3	2739 -3555	582.21	24	3
	,	Fotal	2420.19	100	10

Estratificación Altitudinal

Muestreo no probabilístico en la microcuenca de Pomacochas mediante parcelas de 30x30m. Parcelas de Pomacochas

2.4.2. Obtención y procesamiento de datos fotogramétricos

En cada una de las parcelas se realizó el vuelo fotogramétrico empleando dos Sistemas Aereos No Tripulados (RPA): Matrice 210 y Phantom 4RTK

Tabla 4

Tipo de RPA	Tipo de sensor						
DII MATRICE 210 RTK	Uso de sensor multiespectral						
Link: https://www.dii.com/matrice.200 series.y2	Micasence / RedEdge-MX Dual						
Link. <u>https://www.uji.com/matrice-200-series-v2</u>	Camera System						
DJI Phantom 4RTK	Sensor RGB						
Link: https://www.dji.com/phantom-4-rtk							

Características de los RPAS empleados

Se realizó un levantamiento fotogramétrico, con un RPAS DJI Phantom 4 RTK (www.dji.com/phantom-4-rtk). Este utilizó parámetros de superposición de 75% de traslape frontal y 80 % lateral a 104 m de altura y una velocidad de vuelo lento (6 m/s). Las imágenes obtenidas (285) fueron procesadas en el software Agisoft Metashape Professional v 1.7.6 del cual se obtuvo un ortomosaico del campus universitario UNTRM-A. Para el procesamiento de datos se empleó el siguiente flujograma de procesamiento fotogramétrico basado en el manual de procesamiento de imágenes tipo RGB de Agisoft (https://www.agisoft.com/downloads/user-manuals/) y las recomendaciones dadas por Kumar et al. (2019). Asimismo, se realizó la exportación de los productos fotogramétrico como: Modelo Digital de Elevación (MDE – 5cm de pixel), Ortomosaico con 2.88 cm de pixel exportado y el reporte de calidad del procesamiento de datos (**Anexo** 2).

Figura 5

2.5. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un leguaje de aprendizaje semi-automático

Basado en el estudio de Wang et al. (2018), se realizará el proceso de determinación de pastizales. Este tipo de uso será clasificado en SD está ligeramente degradado, MD está moderadamente degradado e ID está intensamente degradado según la clasificación de Yu et al. (2019).

La validación del mapa de degradación de pastizales se realizará mediante una matriz de confusión y el empleo del índice Kappa que tiene valores de entre 0 a 1, dónde mientras más cerca resulte el índice a la unidad el mapa muestra consistencia (Kaplan & Avdan, 2018)

Todos los datos cartográficos generados y recopilados se analizaron mediante el uso del software Python v 3.8, dónde la librería de uso a emplear es Anaconda. En esta librería se realizará los análisis de preprocesamiento y análisis de datos estadísticos (correlación de datos edafológicos y fisiológicos con los de pastizales degradados identificados) considerando el proceso realizado en el estudio de Yu et al. (2019).

2.4.1. Recopilación de datos en campo: composición florística, caracterización del suelo e información visual

Para identifican pastizales degradados, se empleó una "*ficha de identificación visual*", basado en 4 categorías fisonómicas según Valle Júnior et al. (2019), las cuales son: pastizales saludables, pastizales suavemente degradados, pastizales moderadamente degradados y pastizal degradado. Además, se recopilaron datos de color de pasto, del suelo, presencia y/o ausencia de leguminosas - malezas y gramíneas entre otros.

Figura 7

Pastizales identificados en la microcuenca Pomacochas. Izquierda: muestreo de suelos en cada parcela evaluada. Derecha: Método del transecto (cada 50 cm) para evaluar composición florística

La *colecta de muestras de suelo* se basó en la guía del DS N° 002-2013-MINAM, Estándares de Calidad Ambiental (ECA) para el Suelo (MINAM, 2014), con el apoyo de winchas (50 m) y estacas (50 cm) se midió cuadrantes de 30m de lado subdivididos en nueve de 10m de lado. En cada cuadrante se recopiló muestras de suelo aleatoriamente, esta consistió en obtener una sola muestra compuesta a partir de varias muestras (Junta de Andalucia, 2012) En el lugar de las muestras colectadas, fue necesario limpiar la superficie de cada punto de muestreo, con la ayuda de una palana de corte, se realizó un corte superficial de 20 cm, para cada parcela evaluada se tomaron 9 muestras, estas luego homogenizaron y se colocaron en una bolsa de polietileno debidamente rotulada (Nombre de la microcuenca, estrato, parcela, coordenadas UTM (Este, Norte y Altitud).

Las muestras de suelos fueron trasladadas al Laboratorio de Investigación de Suelos y Aguas de la Universidad Nacional Toribio Rodríguez de Mendoza (LABISAG) donde se realizó el estudio de caracterización de las propiedades fisicoquímicas de las parcelas evaluadas.

Por último, el muestreo correspondiente a la *composición florística* de pastizales empeló el método de los transectos lineales (50 m) empleados por Oliva et al. (2019); Vásquez et al. (2016), el cual consistió en tensar una cuerda delgada sobre la parcela con 100 marcas cada 50 cm (Figura 5). Al azar se eligió el punto de inicio y posterior a ello se registraron las especies encontradas en cada punto de contacto y, con el apoyo de una ficha de registro se registraron los datos.

Los estudios realizados por Oliva et al., (2015); Vásquez et al., (2016) y Oliva et al., (2019) permitieron realizar la clasificación de las especies de pastizales y malezas.

Para ello, se empleó las plataformas de TROPICOS - Home (https://www.tropicos.org/home) y Herbario Rapid Reference The Field Museum (https://plantidtools.fieldmuseum.org/es/rrc/5581) en la clasificación taxonómica.

Mediante la prensas botánicas y papel periódico, se recolectaron pastizales desconocidos, para luego ser enviadas al Herbario Forestal Kuélap de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas – UNTRM-A. La metodología propuesta por el Herbario indicó emplear una estufa a 45°C por 7 días para luego ser identificado por un especialista del herbario.

Los modelos

2.4.2. Determinación de la degradación de pastizales mediante índice de vegetación CVP

Se descargaron imágenes satelitales, tipo óptico Sentinel 2B del servidor de la Agencia Espacial Europea Copernicus (ASA) (https://lcviewer.vito.be/) para las fechas de 02-06-2020 (Molinopampa) y 15-06-2020 (Pomacochas) con porcentaje de Nubosidad (%N < 20). Las imágenes fueron procesadas en el software QGIS 3.22 para la corrección atmosférica y radiométrica mediante el uso del *plugin* Semi-Automatic-Classification Plugin (SCP), para luego realizar el mapa de Uso y Cobertura de la Tierra.

La evaluación de los niveles, se emplearon datos espacializados, imágenes sentinel 2B que cubran la total superficie del área de estudio. Estos fueron procesados en software QGIS 3.20 y ArcGIS 10.5. Además, se empleó el índice NDVI (Fórm. 1). Los valores adquiridos por NDVI variaron entre -1 y +1, por lo que cuanto más se acercan los valores a +1 mayor es la densidad de vegetación y de lo contrario indica un suelo desnudo o vegetación escasa (Passos, 2017).

 $NDVI = ((NIR-RED)) / (NIR+RED) \% \dots (1)$

Los valores del NDVI fueron utilizados para el índice de la Cobertura de Vegetación de Pastizales (CVP), según la metodología de Andrade et al.(2013) considera que este índice es el ideal para analizar pastizales degradados. En la (Fórm. 2). Se indica que el NDVIs el menor valor de NDVI encontrado entre el suelo expuesto y, el NDVIv es el valor de NDVI encontrado en cada parcela de pastizales.

$$CVP = \frac{NDVI - NDVI_s}{NDVI_V - NDVI_s} x \ 100 \ \%.....(2)$$

Evaluar pastizales degradados de modo espacializado fue representado a través la generación de un mapa clasificado en cuatro niveles de degradación: "Fuertemente Degradado" (S4, <40%), "Moderadamente degradado" (S3, entre 40-50%) , "Ligeramente degradado" (S2, CVP entre 50-60%) y "Sin degradar "(S1, CVP>60%) según Ballerini & Junior, (2020). El índice de kappa (k) permitió evaluar la consistencia del mapa de degradación de pastizales elaborado.

Los mapas de salida se realizarón en el software ArcGIS v.10.5 para las imágenes UAS e imágenes Sentinel 2B.

III. RESULTADOS

3.1. Uso y Cobertura de la Tierra (LULC), basado en imágenes Sentinel-2B

La clase pastizal para los últimos años mostró un incremento en las microcuencas de Pomacochas y Ventilla. En Pomacochas, la superficie de pastizal es de 57,4% (3659,37 ha). Para Ventilla el área representa sólo el 18.1% (4056.26 ha) (**Tabla** 3).

Tabla 5

Mionoguanaag	Class	2021						
wherecuencas	Clase	Área (ha)	%					
	Pastizal	3 659.38	57.4					
Pomacochas	No pastizal	2 710.91	42.6					
	Total	6 370.28	100.0					
	Pastizal	4 056.26	18.08					
Ventilla	No pastizal	18 376.93	81.92					
	Total	22 433.19	100.0					

Uso y Cobertura de la Tierra (LULC) por cada microcuenca

La validación estadística de los mapas generados se logró en base a puntos de validación para cada microcuenca, lo que permitió la comparación de GA y Kappa (Figura 5). El AG obtenido para la microcuenca Pomacochas 2020 estuvo entre 0.96 y el Kappa varió entre 0.8, mientras que la microcuenca Ventilla presentó GA entre 0.94 para 2020, con valores kappa entre 0.88.

La distribución espacial de los pastizales en la microcuenca Pomacochas se concentra en el suroeste y noreste de la microcuenca, especialmente en áreas cercanas a la laguna, ciudad de Florida y a lo largo de caminos y carreteras. Asimismo, en la microcuenca Ventilla, el aumento de pastizales fue mayor y se distribuyó hacia el suroeste en ambas márgenes del curso bajo del río Ventilla, cerca de la ciudad de Molinopampa. La presencia de pastizales se caracteriza por las zonas más planas de cada microcuenca, en el caso de Pomacochas las parte Sur, alrededor de la Laguna de Pomacochas. Caso similar en Ventilla que los pastizales se encuentran en zonas de pendiente suave y próximos a las fuentes de agua superficial y vías de acceso. Sin embargo, la distribución es más heterogénea a diferencia de Pomacochas (**Figura 8**).

Mapas de cobertura de pastizales a 2021. a) microcuenca Pomacochas y b) microcuenca Ventilla.

3.2. Obtención y procesamiento de datos satelitales, fotogramétricos, edafológico y composición florística para evaluar la degradación de pastizales
3.1.1. Productos satelitales y fotogramétricos

Figura 9

Procesamiento fotogramétrico

Figura 10

Imágenes satelitales Sentinel 2B descargadas y corregidas. Asimismo, las imágenes Planet mediante licencia de estudiante. Procesadas ArcGIS 10.5

3.1.2. Datos edafológicos y de composición de florística

En las Tablas de 7 a 10 se muestra los análisis de suelos y de composición obtenidos.

Análisis de caracterización de suelos en la microcuenca ganadera de Pomacochas.

N° De Muestra			C.E.	р	V	C	мо	N	Anál	isis Mec	cánico	Olarra	Cia		Catione	es Cam	biables		Suma	Suma	%
Lab	Muestra	pН	(1:1)	ſ	K	C	M.U	IN	Arena	Limo	Arcilla	Textural	Cic	Ca ⁺²	Mg^{+2}	K ⁺	Na ⁺	Al ⁺³ + H ⁺	De	De	Sat. De
		(1:1)	dS/m	p	pm	%	%	%	%	%	%				meq/1	.00g			cationes	bases	bases
915	pe1-p1	5.35	0.04	11.01	595.36	3.43	5.91	0.30	78.0	12.0	10.0	fr.a.	12.00	5.09	0.61	1.30	0.09	0.10	7.20	7.10	59
968	pe1-p2	5.77	0.05	4.85	76.74	2.00	3.45	0.17	52.0	23.0	25.0	fr.ar.a.	20.00	7.30	1.25	0.40	0.25	0.00	9.20	9.20	46
921	pe2-p1	6.42	0.27	10.04	276.28	4.37	7.54	0.38	50.0	20.0	30.0	fr.ar.a.	22.40	15.95	1.28	0.84	0.16	0.00	18.22	18.22	81
925	pe2-p2	5.55	0.09	35.98	373.52	4.57	7.88	0.39	60.0	26.0	14.0	fr.a.	17.60	10.90	2.22	1.05	0.18	0.00	14.34	14.34	81
927	pe2-p3	5.72	0.34	10.43	287.24	3.03	5.22	0.26	72.0	12.0	16.0	fr.a.	25.60	20.35	2.55	0.94	0.22	0.00	24.05	24.05	94
930	pe2-p4	6.53	0.22	21.11	118.55	4.23	7.29	0.36	72.0	14.0	14.0	fr.a.	23.20	20.40	0.92	0.36	0.12	0.00	21.79	21.79	94
932	pe2-p5	6.72	0.30	12.83	324.09	4.57	7.88	0.39	64.0	16.0	20.0	fr.a.	19.20	25.14	1.40	0.97	0.15	0.00	17.67	17.67	92
934	pe2-p6	5.43	0.07	25.63	382.53	3.43	5.91	0.30	52.0	28.0	20.0	fr.	20.00	10.34	1.70	0.99	0.32	0.00	13.35	13.35	67
936	pe2-p7	6.09	0.26	2.73	504.07	2.67	4.60	0.23	48.7	12.0	39.3	ar.a.	28.00	21.59	3.29	1.54	0.23	0.00	26.64	26.64	95
943	pe2-p8	5.58	0.12	7.93	199.34	3.73	6.44	0.32	40.7	30.0	29.3	fr.ar.	25.60	9.52	1.18	0.61	0.17	0.00	11.48	11.48	45
919	pe3-p1	5.06	0.10	41.88	439.36	3.43	5.91	0.30	60.0	14.0	26.0	fr.ar.a.	20.80	10.97	2.82	1.09	0.15	0.08	15.11	15.03	72
916	pe3-p2	4.90	0.08	19.47	358.90	4.57	7.88	0.39	46.0	24.0	30.0	fr.ar.a.	19.20	11.54	2.68	1.04	0.19	0.16	15.61	15.45	80
937	pe3-p3	5.79	0.14	4.66	271.33	2.67	4.60	0.23	46.7	28.0	25.3	fr.	20.00	8.60	0.83	0.44	0.18	0.00	10.04	10.04	50
945	pe3-p4	5.87	0.09	30.72	320.76	1.60	2.76	0.14	68.7	18.0	13.3	fr.a.	16.00	10.15	1.88	0.93	0.19	0.00	13.16	13.16	82

•

Análisis de caracterización de suelos en la microcuenca ganadera de Ventilla

N° de	e Muestra		C.E.						Anál	isis Mec	ánico			(Catione	s Caml	oiables		Suma	Suma	%
Lab	Muestra	Ph	(1:1)	Р	K	С	М.О	Ν	Arena	Limo	Arcilla	Clase "Textural"	Cic	Ca ⁺²	Mg ⁺²	K ⁺	Na ⁺	Al ⁺³ + H ⁺	De	De	Sat. de
		(1:1)	Ds/M	Р	pm	%	%	%	%	%	%				Meq/1	00g			Cationes	Bases	bases
1188	VE1 - P1	5.03	0.04	13.89	217.13	5.77	9.95	0.50	66.0	24.0	10.0	fr.a.	8.00	1.16	0.27	0.58	0.04	1.43	3.49	2.05	26
1189	VE1-P2	4.93	0.09	15.43	169.18	6.29	10.84	0.54	72.0	19.0	9.0	fr.a.	9.60	3.48	1.19	0.46	0.06	0.35	5.54	5.19	54
1190	VE1 - P3	5.15	0.11	12.16	231.40	5.77	9.95	0.50	65.0	27.0	8.0	fr.a.	9.60	4.51	0.63	0.57	0.05	0.27	6.04	5.77	60
1191	VE1 - P4	5.17	0.07	13.03	272.35	5.14	8.87	0.44	71.0	17.0	12.0	fr.a.	16.00	10.04	2.56	1.01	0.04	0.22	13.87	13.65	85
1192	VE1 - P5	5.49	0.25	14.18	375.26	5.43	9.36	0.47	68.0	20.0	12.0	fr.a.	12.00	5.00	0.77	0.77	0.06	0.60	7.19	6.59	55
1193	VE1 - P6	5.38	0.12	9.37	252.14	5.14	8.87	0.44	76.0	13.0	11.0	fr.a.	16.00	10.23	1.09	0.66	0.09	0.23	12.30	12.07	75
1194	VE2 - P1	5.45	0.10	8.60	256.75	5.14	8.87	0.44	64.0	26.0	10.0	fr.a.	12.00	7.45	0.89	0.64	0.07	0.25	9.31	9.05	75
1195	VE2 - P2	5.99	0.25	59.97	1111.79	5.77	9.95	0.50	78.0	13.0	9.0	fr.a.	19.20	10.29	3.42	3.16	0.28	0.00	17.16	17.16	89
1196	VE2 - P3	5.13	0.04	11.39	127.36	5.43	9.36	0.47	68.0	21.0	11.0	fr.a.	9.60	2.58	0.78	0.31	0.02	0.57	4.26	3.69	38
1197	VE2 - P4	5.19	0.06	14.47	166.90	5.14	8.87	0.44	62.0	26.0	12.0	fr.a.	8.00	1.94	0.64	0.38	0.07	0.23	3.27	3.04	38

Composición florística y abundancia de pastizales en la microcuenca Pomacochas.

				Abundancia								
Nombre común	Familia	Nombre científico	Total microcuenc (%)	ca Forrajera (%)	No forrajera (%)	SSP (%)	SPCA (%)	1693 - 2176 msnm (%)	2176 - 2435 msnm (%)	2435 - 3049 msnm (%)		
Trébol blanco	Fabaceae	Trifolium repens	16.32	16.32	0	0	17.2	27.33	19.41	5.35		
Cortadera	Cyperaceae	Kyllinga brevifolia Rottb.	14.14	0	14.14	0	14.91	4.97	13.3	19.79		
Totorilla	Cyperaceae	Eleocharis geniculata (L.) Roem. & Schult.	10.64	0	10.64	46.97	8.68	19.25	9.31	9.63		
Kikuyo	Poaceae	Pennisetum clandestinum	9.01	9.01	0	0	9.5	0	13.3	4.28		
Pasto Ovillo	Poaceae	Holcus lanatus	8.47	8.47	0	0	8.93	5.59	9.44	7.75		
Solman	Ranunculaceae	Ranunculus praemorsus Humb., Bonpl. & Kunth ex DC.	6.92	0	6.92	0	7.29	0	5.32	13.1		
Matapasto	Asteraceae	Pseudelephantopus spiralis (Less.) Cronquist.	6.53	0	6.53	0	6.88	2.48	10.37	0.53		
Rye gras	Poaceae	Lolium multiflorum	5.21	5.21	0	0	5.49	10.56	4.79	3.74		
Sachallanten	Plantaginaceae	Plantago sp.	5.13	0	5.13	1.52	5.32	1.24	2.53	12.03		
Cortadera fina	Cyperaceae	Rhynchospora sp.	4.97	0	4.97	25.76	3.85	10.56	3.59	5.35		
Duraznillo	Lythraceae	Cuphea strigulosa Kunth	4.82	0	4.82	0	5.08	1.24	2.79	10.43		
Tumbaburro	Poaceae	Jarava ichu Ruiz & Pav.	2.1	0	2.1	0	2.21	1.86	3.19	0		
Lengua de vaca	Polygonaceae	Rumex obtusifolius	1.01	0	1.01	0	1.06	1.86	0.66	1.34		
Aguashul	Asteraceae	Philoglossa mimuloides (Hieron.) H. Rob. & Cuatrec	0.7	0.7	0	0	0.74	2.48	0	1.34		
Huarme huarme	Asteraceae	Ageratum conyzoides L.	0.62	0	0.62	0	0.66	0	1.06	0		
Sombrerito	Rosaceae	Alchemilla orbiculata Ruiz & Pav.	0.93	0	0.93	0	0.98	0	0	3.21		
Nicarion	Poacea	Setaria sphacelata (Shumach.) Stapf & C.E. Hubb. Ex M.B. Moss	0.54	0.54	0	10.61	0	4.35	0	0		
Pasto pacunga	Asteraceae	Galinsoga parviflora	0.47	0.47	0	0	0.49	0	0.27	1.07		
Maleza tipo lirio	Iridaceae	Sisyrinchium convolutum Nocca	0.39	0	0.39	0	0.41	0	0.4	0.53		
Pie de perro	Fabaceae	Desmodium molliculum (Kunth) DC.	0.39	0	0.39	7.58	0	3.11	0	0		
Chozo	Denstaedtiaceae	Pteridium caudatum (L.) Maxon	0.23	0	0.23	4.55	0	1.86	0	0		
Cadillo	Asteraceae	Bidens pilosa L.	0.23	0	0.23	0	0.25	0	0.13	0.53		
Maleza tipo cadillo	Cyperaceae	Cyperus . Difformes CB Clarke	0.16	0	0.16	3.03	0	1.24	0	0		
Anís	Apiaceae	Pimpinella anisum	0.08	0	0.08	0	0.08	0	0.13	0		
	-	TOTAL (%)		100 40.71	59.29	100	100	100	100	100		

Composición florística y abundancia de pastizales en la microcuenca Ventilla.

			Abundancia								
Nombre común	Familia	Nombre científico	Toda la microcuenc a (%)	Forrajera (%)	No forrajera (%)	SSP (%)	SPCA (%)	2018 - 2561 msnm (%)	2561 - 2739 msnm (%)	2739 - 3555 msnm (%)	
Pasto ovillo	Poaceae	Holcus lanatus	29.73	29.73	0.00	32.75	28.87	26.29	33.26	30.28	
Trebol blanco	Fabaceae	Trifolium repens	22.85	22.85	0.00	15.85	24.85	23.43	22.17	22.89	
Rye gras	Poaceae	Lolium multiflorum	9.08	9.08	0.00	17.96	6.54	16.57	3.62	4.23	
Aguashul	Asteraceae	Philoglossa mimuloides (Hieron.) H. Rob. & Cuatrec	6.96	6.96	0.00	4.93	7.55	4.95	4.05	15.49	
Kikuyo	Poaceae	Pennisetum clandestinum	6.57	6.57	0.00	0.70	8.25	4.19	13.22	0.00	
Lengua de vaca	Polygonaceae	Rumex obtusifolius	5.79	0.00	5.79	4.23	6.24	7.81	3.20	6.34	
Sombrerito	Rosaceae	Alchemilla orbiculata Ruiz & Pav.	4.93	0.00	4.93	14.79	2.11	0.00	3.41	16.55	
Cortadera	Cyperaceae	Kyllinga brevifolia Rottb.	3.29	0.00	3.29	0.00	4.23	6.29	1.92	0.00	
Sachallanten	Plantaginaceae	Plantago sp.	2.74	0.00	2.74	1.41	3.12	2.29	3.62	2.11	
Solman	Ranunculaceae	Ranunculus praemorsus Humb., Bonpl. & Kunth ex DC.	2.43	0.00	2.43	2.82	2.31	1.52	4.69	0.35	
Maleza tipo lirio	Iridaceae	Sisyrinchium convolutum Nocca	1.72	0.00	1.72	0.00	2.21	2.29	2.13	0.00	
Cortadera fina	Cyperaceae	Rhynchospora Sp.	0.94	0.00	0.94	0.00	1.21	0.19	2.35	0.00	
Diente de león	Asteraceae	Taraxacum officinale F.H. Wigg	0.78	0.00	0.78	2.82	0.20	0.19	1.92	0.00	
Tumbaburro	Poaceae	Jarava ichu Ruiz & Pav. Ichu	0.63	0.23	0.39	1.06	0.50	0.95	0.00	1.06	
Totorilla	Cyperaceae	Eleocharis geniculata (L.) Roem. & Schult.	0.55	0.00	0.55	0.00	0.70	1.33	0.00	0.00	
Duraznillo	Lythraceae	Cuphea strigulosa Kunth	0.47	0.00	0.47	0.70	0.40	0.38	0.43	0.70	
Huarme huarme	Asteraceae	Ageratum conyzoides L.	0.31	0.00	0.31	0.00	0.40	0.76	0.00	0.00	
Zanahoria de viejo	Ranunculaceae	Thalictrum decipiens B. Boivin	0.23	0.00	0.23	0.00	0.30	0.57	0.00	0.00	
	Tota	ıl	100.00	75.43	24.57	100.00	100.00	100.00	100.00	100.00	

3.3. Degradación de pastizales

3.2.1. Generación de código de degradación de pastizales

Se realizó un código de evaluación de la degradación de pastizales mediante el uso de datos de la sección 3.2, mediante el siguiente enlace se puede observarlo: https://colab.research.google.com/drive/1-

7WI9UELJtbndAWd55J1KMH9OPId4FX6?usp=sharing#scrollTo=PI4oBMgF-

SCC (Anexo 3)

El código realizó la instalación de diferentes librerías digitales para procesar datos espacializados (datos que cuentan con corrdenadas)

-Rasterio: https://rasterio.readthedocs.io/en/latest/

```
import rasterio
import pandas as pd
import numpy as np
from glob import glob
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from matplotlib.colors import ListedColormap
```

La evaluación de la degradación de pastizales estuvo basada en la generación de modelos basados en los algoritmos de clasificación: Random Forest (RF), Máquinas de Vectores de Soporte (SVM) y Regresión Logística (LR) (Figura 11). Para la clasificación de pastizales degradados en Pomacochas y ventilla RF demostró la mejora clasificación de R² a 1 para ambos. Para SVM el R² fue de 0.785 para Pomacochas y 0.875 para Ventilla. Por últimos, para LR R² fue de 0.982 (Pomacochas) y 1(Ventilla).

Aplicación de algoritmos de clasificación: Random Forest (RF), Máquinas de Vectores de Soporte (SVM) y Regresión Logística (LR) para las microcuencas de Poamcochas y Ventilla

El análisis de suelos determinó 18 variables por cada parcela evaluada. En este sentido, a fin de reducir la colinealidad de variable se aplicó una correlación de variables (Figura 12) del suelo, permitió elegir sólo 5 variables que se muestras en la Tabla 12.

Figura 12

Correlación de variables de suelo

La validación de los modelos, se realizó mediante el análisis de la curva ROC, obteniendo un valor máximo de 0.81, es decir el modelo de clasificación está en el rango de muy bueno, según los datos de entrenamiento dados.

Figura 13

Clasificación y validación de los modelos mediante el análisis de la curva ROC.

Asimismo, para cada parcela se identificó las principales malezas y pastizales dentro de las microcuencas de Pomacochas y Ventilla como se puede observar en la tabla.

Tabla 10

Presencia de malezas y pastizales en las microcuencas de Pomacochas y Ventilla

Microcuenca Pomacochas							
Altitud (m.s.n.m)	Malezas (59:29%)	Pastizales (40.71%)					
1693 - 2176	Eleocharis geniculata (L.) Roem. & Schult.	Trifolium repens					
2176 - 2435	Kyllinga brevifolia Rottb.	Trifolium repens					
2435 - 3049	Kyllinga brevifolia Rottb	Trifolium repens					
Microcuenca Ventilla							
Altitud (m.s.n.m)	Pastizales (75.43%)	Malezas (24.57%)					
2018 2561	Holcus lanatus	Rumex obtusifolius					
2561 2739	Holcus lanatus	Ranunculus praemorsus Humb., Bonpl. & Kunth ex DC.					
2739 3555	Holcus lanatus.	Alchemilla orbiculata Ruiz & Pav.					

Tabla 11Degradación de pastizales según parcela evaluada para ambas microcuencas ganaderas

Frecuencia								Nivel de	degrada	ción		
Código	Forrajera	No forrajera	c.e.	n (%)	cic (meq/100g)	al+3 + h+ (meq/100g)	suma de bases	No degradado (0)	leve (1)	moderado (2)	fuerte (3)	Nivel
PE1-P1	22	69	0.07	0.271	15.200	0.000	11.921	0.519	0.308	0.130	0.043	3
PE2_P1	66	31	0.09	0.394	17.600	0.000	14.344	0.931	0.054	0.011	0.004	2
PE2_P2	65	34	0.34	0.261	25.600	0.000	24.054	0.830	0.090	0.045	0.035	2
PE2_P3	89	11	0.22	0.365	23.200	0.000	21.791	0.974	0.020	0.004	0.002	1
PE2_P4	37	63	0.30	0.394	19.200	0.000	17.673	0.664	0.216	0.087	0.034	1
PE2_P5	65	35	15.47	62.000	16.354	19.483	86.976	0.830	0.121	0.040	0.008	2
PE2_P6	30	69	0.07	0.296	20.000	0.000	13.353	0.688	0.157	0.087	0.068	2
PE2_P7	21	79	0.26	0.230	28.000	0.000	26.641	0.937	0.047	0.009	0.007	2
PE2_P8	45	50	0.10	0.296	20.800	0.080	15.030	0.914	0.064	0.013	0.009	2
PE2_P9	81	111	0.08	0.394	19.200	0.158	15.447	0.931	0.046	0.017	0.006	3
PE3_P1	9	82	0.14	0.230	20.000	0.000	10.040	0.802	0.120	0.046	0.031	2
PE3_P2	18	82	0.09	0.138	16.000	0.000	13.159	0.910	0.066	0.014	0.010	2
PE3_P3	30	64	0.04	0.497	8.000	1.432	2.054	0.918	0.048	0.014	0.020	2
PE3_P4	30	64	0.11	0.497	9.600	0.267	5.769	0.927	0.037	0.012	0.023	2
VE1_P1	99	1	0.07	0.443	16.000	0.223	13.649	0.991	0.005	0.002	0.002	2
VE1_P2	94	6	0.12	0.443	16.000	0.227	12.075	0.721	0.161	0.085	0.033	1
VE1_P3	34	65	0.25	0.497	19.200	0.000	17.156	0.947	0.034	0.012	0.007	1
VE1_P4	72	25	0.04	0.468	9.600	0.568	3.689	0.962	0.009	0.008	0.020	3
VE2_P1	88	12	0.06	0.443	8.000	0.230	3.037	0.987	0.008	0.003	0.002	2
VE2_P2	69	21	0.07	0.419	13.600	1.386	3.725	0.946	0.036	0.013	0.005	3
VE2_P3	75	25	0.19	0.485	19.200	0.000	17.325	0.967	0.019	0.008	0.006	3
VE3_P1	81	19	0.12	0.493	10.400	1.324	6.589	0.976	0.018	0.004	0.002	3
VE3_P2	90	10	0.04	0.468	9.600	0.568	3.689	0.989	0.006	0.003	0.003	1
VE3_P3	36	54	0.06	0.443	8.000	0.230	3.037	0.863	0.092	0.031	0.013	2

3.2.2. Distribución de la degradación de pastizales mediante imágenes satelitales

Según la Tabla 12. el índice CVP mostró categóricamente cuatro niveles de degradación de pastizales, y Sin degradar (S1, CVP>60%), Ligeramente degradado (S2, CVP entre 50-60%), Moderadamente Degradado (S3, entre 40-50%) y (Extremadamente Degradado (S4, < 40%). Para las imágenes Sentinel 2B con una resolución espacial de 10 m, permitieron estimar la degradación de pastizales, por lo tanto, las áreas se estimaron en km² para todo el Uso y Cobertura de Suelo (LULC) en ambas microcuencas ganaderas.

Para Pomacochas el NDVI, los valores de NDVIs y NDVv fue de -0.0745 y 0.9247.

(("NDVI_Poma50m.tif" + -0.0745) / (-0.0745+0.9247)) *100

Para Ventilla el NDVI, los valores de NDVIs y NDVv fue de -0.6538 y 0.9993.

(("NDVI_Venti50m.tif" - 0.0658) / (0.6538 + 0.9993)) * 100

CVP mostró categóricamente cuatro niveles de degradación de pastizales por cada punto de muestreo representativo, esto se muestra en la **Figura 12**

Tabla 12

Degradación de pastizales según microcuencas ganaderas

		Ni	veles de degrada	ción de Pastizales		
Microcuenca		No degradado S1 (CVP >60%)	Levemente S2 (CVP 50% - 60%)	Moderadament e S3 (CVP, 40% - 50%)	No degradado S1 (CVP >60%)	
Domocochos	ha	2577.5	750.8	241.5	93.4	
1 Unacochas	%	70.4	20.5	6.6	2.6	
Vontillo	ha	2142.4	243.3	24.9	8.9	
ventina	%	88.5	10.1	1	0.4	

Distribución de la degradación de pastizales, mediante CVP para Pomacochas y Ventilla

IV. DISCUSIÓN

Los mapas generados presentaron valores de precisión temática aceptables; lo cual indica que la metodología aplicada es capaz de generar mapas comparables que presentan coherencia espacial y temporal. Sin embargo, Parente y Ferreira (2018) consideran que los mapas generados están sujetos a errores de comisión y omisión. En nuestro estudio, los errores de comisión se minimizaron mediante la aplicación de índices de vegetación. El NDVI es un índice que puede evaluar los cambios en la cobertura vegetal (Chávez et al., 2016; Gitelson, 2004; Pettorelli et al., 2005) y la concentración de clorofila en las hojas de las plantas (Guzman et al., 2015). Sin embargo, un uso inadecuado del NDVI conlleva riesgos inherentes como: el efecto atmosférico, fenómeno de saturación y factores del sensor utilizado en la toma de la imagen (Huang et al., 2020). En este estudio, se consideró el uso adicional de SAVI y EVI para el análisis espaciotemporal de pastizales. Además, se utilizó el uso de máscaras para cuerpos de agua, nubes y sombras de nubes (Foga et al., 2017; Huete, 1988; Huete et al., 2002; Mcfeeters, 1996; Tucker, 1979) para eliminar píxeles mal clasificados. Los errores de omisión se relacionaron con la resolución espacial, donde la clase de pastizal se subestimó con otros usos de la tierra (no pastizal), como la agricultura (Parente y Ferreira, 2018). Además, para obtener los mapas de cobertura y uso del suelo para un año específico considerando todas las imágenes disponibles, se decidió utilizar datos de reflectancia superficial de sentinel 2B, disponible en GEE, (EUMETSAT, 2020), debido a su baja resolución espacial, que está limitada para evaluar áreas pequeñas (Wu et al., 2008). Por lo tanto, se utilizaron imágenes Sentinel 2B debido a la resolución espacial disponible de forma libre.

El monitoreo de pastizales a través de la teledetección permite conocer el estado actual de los pastizales y las condiciones físicas del clima, suelo y actividades humanas (Ali et al., 2016). En los últimos años, las nuevas tecnologías de teledetección, como GEE, imágenes de radar y el uso de sistemas de aeronaves pilotadas a distancia (RPAS) equipados con cámaras hiperespectrales y algoritmos de aprendizaje automático, han permitido predicciones más precisas de la calidad de los pastizales.

Para el piso altitudinal de la microcuenca Pomacochas (1693-2176 m.s.n.m) el CVP predominante es de clase S3-Moderadamente (CVP, 40-50%), dominado por un suelo fuertemente ácido, contenido medio de K, P, y M.O elevada textura "franco arenoso". Las especies más abundantes fueron: *Rhynchospora sp Roem. & Schult, Pennisetum sp*

y *Eleocharis geniculata (L.).* Según la inspección visual fueron categorizados como pastizales degradados.

Para el piso altitudinal 2 (2176-2435 m.s.n.m) el CVP predominante es de clase S2-Levemente (VPS3, entre 50-60%) presentados suelos ligeramente acido, contenido alto de K y M.O, contenido medio de P, textura franco arenoso, dominando especies como:, *Pseudelephantopus spiralis (Less.), Rottb.Cronquist, Jarava ichu Ruiz & Pav. Ichu y Kyllinga brevifolia*; dominado por "Pastizales moderadamente degradados según la inspección visual. En el piso altitudinal 3 (2435 – 3049 m.s.n.m) el CVP dominante es de clase S2-Levemente (VPS3, entre 50-60%) presentados suelos fuertemente acido, contenido alto de P, K, M.O, textura "franca arcillo arenoso", dominado por las especies: *Kyllinga brevifolia Rottb, Trifolium repens, y Ranunculus praemorsus Humb., Bonpl. & Kunth ex DC*. Según la inspección visual se categorizó como pastizal "moderadamente degradados"

La microcuenca de Ventilla en el piso altitudinal 1 (2018 - 2561m.s.n.m) el CVP predominante es "S1-No degradado" (CVP, >60%); presentando suelos fuertemente acido, contenido alto de P, K, M.O, textura franco arenoso; dominando especies como: *Trifolium repens, Holcus lanatus y Lolium multiflorum*, categorizado según inspección visual como "Pastizales suavemente degradados". En el piso altitudinal 2 (2561 - 2739msnm) el CVP dominante es de clase S1-No degradado (CVP, >60%); presentando suelos fuertemente acidos, contenido medio de K, contenido alto de P y M.O, textura franco arenoso; predominando especies como: *Holcus lanatus, Taraxacum officinale F.H. Wigg y Trifolium repens*, clasificado según inspección visual como Pastizales "suavemente degradados". En el piso altitudinal 3 (2739 - 3555 m.s.n.m) el CVP predominante es de clase S1-No degradado (CVP, >60%); presentando suelos suelo ligeramente acido, contenido alto de M.O y K, contenido bajo de P, textura franco arenoso; predominando especies como: *Holcus lanatus, Philoglossa mimuloides (Hieron.) H. Rob. & Cuatrec y Trifolium repens*, categorizado según inspección visual como Pastizales suavemente degradados.

V. CONCLUSIONES

En este estudio se aplicó un enfoque metodológico semiautomático para el procesamiento de imágenes Sentinel 2B utilizando GEE y el algoritmo de clasificación Random Forest (RF), lo que permitió revelar la cantidad de pastizales para el 2021 en dos microcuencas ganaderas principales en la región Amazonas: 3659.37 ha para Pomacochas y 4056.26 ha para Ventilla. Por otro lado, los mapas obtenidos para 2021 logró precisiones alrededor de 85%.

Se desarrolló una metodología semiautomática para evaluar la degradación de pastizales basados en *i*) Imágenes RPAS, *ii*) composición florística, *iii*) análisis de suelos e *iv*) identificación visual. Los mapas de degradación reportaron precisiones superiores a 0.78 para los algoritmos de clasificación automática de Regresión lineal (LR) y Máquina de Soporte de Vectores (SVM) y Random Forest (RF), siendo mejor este último. Asimismo, el índice de degradación de Cobertura de Vegetación de Pastizales (CVP) demostró que la degradación de pastizales indica que en el rango S4-Fuertemente (CVP, < 40%) para Pomacochas es de 2.6% (93.4 ha) y para Ventilla se obtuvo un 0.4%, (8.94 ha).

Finalmente, la evaluación de la dinámica de los pastizales presentada en este estudio puede promoverse como una herramienta de gestión para identificar pastizales, permitir a las autoridades y agropecuarios tener información real para la implementación de políticas públicas capaces de mitigar nuevos impactos ambientales, permitiendo una ganadería sostenible y mejorando su producción. Además, mencionar que el presente estudio presenta ciertas limitaciones referente al limitado número de muestras para entrenar el algoritmo RF. Sin embargo, para áreas pequeñas presenta un buen desarrollo.

Este estudio permitirá una mejor toma de decisiones para el manejo de pastizales, en este sentido ofrece una oportunidad en la mejorará de la cadena agropecuaria al proporcionar información acerca de la calidad de sus pastizales y en un futuro lograr la automatización en el monitoreo mediante análisis de imágenes RPAS y satelitales.

VI. REFERENCIAS BIBLIOGRÁFICAS

- Alabi, T., Sonder, K., Oduwole, O., & Okafor, C. (2012). A Multi-criteria GIS site selection for sustainable cocoa development in West Africa: A case study of Nigeria.
- International Journal of Applied Geospatial Research, 3(1), 73–87. https://doi.org/10.4018/jagr.2012010107
- Ali, I., Cawkwell, F., Dwyer, E., Barrett, B., & Green, S. (2016). Satellite remote sensing of grasslands: From observation to management. Journal of Plant Ecology, 9(6), 649– 671. https://doi.org/10.1093/jpe/rtw005
- Arvelo, S. M. A., González L., D., Maroto A., S., Delgado L., T., & Montoya L., P. (2017). Manual técnico del cultivo de cacao Buenas prácticas para América Latina.
- In Instituto Interamericano de Cooperación para la Agricultura (IICA). IICA. Ayorinde, K., Lawal, R. M., & Muibi, K. (2015). Land Suitability Assessment for Cocoa Cultivation in Ife Central Local Government Area, Osun State. International Journal of Scientific Engineering and Research, 3(4), 139–144. https://doi.org/10.4018/jagr.2012010107
- Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.-E., Herold, M., & Fritz, S. (2020). Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe (Versión V3.0.1) [Conjunto de datos]. https://doi.org/10.5281/zenodo.3939050
- Buggenhout, E. (2018). Assessment of soil quality for organic cocoa cultivation in Southern Sao Tomé. Universiteit Gent.
- Dash, J. P., Watt, M. S., Pearse, G. D., Heaphy, M., & Dungey, H. S. (2017). Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 1– 14. https://doi.org/10.1016/j.isprsjprs.2017.07.007
- Davidson, E. A., Asner, G. P., Stone, T. A., Neill, C., & Figueiredo, R. O. (2009). Objective indicators of pasture degradation from spectral mixture analysis of landsat imagery. Journal of Geophysical Research: Biogeosciences, 114(1), 1–7. https://doi.org/10.1029/2007JG000622
- Djaenudin, D., H., M., H., S., & Hidayat, A. (2011). Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian. In Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian. Edisi kedua tahun.
- Gang, C., Zhou, W., Chen, Y., Wang, Z., Sun, Z., Li, J., Qi, J., & Odeh, I. (2014). 49 Quantitative assessment of the contributions of climate change and human activities

on global grassland degradation. Environmental Earth Sciences, 72(11), 4273–4282. https://doi.org/10.1007/s12665-014-3322-6

- Gao, Q., Li, Y., Wan, Y., Lin, E., Xiong, W., Jiangcun, W., Wang, B., & Li, W. (2006). Grassland degradation in Northern Tibet based on remote sensing data. Journal of Geographical Sciences, 16(2), 165–173. <u>https://doi.org/10.1007/s11442-006-0204-</u>1
- García, L. J., Romero C., M., & Ortiz, L. A. (2004). Caracterización y Zonificación de áreas potenciales para el cultivo de cacao en Colombia.
- CORPOICA. Ge, X., Wang, J., Ding, J., Cao, X., Zhang, Z., Liu, J., & Li, X. (2019). Combining UAVbased hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ, 7, e6926. https://doi.org/10.7717/peerj.6926
- Goodbody, T. R. H., Coops, N. C., Marshall, P. L., Tompalski, P., & Crawford, P. (2017). Unmanned aerial systems for precision forest inventory purposes: A review and case study. Forestry Chronicle, 93(1), 71–81. <u>https://doi.org/10.5558/tfc2017-012</u>
- Gruen, A. (2012). Satellite versus aerial images not always a matter of choice! When selecting raw data for value adding we do have today many more options. June, 2012.
- Iliquín, D., Salas L., R., Rojas B., N. B., Silva L., J. O., Gómez F., D., Oliva, M., Quiñones H., L., Terrones M., R. E., Barboza C., E., & Barrena G., M. Á. (2020). Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS Approach. Agronomy, 10(12), 1898. https://doi.org/10.3390/agronomy10121898
- Ka, A., & Sa, A. (2018). Improved Landsat-8 Oli and Sentinel-2 Msi Classification in Mountainous Terrain Using Machine Learning on Google Earth Engine. October 2018, 1–5.
- Kaplan, G., & Avdan, U. (2018). Sentinel-1 and Sentinel-2 Data Fusion for Mapping and Monitoring Wetlands. July, 1–12. https://doi.org/10.20944/preprints201807.0244.v1
- Lara Estrada, L., Rasche, L., & Schneider, U. A. (2017). Modeling land suitability for Coffea arabica L. in Central America. Environmental Modelling and Software, 95, 196–209. https://doi.org/10.1016/j.envsoft.2017.06.028
- Li, Z., Wu, W., Liu, X., Fath, B. D., Sun, H., Liu, X., Xiao, X., & Cao, J. (2017). Land use/cover change and regional climate change in an arid grassland ecosystem of 50 Inner Mongolia, China. Ecological Modelling, 353, 86–94. https://doi.org/10.1016/j.ecolmodel.2016.07.019
- Lima, S. A. de, Roberto, L., Shiguemori, E. H., Kux, H. J. H., & Brito, J. L. N. e S. (2017). Determinação da posição e atitudes de VANT por fotogrametria. XVIII Simpósio

- Brasileiro de Sensoriamento Remoto SBSR, 2008, 5392–5399. https://proceedings.galoa.com.br/sbsr/trabalhos/determinacao-da-posicao-eatitudesde-vant-por-fotogrametria
- Liu, Y., Zha, Y., Gao, J., & Ni, S. (2004). Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM and in situ reflectance spectra data. International Journal of Remote Sensing, 25(20), 4177–4189. https://doi.org/10.1080/01431160410001680419
- Mansour, K., Mutanga, O., Adam, E., & Abdel-Rahman, E. M. (2016). Multispectral remote sensing for mapping grassland degradation using the key indicators of Grass species and edaphic factors. Geocarto International, 31(5), 477–491. https://doi.org/10.1080/10106049.2015.1059898
- Merchán-Benavides, S., Delgado-Vera, C., Aguirre-Munizaga, M., Vergara-Lozano, V., Lagos-Ortiz, K., & Martínez-Carriel, T. (2019). Agro-Ecological Zoning of Cacao Cultivation Through Spatial Analysis Methods: A Case Study Taura, Naranjal. Advances in Intelligent Systems and Computing, 901, 88–98. https://doi.org/10.1007/978-3-030-10728-4_10
- MINAGRI. (2016). Estudio del Cacao en el Perú y el Mundo: Un Análisis de la producción y el Comercio. MINAGRI.
- Numata, I., Roberts, D. A., Chadwick, O. A., Schimel, J., Sampaio, F. R., Leonidas, F. C., & Soares, J. V. (2007). Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data. 109, 314–327. https://doi.org/10.1016/j.rse.2007.01.013
- Padilla, C., & Sardiñas, G. C. Y. (2009). Degradación y recuperación de pastizales. Revista Cubana de Ciencia Agrícola, 43(4), 351–354.
- Paudel, K. P., & Andersen, P. (2010). Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface model in Upper Mustang, Trans Himalaya, Nepal. Remote Sensing of Environment, 114(8), 1845–1855. https://doi.org/10.1016/j.rse.2010.03.011
- Qian, J., Wang, Z., Liu, Z., & Busso, C. A. (2017). Belowground Bud Bank Responses to Grazing Intensity in the Inner-Mongolia Steppe, China. Land Degradation and 51 Development, 28(3), 822–832. https://doi.org/10.1002/ldr.2300
- Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22(1), 1–19. https://doi.org/10.1029/2007GB002952

- Riihimäki, H., Luoto, M., & Heiskanen, J. (2019). Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data.
 Remote Sensing of Environment, 224(May 2018), 119–132. https://doi.org/10.1016/j.rse.2019.01.030
- Ritung, S., Wahyunto, Agus, F., & Hidayat, H. (2007). Land Suitability Evaluation with a case map of Aceh Barat District. Indonesian Soil Research Institute and World Agroforestry Centre.
- Salas, R., Gómez F., D., Silva L., J. O., Rojas B., N. B., Oliva, M., Terrones Murga, R. E., Iliquín T., D., Barboza C., E., & Barrena G., M. Á. (2020). Land Suitability for
- Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. ISPRS International Journal of Geo-Information, 9(11), 673. https://doi.org/10.3390/ijgi9110673
- Seaquist, J. W., Olsson, L., & Ardö, J. (2003). A remote sensing-based primary production model for grassland biomes. Ecological Modelling, 169(1), 131–155. https://doi.org/10.1016/S0304-3800(03)00267-9
- Sys, C., Ranst, E. Van, Debaveye, J., & Beernaert, F. (1993). Land Evaluation. Part III: Crop Requirements. In Agricultural Publications (Vol. 7). GADC.
- Tivy, J., & Tivy, J. (2019). Grassland ecosystems. In Biogeography. https://doi.org/10.4324/9781315845227-11
- Veldman, J. W., Buisson, E., Durigan, G., Fernandes, G. W., Le Stradic, S., Mahy, G., Negreiros, D., Overbeck, G. E., Veldman, R. G., Zaloumis, N. P., Putz, F. E., & Bond, W. J. (2015). Toward an old-growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment, 13(3), 154–162. https://doi.org/10.1890/140270
- Wang, Y., Wang, Z., Li, R., Meng, X., Ju, X., Zhao, Y., & Sha, Z. (2018). Comparison of modeling grassland degradation with and without considering localized spatial associations in vegetation changing patterns. Sustainability (Switzerland), 10(2), 1– 15. https://doi.org/10.3390/su10020316
- Yan, X., Jiang, Y., Chen, S., He, Z., Li, C., Xia, S. T., Dai, T., Dong, S., & Zheng, F. (2019). Automatic grassland degradation estimation using deep learning. IJCAI 52
- International Joint Conference on Artificial Intelligence, 2019-Augus, 6028–6034. https://doi.org/10.24963/ijcai.2019/835
- Yu, H., Wang, L., Wang, Z., Ren, C., & Zhang, B. (2019). Using Landsat OLI and Random Forest to Assess Grassland Degradation with Aboveground Net Primary Production

and Electrical Conductivity Data. ISPRS International Journal of GeoInformation, 8(11), 511. https://doi.org/10.3390/ijgi8110511

- Zhang, X., Zhang, F., Qi, Y., Deng, L., Wang, X., & Yang, S. (2019). New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). International Journal of Applied Earth Observation and Geoinformation, 78(December 2018), 215–226. https://doi.org/10.1016/j.jag.2019.01.001
- Zhou, W., Yang, H., Huang, L., Chen, C., Lin, X., Hu, Z., & Li, J. (2017). Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, 83(August), 303–313. https://doi.org/10.1016/j.ecolind.2017.08.019

ANEXOS

Anexo 1. Técnica de identificación de pastizales y no pastizales en las microcuencas de

Pomacochas y Ventilla

Figura 15

Incorporación de puntos de entrenamiento en los mosaicos de la microcuenca Pomacochas y Ventilla respectivamente. Imagen correspondiente a Ventilla

Figura 16

Estratos altitudinales de la microcuenca Pomacochas y Ventilla respectivamente.

Anexo 2. Obtención y procesamiento de datos satelitales y fotogramétricos para evaluar la degradación de pastizales

Tabla 13

Parcelas	eval	luadas
----------	------	--------

Punto	Microcuenca	Código	X	Y
1		PE1-P1	177550.14	9362198.94
2		PE1-P2	175090.51	9359003.66
3		PE2-P1	172172.44	9355560.3
4		PE2_P2	174526.32	9356515.53
5		PE2_P3	175447.28	9355146.95
6		PE2_P4	171002.76	9353817.12
7	Domocochog	PE2_P5	172226.88	9353773.98
8	romacochas	PE2_P6	175307.77	9353689.59
9		PE2_P7	171536.73	9356331.15
10		PE2_P8	169092.68	9354157
11		PE3_P1	174870.66	9353478.12
12		PE3_P2	176350.23	9354581.05
13		PE3_P3	169954.24	9355864.94
14		PE3_P4	170928.75	9356763.07
15		VE1_P1	204209.44	9313857.44
16		VE1_P2	205585.73	9312772.47
17		VE1_P3	204215.77	9312045.65
18		VE1_P4	207237.83	9311790.53
19	Vontillo	VE1_P5	209597.75	9311369.11
20	v enuna	VE1_P6	211294.79	9310917.37
21		VE2_P1	205165.14	9311794.4
22		VE2_P2	205351	9310973.53
23		VE2_P3	202864.04	9313849.39
24		VE2_P4	209216.72	9310912.5

Características del sensor RedEdge-MX Dual Camera System

Figura 18

Preparación de equipos para los vuelos fotogramétricos

Preparación de equipos para los vuelos fotogramétricos

Figura 20

Materiales empleados para la inspección visual y la evaluación de composición florística a través de muestras de pastizales

Uso de Google Earth Pro para ubicarse dentro de las microcuencas Pomacochas y Ventilla

Anexo 3. Degradación de pastizales basado en imágenes UAS y Sentinel-2B en un leguaje de aprendizaje semi-automático

Figura 22

Primeros pasos para procesamiento de imágenes fotogramétricas: alineación e

imágenes

Figura 23

Generación de ortomosaico como producto fotogramétrico

Índice de salud del pastizal 1 - 5 en relación al modelo paso a paso de degradación del pastizal basado en Milton et al. (1998)

Tabla 14

Estimación del rendimiento de los pastizales utilizando datos de teledetección satelital, los ejemplos de la literatura se agrupan de acuerdo con los modelos/métodos aplicados por Ali et al.(2016).

Modelos/métodos	Sensor	Ejemplos						
		Bradford et al. (2005); han (2001); Él						
	Landsat TM/MSS/ETM+,	et al. (2009); Kurtz et al. (2010);						
	IRS, PUNTO DE	Loris y Damián (2006); Príncipe						
Regresión lineal	VEGETACIÓN, PUNTO	(1991); Psomas et al. (2011b);						
	4/5, Hyperion,	Verbesselt et al. (2006); Williamson						
	NOAA/AVHRR	y Eldridge (1993); Wylie et al.						
		(2002).						
ragrasión exponencial	LandsatTM_MODIS	Huang et al. (2013); Xu et al. (2007);						
regresion exponencial	Landsat I W, WODIS	Xu et al. (2008).						
Modelo de regresión	MODIS, Landsat TM,	Jian Long et al. (1998); Yu et al.						
óptimo	NOAA/AVHRR	(2010)						
Regresión de poder	MODIS	Xu et al. (2007); Xu et al. (2008).						
regresión logarítmica	FRS-SAR IRS SPOT-5	Vescovo y Gianelle (2008); Moreau						
Tegresion logaritimea	LK5-5AK, IK5, 51 01-5	y Le Toan (2003)						
	La principal ventaja del m	odelado empírico es su simplicidad,						
Ventajas	disponibilidad, interpretabilidad y aceptación entre la comunidad							
	científica.							
	En un entorno dinámico no lineal, los datos de los sistemas caóticos							
Desucatoica	no corresponden a los supuestos sólidos de un modelo lineal. Estos							
Desventajas	modelos no tienen una base física y se utilizan principalmente r							
	análisis específicos del sitio o desarrollo de modelos.							

Desarrollo del código en lenguaje Python y correlación de variables empleadas para la clasificación de pastizales degradados

Figura 26

Validación del modelo de clasificación de pastizales degradados

