UNIVERSIDAD NACIONAL TORIBIO RODRIGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS PARA OBTENER EL TITULO PROFESIONAL DE INGENIERA CIVIL

EVALUACIÓN DEL RIESGO ASOCIADO A LA VULNERABILIDAD FÍSICA POR FLUJO DE DETRITOS EN EL ÁREA DE INFLUENCIA DE LA QUEBRADA GUICHMAL, AMAZONAS

Autora: Bach. Dayana Milagros Salon Vasquez Asesor: Ing. Mónica Del Pilar Torrejón Llaja

Registro: (.....)

CHACHAPOYAS - PERÚ 2024

AUTORIZACIÓN DE PUBLICACIÓN DE LA TESIS EN EL REPOSITORIO INSTITUCIONAL DE LA UNTRM

ANEXO 3-H

AUTORIZACIÓN DE PUBLICACIÓN DE LA TESIS EN EL REPOSITORIO INSTITUCIONAL DE LA INTEM

1.	Datos de autor 1 Apellidos y nombres (tener en cuenta las tildes): Salon DNI N°: 16302118 Correo electrónico: 1630218181 Quntrm .cs Facultad: Ingenieria Civil y Amb Escuela Profesional: Ingenieria Civil	du.pe
	Datos de autor 2 Apellidos y nombres (tener en cuenta las tildes): DNI N*: Correo electrónico: Facultad: Escuela Profesional;	
2.	Evaluación del riesgo asociado flujo de detritos en el area de	ala vulnerabilidad física por incluencia de la quebrada Guichmal
3.	Amazonas Datos de asesor 1 Apellidos y nombres: Torrejón Llaja Mónic DNI, Pasaporte, C.E.N°: #2513017 Open Research and Contributor-ORCID (http://direct.org/1000-0	1 1 1
UNTSH)	Datos de asesor 2 Apellidos y nombres: DNI, Pasaporte, C.E.N°: Open Research and Contributor-ORCID (https://orcid.org/10000-	0002-9670-0970h
4.	Campo del conocimiento según la Organización para la Coop médicos, Ciencias de la Salud-Medicina básica-inmunatogial https://catalogos.concytes.gob.pe/vocabulario/ocde_fr 2.00.00 - Ingenierra, Tecnología Ingenierra, Civil	0 /2 /
5.	 Originalidad del Trabajo Con la presentación de esta ficha, el(la) autor(a) o autores(contenidos son producto de su directa contribución intelectu 	(as) señalan expresamente que la obra es original, ya que sus ual. Se reconoce también que todos los datos y las referencias a on su respectivo crédito e incluidos en las notas bibliográficas y
6.	(UNTRM), la autorización para la publicación del documento tipo BY-NC: Licencia que permite distribuir, remezclar, retoca la Universidad deberá publicar la obra poniendola en acceso	ersidad Nacional Toribio Rodríguez de Mendoza de Amazonas o indicado en el punto 2, bajo la <i>Licencia creative commons</i> de ar, y crear a partir de su obra de forma no comercial por lo que o libre en el repositorio institucional de la UNTRM y a su vez en ejando constancia que el archivo digital que se está entregando, do por el Jurado Evaluador.
(Dud	Chachapoyas, 26 / Febrero / 2024
	Firma del autor 1	Firma del autor 2
(Firma del Asesor 1	Firma del Asesor 2

AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

Ph.D. Jorge Luis Maicelo Quintana

RECTOR

Dr. Oscar Andrés Gamarra Torres

VICERRECTOR ACADÉMICO

Dra. María Nelly Luján Espinoza

VICERRECTOR DE INVESTIGACIÓN

Ph.D. Ricardo Edmundo Campos Ramos

DECANO DE LA FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

VISTO BUENO DEL ASESOR DE TESIS

ANEXO 3-L

VISTO BUENO DEL ASESOR DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL

El que suscribe el presente, docente de la UNTRM (×)/Profesional externo (), hace constar
que ha asesorado la realización de la Tesis titulada Evaluación del
riesgo asociado ala vulnerabilidad Física por flujo de
detritos en el área de influencia de la quebrada Guichmal, Amazaña:
del egresado Dayana Milagros Salon Vasquez
de la Facultad de Ingenieria Civil y Ambiental
Escuela Profesional de Ingenierio Civit
de esta Casa Superior de Estudios.

El suscrito da el Visto Bueno a la Tesis mencionada, dándole pase para que sea sometida a la revisión por el Jurado Evaluador, comprometiéndose a supervisar el levantamiento de observaciones que formulen en Acta en conjunto, y estar presente en la sustentación.

Chachapoyas, 01 de enero

_de_2024

Firma y nombre completo del Asesor

Monies D. Pilar Torrigon Llago

JURADO EVALUADOR DE LA TESIS

Ing. Jorge Chávez Guivin PRESIDENTE Ing. Manuel Eduardo Aguilar Rojas SECRETARRIO Ing. Carlos Alberto Chávez Culquímboz
VOCAL

CONSTANCIA DE ORIGINALIDAD DE LA TESIS

ANEXO 3-Q
CONSTANCIA DE ORIGINALIDAD DE LA TESIS PARA OBTENER EL TÍTULO PROFESIONAL
Los suscritos, miembros del Jurado Evaluador de la Tesis titulada:
Evaluación del riesgo asociado a la vulnerabilidad física por flujo d
detritos en el area de influencio de la quebrada Guichmal, Amazonas
presentada por el estudiante ()/egresado (x) Dayana Nilagras Salon Vasquez
de la Escuela Profesional de <u>Ingenieria</u> Civil
con correo electrónico institucional 163027 IR71 Quntim edu pe
después de revisar con el software Turnitin el contenido de la citada Tesis, acordamos:
a) La citada Tesis tiene 18 % de similitud, según el reporte del software Turnitin qu
se adjunta a la presente, el que es menor (\times) / igual $(\ \)$ al 25% de similitud que es
máximo permitido en la UNTRM.
b) La citada Tesis tiene % de similitud, según el reporte del software Turnitin qu
se adjunta a la presente, el que es mayor al 25% de similitud que es el máxim
permitido en la UNTRM, por lo que el aspirante debe revisar su Tesis para corregir
redacción de acuerdo al Informe Turnitin que se adjunta a la presente. Debe present
al Presidente del Jurado Evaluador su Tesis corregida para nueva revisión con
software Turnitin.
Chachapoyas, 08 de Enero del 2024
Chachapoyas, 08 de Enero del 2024
E311.
SECRETARIO PRESIDENTE
VOCAL
VYOCAL
OBSERVACIONES:

ACTA DE SUSTENTACIÓN DE TESIS

ANEXO 3-5

ACTA DE SUSTENTACIÓN DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL
En la ciudad de Chachapoyas, el día 10 de enero del año 2024 siendo las 17:00 doras, el
aspirante: Bach. Dayana Milagros Salon Vasquez asesorado por
Monica del Pilar Torrejón Llaja defiende en sesión pública
presencial (X) / a distancia () la Tesis titulada: Evaluación del riesgo asociado a
la vulnerabilidad física por flujo de detritos en el area de
influencia de la quebrada Evichmal, Amazonas para obtener el Titulo
Profesional de <u>Ingeniera Civil</u> , a ser otorgado por la Universidad
Nacional Toribio Rodríguez de Mendoza de Amazonas; ante el Jurado Evaluador, constituido por:
Presidente: ING Jorge Chavez Guivin
Secretario: ING. Manuel Eduardo Aguillar Rojas
Vocal: Inc. Carlos Alberto chavez Culquimboz
defensa de la Tesis presentada, los miembros del Jurado Evaluador pasaron a exponer su opinión sobre la misma, formulando cuantas cuestiones y objeciones consideraron oportunas, las cuales fueron contestadas por el aspirante. Tras la intervención de los miembros del Jurado Evaluador y las oportunas respuestas del aspirante, el Presidente abre un turno de intervenciones para los presentes en el acto de sustentación, para que formulen las cuestiones u objeciones que consideren pertinentes.
Seguidamente, a puerta cerrada, el Jurado Evaluador determinó la calificación global concedida a la sustentación de la Tesis para obtener el Título Profesional, en términos de: Aprobado (x) por Unanimidad (x)/Mayoría () Desaprobado ()
Otorgada la calificación, el Secretario del Jurado Evaluador lee la presente Acta en esta misma sesión pública. A continuación se levanta la sesión.
Siendo las 18:24 horas del mismo dia y fecha, el Jurado Evaluador concluye el acto de sustentación de la Tesis para obtener el Título Profesional.
SECRETARIO PRESIDENTE
SECRETARIO PRESIDENTE
OBSERVACIONES:

ÍNDICE

AUTORIZACIÓN DE PUBLICACIÓN DE LA TESIS EN EL REPOSITORIO	
INSTITUCIONAL DE LA UNTRM	ii
AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ MENDOZA DE AMAZONAS	
VISTO BUENO DEL ASESOR DE TESIS	iv
JURADO EVALUADOR DE LA TESIS	v
CONSTANCIA DE ORIGINALIDAD DE LA TESIS	vi
ACTA DE SUSTENTACIÓN DE TESIS	vii
ÍNDICE	viii
ÍNDICE DE TABLAS	X
ÍNDICE DE FIGURAS	xiii
ÍNDICE DE ANEXOS	XV
RESUMEN	xvi
ABSTRACT	xvii
I. INTRODUCCIÓN	18
II. MATERIAL Y MÉTODO	20
2.1. Área de estudio	20
2.2. Población, muestra y muestreo	21
2.2.1. Población	21
2.2.2. Muestra	21
2.3. Método	22
2.3.1. Proceso Análisis jerárquico (Ahp)	22
2.4. Herramientas de la investigación	25
2.5. Procedimiento	26
2.5.1. Zonificación del peligro ante flujo de detritos	26
2.5.2. Evaluación de la vulnerabilidad física debido a flujos de detritos	33

2.5.3.	Cálculo del riesgo vinculado a la vulnerabilidad de las viviendas ante f	lujo
de detr	itos	36
III. RESUL'	TADOS	37
3.1. Zo	onificación del peligro ante flujo de detritos	37
3.1.1.	Parámetro de evaluación	37
3.1.2.	Análisis de la susceptibilidad ante flujo de detritos	38
3.1.3.	Diagnóstico del grado de peligro	67
3.1.4.	Mapa de Zonificación del peligro ante flujo de detritos	71
3.2. Ar	nálisis de la vulnerabilidad física debido a flujos de detritos	72
3.2.1.	Resultados de la ficha con la que se evaluó la vulnerabilidad física de l	as
edifica	ciones en la zona de estudio.	72
3.2.2.	Análisis de los criterios de vulnerabilidad física de las edificaciones	77
3.2.3.	Diagnóstico de la vulnerabilidad ante flujo de detritos	90
3.2.4.	Mapa de vulnerabilidad física ante flujo de detritos	95
3.3. Cá	ilculo del riesgo vinculado a la vulnerabilidad física	96
3.3.1.	Diagnóstico del grado de riesgo ante la vulnerabilidad física	96
3.3.2.	Mapa del riesgo ante la vulnerabilidad física ante flujo de detritos	97
IV. DISC	CUSION	99
V. CONC	LUSIONES	102
VI. REC	OMENDACIONES	103
VII. REF	ERENCIAS BIBLIOGRAFICAS	105

ÍNDICE DE TABLAS

Tabla 1 Escala fundamental del análisis jerárquico.	22
Tabla 2 Matriz de preferencia relativa.	23
Tabla 3 Matriz de normalización.	24
Tabla 4 Matriz de relación de consistencia.	24
Tabla 5 Tabla de referencia de los índices aleatorios.	25
Tabla 6 Herramientas de la investigación.	26
Tabla 7 Criterio de evaluación para la frecuencia de ocurrencia de flujo de detritos	28
Tabla 8 Criterios considerados para el análisis de la susceptibilidad.	28
Tabla 9 Criterio de evaluación para la inclinación del terreno.	29
Tabla 10 Criterio de evaluación para la cobertura y uso de suelos	30
Tabla 11 Criterio de evaluación para las características geotécnicas del suelo	31
Tabla 12 Criterio de evaluación para la geología local	31
Tabla 13 Criterio de evaluación para la geomorfología	32
Tabla 14 Criterio de evaluación para la precipitación.	33
Tabla 15 Criterios de evaluación del factor de exposición.	34
Tabla 16 Criterios de evaluación de la fragilidad física.	35
Tabla 17 Criterios de evaluación de la resiliencia física.	35
Tabla 18 Serie de eventos registrados.	37
Tabla 19 Matriz de evaluación para la frecuencia de ocurrencia de flujo de detritos.	. 38
Tabla 20 Matriz de estandarización para la frecuencia de ocurrencia de flujo de	
detritos.	38
Tabla 21 Criterio de evaluación para las características inherentes del área de estudi	0.
	39
Tabla 22 Matriz de estandarización para las características inherentes al área de estu	ıdio.
	39
Tabla 23 Matriz de evaluación para la inclinación del terreno o pendiente	42
Tabla 24 Matriz de estandarización para la inclinación del terreno o pendiente	42
Tabla 25 Matriz de evaluación para el uso y cobertura del suelo.	46
Tabla 26 Matriz de estandarización para la uso y cobertura del suelo.	46
Tabla 27 Características geotécnicas del suelo.	47
Tabla 28 Matriz de evaluación de las características geotécnicas del suelo	52
Tabla 29 Matriz de estandarización de las características geotécnicas del suelo	52
Tabla 30 Matriz de evaluación para la geología local.	58

Tabla 31 Matriz de estandarización para la geología local.	58
Tabla 32 Matriz de evaluación para la geomorfología.	64
Tabla 33 Matriz de estandarización para la geomorfología.	64
Tabla 34 Precipitación mensual (mm), estación meteorológica de INDES – UNT	RM.
	65
Tabla 35 Matriz de evaluación para la precipitación.	67
Tabla 36 Matriz de estandarización para la precipitación.	67
Tabla 37 Resumen del análisis jerárquico de los parámetros de evaluación del pel	_
Tabla 38 Calculo para estratificar los resultados del análisis del peligro ante flujo	
detritos.	
Tabla 39 Rangos del Grado de peligro.	
Tabla 40 Resultado del análisis del peligro ante flujo de detritos.	
Tabla 41 Matriz de evaluación de los criterios de la vulnerabilidad Física	
Tabla 42 Matriz de estandarización de los criterios de la vulnerabilidad física	
Tabla 43 Matriz de evaluación para el criterio de proximidad de la vivienda al cau	ice de
la quebrada.	79
Tabla 44 Matriz de estandarización para el criterio de proximidad de la vivienda a	ıl
cauce de la quebrada.	80
Tabla 45 Matriz de evaluación para los criterios de Fragilidad físicas de las	
edificaciones.	81
Tabla 46 Matriz de estandarización para los criterios de Fragilidad físicas de las	
edificaciones.	82
Tabla 47 Matriz de evaluación para el criterio de material de construcción	
predominante.	83
Tabla 48 Matriz de estandarización para el criterio del material de construcción	
predominante.	84
Tabla 49 Matriz de evaluación para el criterio del estado de conservación	85
Tabla 50 Matriz de estandarización para el criterio del estado de conservación de	las
edificaciones.	86
Tabla 51 Matriz de evaluación del criterio de la Antigüedad de las edificaciones	87
Tabla 52 Matriz de estandarización para la Antigüedad de las edificaciones.	87
Tabla 53 Matriz de evaluación del criterio de elevación de las edificaciones	88
Tabla 54 Matriz de estandarización del criterio de elevación de las edificaciones.	88

Tabla 55 Matriz de evaluación para el criterio de cumplimento de las regulaciones
técnicas para la construcción
Tabla 56 Matriz de estandarización para el criterio de cumplimento de normas técnicas
para la construcción
Tabla 57 Resumen de los resultados del análisis jerárquico de los criterios de la
vulnerabilidad física91
Tabla 58 Calculo para estratificar los resultados del análisis jerárquico de la
vulnerabilidad física93
Tabla 59 Rangos del grado de vulnerabilidad. 94
Tabla 60 Resultado de la evaluación de la vulnerabilidad física vinculado al flujo de
detritos
Tabla 61 Matriz del grado de riesgo ante la vulnerabilidad física. 96
Tabla 62 Rangos del grado de riesgo ante la vulnerabilidad física 96
Tabla 63 Resultado de la evaluación del riesgo asociado a la vulnerabilidad física
vinculado al fluio de detritos.

ÍNDICE DE FIGURAS

Figura 1 Ubicación del área de estudio.	20
Figura 2 Área de influencia de la quebrada Guichmal.	21
Figura 3 Proceso de evaluación del peligro.	27
Figura 4 Proceso de evaluación de la vulnerabilidad física.	34
Figura 5 Proceso de la estimación del riesgo vinculada a la vulnerabilidad física	36
Figura 6 Mapa de pendientes.	41
Figura 7 Vivienda del programa techo propio e institución educativa inicial espigu	itas
de amor.	43
Figura 8 Carretera a Mayno y Jirón Bolognesi	43
Figura 9 Estructuras del sistema de riego en malas condiciones.	44
Figura 10 Mapa de Uso y cobertura de suelos.	45
Figura 11 Cohesión del suelo.	48
Figura 12 Angulo de fricción del suelo.	49
Figura 13 Contenido de humedad del suelo.	50
Figura 14 Mapa temático de Suelos : Características geotécnica	51
Figura 15 Arenisca de grano fino con tono color claro, perteneciente al grupo	
Goyllarisquizga	53
Figura 16 Calizas alternadas en capas de la formación Aramachay	54
Figura 17 Cauce de la quebrada Guichmal con presencia de material rocoso, limos	y
arena	55
Figura 18 Deposito coluvial próximo a las construcciones de las viviendas de la	
localidad	55
Figura 19 Depósitos de desechos orgánico e inorgánicos en las orillas de la quebra	da.
	56
Figura 20 Mapa de la geología local	57
Figura 21 Geomorfología de montaña en roca sedimentaria	59
Figura 22 Cauce de la quebrada Guichmal que recorre el área urbana	60
Figura 23 Geomorfología de ladera con acumulación por desplazamiento	61
Figura 24 Geomorfología de ladera con acumulación por deslizamiento	61
Figura 25 La parte inferior de la Quebrada Guichmal exhibe la presencia de una	
formación geomorfológica conocida como un abanico aluvial.	62
Figura 26 Mapa de geomorfología.	63
Figura 27 Grafico que muestra el comportamiento de las precipitaciones anuales	66

Figura 28 Mapa de Zonificación del peligro.	71
Figura 29 Tendencia de Vulnerabilidad en función de la Proximidad de las	
edificaciones al cauce de la quebrada Guichmal.	72
Figura 30 Tendencia de Vulnerabilidad en función del material predominante en la	
construcción de las edificaciones.	73
Figura 31 Tendencia de Vulnerabilidad en función a las condiciones de conservación	
de las edificaciones.	74
Figura 32 Tendencia de Vulnerabilidad en función a la antigüedad de las edificacione	s .
	75
Figura 33 Tendencia de Vulnerabilidad en función del número de pisos de las	
edificaciones.	76
Figura 34 Tendencia de Vulnerabilidad en función del cumplimiento de las normas	
técnicas pertinentes para las edificaciones	77
Figura 35 Mapa de vulnerabilidad física.	95
Figura 36 Mapa de riesgo ante la vulnerabilidad física.	98

ÍNDICE DE ANEXOS

Anexo 1: Datos de precipitación (mm) recopilados durante el período de 2015 a 2	:022,
provenientes de la estación meteorológica INDES-CES	111
Anexo 2: Validación de la Ficha creada con el propósito de recopilar y evaluar de	atos
relacionados con las viviendas	119
Anexo 3: Ficha creada con el propósito de recopilar y evaluar datos relacionados	con
las viviendas	132
Anexo 4: Resultado de las fichas sobre la vulnerabilidad física.	133
Anexo 5: Resultado del ensayo de capacidad portante realizado en el laboratorio o	de
pavimentos y suelos del Grupo GEOSUP.	138
Anexo 6: Resultado de los ensayos estándar realizado en el laboratorio de pavime	ntos y
suelos del Grupo GEOSUP	150
Anexo 7: Panel fotográfico	171
Anexo 8: Planos	178
Anexo 9: Mapas temáticos	189

RESUMEN

El área de influencia de la quebrada Guichmal está experimentando un crecimiento urbano, y la población de esta área enfrenta la constante amenaza de flujos de detritos. El propósito del estudio es evaluar el riesgo asociado a la vulnerabilidad física de las edificaciones ante estos eventos. Para llevar a cabo esta evaluación, se empleó una metodología que combina el análisis jerárquico y herramientas de Sistemas de Información Geográfica (SIG). Esta combinación ha permitido determinar tanto el peligro como la vulnerabilidad física. La zonificación del peligro se basó en la frecuencia de ocurrencia de eventos de flujos de detritos y la susceptibilidad del área de estudio. Se identificaron factores clave para determinar la susceptibilidad, como el uso y la cobertura del suelo, la pendiente del terreno, características geotécnicas del suelo, geología local y geomorfología. Además, se realizó la evaluación del nivel de vulnerabilidad física a través de una ficha que incluyó el análisis de 109 viviendas y 2 instituciones educativas de nivel inicial y secundaria. Los resultados de la investigación revelaron que el 34% de las edificaciones enfrentan un riesgo alto, el 65% un riesgo medio y solo el 1% un riesgo bajo. Estos niveles de riesgo se relacionan con varios factores, como la proximidad de las viviendas al cauce de la quebrada Guichmal, el material de construcción predominante, la antigüedad de las edificaciones, su estado de conservación, el número de pisos y, por último, el cumplimiento de las normas técnicas de construcción.

Palabras claves: Flujo de detritos, Riesgo, Peligro, Vulnerabilidad física.

ABSTRACT

The influence area of Guichmal Creek is undergoing urban growth, and the population in this area faces a constant threat of debris flows. The purpose of the study is to assess the risk associated with the physical vulnerability of structures to these events. To conduct this evaluation, a methodology was employed that combines hierarchical analysis and Geographic Information System (GIS) tools. This combination has allowed determining both the hazard and physical vulnerability. The hazard zoning was based on the frequency of debris flow events and the susceptibility of the study area. Key factors were identified to determine susceptibility, such as land use and land cover, terrain slope, geotechnical soil characteristics, local geology, and geomorphology. Furthermore, we assessed the level of physical vulnerability through an evaluation sheet that included a total of 109 residential buildings and 2 primary and secondary educational institutions. The research results revealed that 34% of the buildings face a high risk, 65% a medium risk, and only 1% a low risk. These risk levels are associated with various factors, such as the proximity of the buildings to the Guichmal Creek channel, the predominant building material, the age of the structures, their state of conservation, their elevation location, and, finally, compliance with construction technical standards.

Key words: Debris flow, Risk, Hazard, Physical vulnerability.

I. INTRODUCCIÓN

A lo largo de la historia, los procesos de movimientos en masa han sido una parte intrínseca de la evolución de la superficie terrestre, ocurriendo de manera natural e independiente de la influencia humana. Sin embargo, en los últimos tiempos, el crecimiento urbano desordenado, la ocupación no planificada del territorio, la sobreexplotación de recursos naturales y otros factores han contribuido al aumento tanto en la cantidad como en la frecuencia de estos eventos catastróficos (Sepúlveda et al., 2016). Esta situación plantea una amenaza inminente si no se toman medidas adecuadas de mitigación, lo que podría desencadenar desastres naturales (Suarez et al., 2009).

En el contexto latinoamericano, los deslizamientos y huaycos representan los movimientos de masas más comunes y se han convertido en un desafío urbano considerable debido al constante crecimiento de la urbanización y el incremento de la población. Esto ha llevado a la construcción de viviendas en zonas de alto riesgo (Padrón, 2019).

En Perú, un país con una topografía y climatología propensa a movimientos en masa, se han registrado daños socioeconómicos significativos en varios departamentos debido a estos eventos (Vílchez, 2018). Ante esta realidad, instituciones como el INGEMMET, CENEPRED y INDECI han realizado investigaciones y desarrollado metodologías para la evaluación del riesgo.

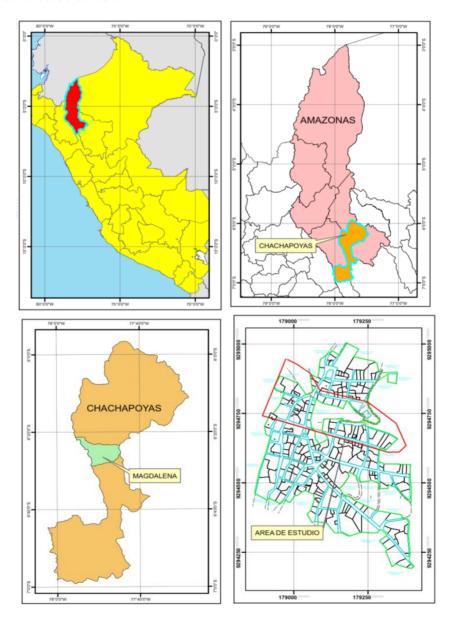
Tirado(2020) llevó a cabo una investigación que se centró en la estimación del riesgo de laderas inestables y su vinculación con la vulnerabilidad de las viviendas en el área de Cajamarca-Gavilán. Para esto, se utilizaron datos espaciales, inventarios y la extracción de muestras de suelo con el fin de identificar parámetros detonantes como el revestimiento vegetal, la pendiente del suelo, la geología y, además, se determinó el parámetro desencadenante: la precipitación. La caracterización de la vulnerabilidad se basó en encuestas a los residentes de 100 edificaciones asentadas en la zona de estudio, lo que llevó a la conclusión de que el 76% de los residentes enfrentaba un riesgo muy alto de deslizamientos debido a la baja calidad de construcción y la deficiencia estructural de las viviendas.

El departamento de Amazonas, por sus características fisiográficas, topográficas y climáticas, es especialmente vulnerable a deslizamientos y huaycos (Medina y Dueñas, 2007). Eventos recientes, como el deslizamiento rotacional ocurrido el 28 de noviembre de 2021 en Aserradero, activado por un terremoto de magnitud 7.5 en la escala Richter,

resultaron en el represamiento del río Utcubamba y la destrucción de alrededor de 60 viviendas en Pueblo Nuevo (INGEMMET, 2022).

Pérez Rubio y Chappa Mallap (2021), abordaron el riesgo de deslizamientos de suelo en la primera cuadra de prolongación Triunfo de Chachapoyas, aplicando la metodología del Manual Básico de Evaluación de Riesgo (INDECI, 2006). El estudio analizó parámetros como la pendiente, las propiedades físicas del suelo, la vegetación, las precipitaciones, las fuentes de agua y el nivel freático para determinar el grado de amenaza. La vulnerabilidad se evaluó considerando aspectos sociales, físicos, educativos, institucionales, económicos, ambientales y culturales. Los resultados indicaron que el 2.70%, 75.40% y 21.80% de las áreas estudiadas presentaban grados de riesgo muy alto, alto y moderado, respectivamente. La quebrada Guichmal, ubicada en el centro urbano de Magdalena, ha sido escenario de varios eventos de flujo de detritos que han impactado a la población. El más reciente tuvo lugar el 29 de noviembre de 2022 y resultó en daños a viviendas, áreas agrícolas y la carretera Nuevo Tingo. En este contexto, este estudio se propone evaluar el nivel de riesgo asociado a la vulnerabilidad física de las edificaciones en la zona de influencia de la quebrada Guichmal en Magdalena, y plantea la hipótesis de que el grado de riesgo de las viviendas en esta área es significativamente alto.

Por lo tanto, el objetivo de este estudio de investigación es analizar el grado de exposición al riesgo de las edificaciones cercanas a la quebrada Guichmal, y para ello, se han establecido los siguientes objetivos específicos:


- Determinar la zonificación del peligro ante huaycos en el sector de influencia de la quebrada Guichmal.
- Evaluación de la vulnerabilidad física debido a huaycos en la quebrada Guichmal.
- Estimar el riesgo vinculado a la vulnerabilidad de las viviendas ante huaycos en la quebrada Guichmal.

II. MATERIAL Y MÉTODO

2.1. Área de estudio

La zona de influencia de la quebrada Guichmal, es el ámbito de estudio. Esta área se encuentra a una elevación de 1929 m s .n .m., en el centro poblado de Magdalena, provincia de Chachapoyas, región de Amazonas (INGEMMET, 2020) y tiene una extensión de 75968.08 m2.

Figura 1
Ubicación del área de estudio

Fuente: Elaboración propia.

Figura 2 Área de influencia de la quebrada Guichmal.

Fuente: Elaboración propia.

2.2. Población, muestra y muestreo

2.2.1. Población

En el ámbito de influencia de la quebrada Guichmal se identificará a las edificaciones asentadas, las cuales conforman la Población de evaluación.

2.2.2. Muestra

La muestra comprende un conjunto de 109 viviendas, así como las instituciones educativas secundaria César Vallejo y la institución educativa inicial 014 Espiguitas de Amor. Todas

estas edificaciones se encuentran susceptibles a eventos de flujo de detritos. La selección de esta muestra se llevó a cabo mediante un método de muestreo por conveniencia y no probabilístico.

2.3. Método

2.3.1. Proceso Análisis jerárquico (Ahp)

La generación de flujos en masa en el área de estudio está influenciada por una serie de parámetros, de los cuales algunos tienen un mayor impacto que otros. Con el objetivo de obtener los resultados más precisos, se aplicó el método de análisis jerárquico. Este método implica la evaluación de diversos criterios, su priorización y, posteriormente, la obtención de los mejores resultados en los estudios realizados. Este proceso es de gran importancia y se utiliza comúnmente con sistemas de información geográfica. Este proceso se basa en una escala numérica y verbal que determina la importancia de cada parámetro (Saaty, 1980).

Tabla 1Escala fundamental del análisis jerárquico.

Escala Numerica	Escala verbal
	Importancia absoluta.
9	Fuerte importancia.
7	i dette importaneia.
_	Moderada importancia.
5	Debil importancia.
3	Deon importancia.
1	Igual importancia.
1	Debilmente menos importancia.
1/3	Debiniente menos importaneia.
1 /5	Menos importancia
1/5	Mucho menos importancia
1/7	Macilo monos importancia
1/0	Absolutamente menos importancia
1/9	Valores intermedios
2,4,6,8, ½, ¼,1/6, 1/8	varioto intermedios

Fuente: Saaty(2008).

2.3.1.1. Matriz de preferencia relativa

El proceso comienza al crear una matriz de comparación en la que se valora la preferencia relativa de un criterio en relación con otro. Para llevar a cabo este análisis, se compara cada fila de la matriz con cada columna. Es importante destacar que la diagonal de la matriz siempre tendrá un valor de uno, mientras que las demás celdas contienen valores inversos (Osorio Gómez y Orejuelas Cabrera, 2008).

Tabla 2Matriz de preferencia relativa.

Criterios	A1	A2	A3	A4	A5
A1	1.00	2.00	3.00	4.00	5.00
A2	0.50	1.00	2.00	3.00	4.00
A3	0.33	0.50	1.00	2.00	3.00
A4	0.25	0.33	0.50	1.00	2.00
A5	0.20	0.25	0.33	0.50	1.00
SUMA	2.28	4.08	6.83	10.50	15.00
1/SUMA	0.44	0.24	0.15	0.10	0.07

Fuente: CENEPRED (2014).

2.3.1.2. Matriz de normalización

Una vez que se han completado las comparaciones de los criterios, las matrices resultantes se someten a un proceso de normalización. Este procedimiento implica dividir cada elemento de la matriz por la suma de los valores en la columna correspondiente, lo que da como resultado una matriz normalizada, como se muestra en la Tabla 3. A partir de esta matriz, se calcula el vector de prioridad promediando los valores de las filas. Este proceso se repite para cada criterio y se emplea también para comparar los criterios entre sí (Osorio Gómez y Orejuelas Cabrera, 2008).

Tabla 3Matriz de normalización.

Criterios	A1	A2	A3	A4	A5	Vector de priorización	Porcentaje
A1	0.44	0.49	0.44	0.38	0.33	0.42	41.62
A2	0.22	0.24	0.29	0.29	0.27	0.26	26.18
A3	0.15	0.12	0.15	0.19	0.20	0.16	16.11
A4	0.11	0.08	0.07	0.10	0.13	0.10	9.86
A5	0.09	0.06	0.05	0.05	0.07	0.06	6.24
						1.00	100.0

Fuente: CENEPRED (2014).

2.3.1.3. Evaluación de la coherencia

Antes de finalizar este análisis, es necesario calcular el coeficiente de consistencia para validar que las evaluaciones no contengan errores, asegurando que no haya contradicciones en las mismas. Un resultado del coeficiente que sea menor a 0.1 se considerará aceptable. Sin embargo, si el valor es superior a esta cifra, será necesario volver a evaluar las opiniones y los juicios (Osorio Gómez y Orejuelas Cabrera, 2008).

Tabla 4

Matriz de relación de consistencia.

Criterios	A1	A2	A3	A4	A5	Vector suma ponderada	λmax
A1	0.42	0.52	0.48	0.39	0.31	2.129	5.12
A2	0.21	0.26	0.32	0.30	0.25	1.337	5.11
A3	0.14	0.13	0.16	0.20	0.19	0.815	5.06
A4	0.10	0.09	0.08	0.10	0.12	0.495	5.02
A5	0.08	0.07	0.05	0.05	0.06	0.314	5.03
					•	Suma	25.34
					•	Promedio	5.07

Fuente: CENEPRED (2014).

a) Cálculo del índice de consistencia (IC)

$$IC = \frac{\lambda \max - n}{n - 1} \tag{1}$$

Donde:

n: número de criterios

$$IC = \frac{5.07 - 5}{5 - 1} = 0.017$$

b) Cálculo de la evaluación de consistencia (EC)

$$EC = \frac{IC}{IA} \tag{2}$$

Donde:

IC: índice de consistencia

IA: índice de Aleatorio

$$EC = \frac{0.017}{1.115} = 0.015$$

Tabla 5Tabla de referencia de los índices aleatorios.

n	3	4	5	6	6	7	8	9	10	11	12	13	14	15	16
IA	0.525	0.882	1.115	1.252	1.252	1.341	1.404	1.452	1.484	1.513	1.535	1.555	1.57	1.583	1.595

Fuente: Aguarón, Moreno & Jiménez (2003).

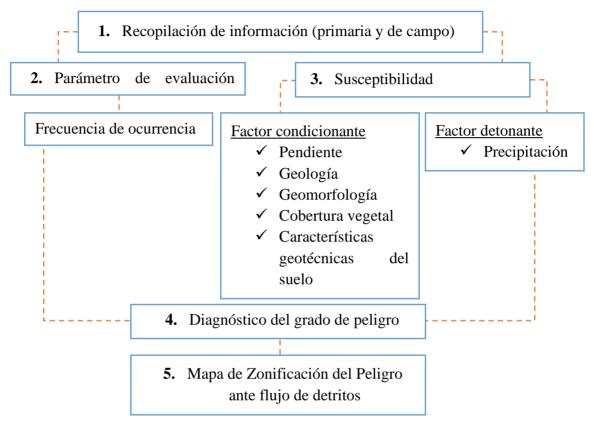
2.4. Herramientas de la investigación

Se refiere a las herramientas utilizadas en la recopilación de información, los materiales que sirven como cimientos para la construcción de la investigación y el software empleado en la ejecución de la misma.

Tabla 6Herramientas de la investigación.

Información	Descripción						
	Hojas 12 - h3 de geología del Ingemmet.						
	Carta Geomorfológico del Ingemmet.						
Información de	Informes técnicos emitidos por instituciones tales como el						
Institutos científicos	Ingemmet, CENEPRED y IGP.						
mstitutos científicos	El plano catastral de la municipalidad de COFOPRI.						
	Registro de precipitaciones del INDES-CES.						
	Reportes de emergencias del SINPAD.						
Instrumentos de	Ficha para la evaluación de la vulnerabilidad Física de las						
recolección de datos	edificaciones.						
	Software ArcMap (ver. 10.8)						
Software	Google Earth Pro (ver. 9.180.0.125)						
	Windows de Microsoft Office 2022						
	GPS GARMIN etrex 30x						
	Dron cuadricóptero DJI PHANTOM 4						
	Palana, barreta y pico						
Equipos y material	Libreta de campo						
	Lapicero						
	Pizarra						
	Costales y bolsas						

Fuente: Elaboración propia.


2.5. Procedimiento

2.5.1. Zonificación del peligro ante flujo de detritos

El concepto de peligro se refiere a la posibilidad de que los flujos de detritos se vuelvan altamente destructivos y ocurran con una intensidad, frecuencia y período de tiempo específico en zonas densamente pobladas, como se menciona en Cotelo (2019). Como resultado de este procedimiento, se genera una delimitación de las áreas de peligro que sirve

para identificar las zonas que podrían verse afectadas por eventos de flujo de detritos (Muniz y Hernández, 2012). Se empleará el siguiente enfoque metodológico:

Figura 3Proceso de evaluación del peligro.

2.5.1.1. Caracterización del peligro

El parámetro de evaluación en investigaciones sobre la evaluación de riesgo de flujos de es la intensidad y la frecuencia de dichos eventos (Catacora Calderón y Luque Aldana, 2021). No obstante, en este estudio, he decidido centrarme especialmente en la frecuencia de ocurrencia de estos eventos como el parámetro de evaluación principal. Esta elección se basa en datos históricos documentados en los reportes en la plataforma del SINPAD.

Tabla 7Criterio de evaluación para la frecuencia de ocurrencia de flujo de detritos.

Parámetro: Fre	cuencia
Descripción	Nomenclatura
1 evento cada año	1 año
1 evento cada 2 años	2 años
1 evento cada 3 años	3 años
1 evento cada 4 años	4 años
1 evento cada 5 años	5 años

Fuente: Elaboración propia.

2.5.1.1. Susceptibilidad por flujo de detritos

La susceptibilidad está definida como la posibilidad de que en el ámbito de estudio se dé un evento de flujo de detritos (Villacorta et al. ,2012). La susceptibilidad es el resultado de la correlación de los parámetros detonantes y condicionantes (CENEPRED, 2014). Para evaluar la susceptibilidad a los flujos de detritos en la quebrada Guichmal y su impacto en la población, se han tenido en cuenta tanto los factores que contribuyen a esta susceptibilidad como aquellos que desencadenan estos eventos.

Tabla 8Criterios considerados para el análisis de la susceptibilidad.

Factores intrínsecos	Factor detonante
Inclinación del terreno o Pendiente	
Uso y cobertura del suelo	
Características geotécnicas del suelo	Precipitación
Geología	
Geomorfología	

Fuente: Elaboración propia.

2.5.1.1.1. Factor condicionante

Los factores condicionantes son las características intrínsecas del área de estudio, el cual contribuye de manera positiva o negativa al desarrollo de un evento por flujo de detritos (CENEPRED, 2014). Se determino a el uso y cobertura suelo, geomorfología, características geotécnicas del suelo, pendiente, geología como factores condicionantes.

a) Pendiente

La inclinación del terreno desempeña un papel significativo en la formación de flujos de detritos, como se señala en el estudio de Sepúlveda et al. (2016). En líneas generales, se considera que pendientes iguales o superiores a 25° son condiciones propicias para la iniciación de estos procesos de deslizamiento (Castro Garro, 2022).

En el área de influencia de la quebrada Guichmal, se identificaron diversas inclinaciones del terreno, las cuales se categorizaron en los siguientes rangos y en grados:

Tabla 9Criterio de evaluación para la inclinación del terreno.

Descripción	Rango
Extremadamente alta	45°
Alta	25°-45°
Moderada	15°-25°
Baja	5°-15°
Extremadamente baja	0°-5°

Fuente: Elaboración propia.

b) Uso y Cobertura del suelo

La relación del uso y cobertura del suelo, en el ámbito de influencia es muy relevante. Debido a que el crecimiento urbano suele generar cambios significativos en la cobertura de los suelos. Además, las actividades humanas en áreas urbanas, como la deforestación, cultivo y la alteración del cauce de la quebrada Guichmal, aumentan la vulnerabilidad ante los flujos de detritos. Cabe mencionar que a medida que las áreas urbanas se expanden, a través de la construcción de edificaciones, caminos, calles y escalinatas, resulta una mayor impermeabilización del suelo. La impermeabilización del suelo significa que la lluvia tiene menos capacidad para infiltrarse en el suelo y más probabilidad de generase flujo de detritos

al arrastrar sedimentos a lo largo de las pendientes de cauce de la quebrada hacia el área urbana de la localidad (Cerquera Pedraos, 2022).

Tabla 10Criterio de evaluación para la cobertura y uso de suelos.

Descripción	Nomenclatura
Vivienda e infraestructura educativa	US1
Calles, caminos y escalinatas	US2
Áreas erosionadas y cauce de la quebrada	US3
Áreas de cultivo	US4
Áreas de vegetación endémicas	US5

Fuente: Elaboración propia.

c) Características geotécnicas del suelo

Las características geotécnicas son esenciales en la generación y condicionamiento de los flujos de detritos. Esto se debe a que determinadas propiedades del suelo, como el tipo de suelo (por ejemplo, arena bien graduada), una baja cohesión, un ángulo de fricción no muy elevado y niveles de humedad significativos, pueden crear las condiciones propicias para la formación de estos eventos. Las propiedades geotécnicas del suelo influyen en su capacidad para retener agua y mantener su estabilidad (Carrión Limones, 2023). El suelo de arena bien graduada, tiende a tener una baja cohesión, esto combinado con ángulo de fricción relativamente bajo, hace el suelo propenso a flujo de detritos. La humedad es un factor crítico por que el alto contenido de humedad reduce la resistencia interna del suelo (Carajulca Bernal, 2017).

Tabla 11Criterio de evaluación para las características geotécnicas del suelo.

	Propiedades geotécnicas del suelo							
Nomenclatura	SW-1	SW-2	SW-3	SW-4	SW-5			
Cohesión	0.10 - 0.17 Kg/cm ²	0.17 - 0.24 Kg/cm ²	0.24 - 0.32 Kg/cm ²	0.32 - 0.39 Kg/cm ²	0.39 - 0.46 Kg/cm ²			
Angulo de	26.38° -	26.39° -	26.40° -	26.41° -	26.42° -			
Fricción	26.39°	26.40°	26.41°	26.42°	26.43°			
Contenido de	13.47% -	11.92% -	10.38% -	8.83% -	7.29% -			
humedad	11.92%	10.38%	8.83%	7.29%	5.74%			
Tipo de suelo	SW	SW	SW	SW	SW			

Fuente: Elaboración propia.

d) Geología Local

La generación de flujos de detritos en una región específica se ve afectada por las características geológicas locales, ya que proporcionan detalles sobre la historia geológica, la composición de las rocas, la resistencia de los sustratos y el grado de fracturación en el área.

Tabla 12Criterio de evaluación para la geología local.

	Descriptores					
	Dep. Aluvial Reciente	Qh-Al				
DEPOSITO	Dep. Coluvial	Qh-Co				
CUATERNARIOS	Dep. Coluvial - aluvial Antiguos	Qh-Ca				
	Dep. Antrópicos	Q-An				
AFLORAMIENTO	Grupo Goyllarisquizga - Form. Arama chay	Ji-a				

Fuente: Elaboración en base de INGEMMET (2020).

e) Geomorfología

La geomorfología predominante en el ámbito de estudio es la montaña de roca sedimentaria, y juega un papel critico en la influencia de los flujos de detritos. Las formaciones geomorfológicas como el cauce aluvial, los piedemontes coluvio – deluviales y la vertiente con depósitos de deslizamientos. Estas formaciones en el área de estudio se han generado por la acumulación transportada desde las laderas de las montañas de roca sedimentaria y por los sedimentos del cauce de la quebrada Guichmal.

Tabla 13Criterio de evaluación para la geomorfología.

	Descriptores	Nomenclatura
	Piedemonte detritos	P - d
Piedemontes	Piedemonte Coluvio - Deluvial	P- cd
	Vertiente con depósito de deslizamiento	V - dd
Geoformas Particulares	Cauce aluvial	Cd
	Montaña en roca sedimentaria	RM-rs

Fuente: Elaboración en base de INGEMMET (2020).

2.5.1.1.2. Factor detonante

Los factores desencadenantes son elementos que activan o inician los flujos de detritos (CENEPRED, 2014). El desencadenante más común es la lluvia intensa, que puede variar en duración e intensidad.

a) Precipitación

La influencia de las precipitaciones en la generación de flujos de detritos está asociada por diversos factores adicionales, como la topografía del terreno, el uso y la cobertura del suelo, las propiedades geotécnicas del suelo, la geología local y la geomorfología. Las lluvias provocan flujos de detritos al saturar el suelo, disminuir su cohesión, aumentar la carga y superar el ángulo de fricción límite.

Tabla 14Criterio de evaluación para la precipitación.

Descripción	Nomenclatura
Extremadamente Lluvioso (PP>650mm)	LL1
Muy Lluvioso (550mm <pp≤650mm)< td=""><td>LL2</td></pp≤650mm)<>	LL2
Lluvioso (450mm <pp\less\frac{550mm}{}< td=""><td>LL3</td></pp\less\frac{550mm}{}<>	LL3
Moderadamente Lluvioso (350mm <pp≤450mm)< td=""><td>LL4</td></pp≤450mm)<>	LL4
Escasamente Lluvioso (350mm < PP)	LL5

Fuente: Elaboración propia.

2.5.1.2. Cálculo del grado de peligro

La ecuación 3 se emplea para calcular el peligro, en el cual se sumará los parámetros de evaluación y la susceptibilidad, los cuales estarán multiplicados por los pesos de importancia (CENEPRED, 2014). Los valores obtenidos permitirán la estratificarán del peligro en 4 niveles: muy alto, alto, medio y bajo.

$$Peligro = Parametro de evaluación \times 0.1 + Susceptibilidad \times 0.9$$
 (3)

2.5.2. Evaluación de la vulnerabilidad física debido a flujos de detritos

La vulnerabilidad se refiere a la exposición y susceptibilidad de la población para sufrir daños a causa de situaciones de peligro (Fell et al., 2005). El análisis de la vulnerabilidad física implica una serie de procedimientos diseñados para evaluar posibles pérdidas y daños causados por procesos de remoción de masa. Según el INDECI (2006) se plantearon los siguientes tipos de vulnerabilidad: económica, ecológica, social, ideológica, institucional, tecnológica, física y educativa. Es importante destacar que este proyecto de investigación se centrará exclusivamente en evaluar la vulnerabilidad física. De acuerdo con el manual para estimar el riesgo originados por fenómenos naturales (CENEPRED, 2014), se siguió el siguiente enfoque metodológico:

Figura 4Proceso de evaluación de la vulnerabilidad física.

1. Empleo de las fichas de evaluación de vulnerabilidad como instrumento para evaluar y recopilar información sobre las edificaciones. 3. Fragilidad física 2. Exposición física 4. Resiliencia física Localización de las - Material de construcción Cumplimiento el predominante. viviendas reglamento nacional de -Antigüedad de la. edificaciones. construcción. -Estado de conservación. -Configuración de elevación. 5. Diagnóstico de la vulnerabilidad física **6.** Mapa de la vulnerabilidad física

2.5.2.1. Identificar los elementos expuestos

La exposición surge como consecuencia de que las edificaciones se ubiquen en áreas de riesgo. Este fenómeno se desencadena como consecuencia de un aumento demográfico sin planificación, un desarrollo económico insostenible, migraciones caóticas y una falta de gestión adecuada del territorio en el proceso de urbanización (CENEPRED, 2014). Para detectar las viviendas que están en situación de exposición, se llevará a cabo un procedimiento de superposición entre el mapa que indica las zonas de peligro y el mapa que muestra la ubicación de las propiedades.

La exposición física está definida por el siguiente parámetro: la Proximidad de las viviendas e infraestructuras al cauce de la quebrada.

Tabla 15Criterios de evaluación del factor de exposición.

Exposición Física de Viviendas	Priorización	
Proximidad de las viviendas e infraestructuras al	1.00	
cauce de la quebrada	1.00	

Fuente: Elaboración propia.

2.5.2.2. Fragilidad física de las viviendas

La fragilidad es la condición de desventaja o debilidad frente al peligro producido por el movimiento en masa (CENEPRED, 2014). Para determinar el valor de fragilidad física se utilizará los indicadores como el material de construcción predominante, la antigüedad de la construcción de la edificación, el estado de conservación de las edificaciones y la configuración de elevación de las edificaciones.

Tabla 16Criterios de evaluación de la fragilidad física.

Fragilidad Física	Priorización
Material de construcción predominante en la edificación y vivienda	1.00
Estado de conservación de la edificación.	2.00
Antigüedad de construcción de la edificación	3.00
Configuración de elevación de la edificación	5.00

Fuente: Elaboración propia.

2.5.2.1. Resiliencia física

La resiliencia se define como la capacidad de la población y los recursos del área en análisis para resistir, asimilar y adaptarse frente a la ocurrencia de un evento de movimiento en masa (según CENEPRED, 2014). Para cuantificar esta resiliencia, se empleará el siguiente indicador: el grado de cumplimiento de las normativas técnicas relevantes en la construcción y/o desarrollo de las edificaciones.

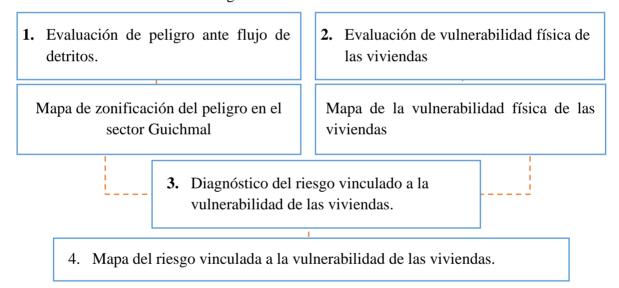
Tabla 17Criterios de evaluación de la resiliencia física.

Resiliencia Física de Viviendas	Priorización	
Cumplimiento con la norma técnica aplicables	1.00	
para la construcción de edificaciones.	1.00	

Fuente: Elaboración propia.

2.5.2.2. Calcular la vulnerabilidad de las viviendas

Según CENEPRED (2014), el cálculo de la vulnerabilidad implica sumar la fragilidad, la exposición y la resiliencia, cada una multiplicada por su correspondiente peso de ponderación. El cálculo nos permitirá determinar la estratificación de la vulnerabilidad física en 4 niveles: muy alto, alto, medio y bajo.


$$V = Exposición (0.633) + Fragilidad(0.260) + resilencia(0.106)$$
⁽⁴⁾

2.5.3. Cálculo del riesgo vinculado a la vulnerabilidad de las viviendas ante flujo de detritos

Obtenida el peligro, al que estas expuesta la zona de estudio y se ha completado el estudio de vulnerabilidad de las edificaciones, se realiza la combinación de estos para estimar el grado de riesgo (CENEPRED, 2014). Se considera la siguiente metodología:

Figura 5

Proceso de la estimación del riesgo vinculada a la vulnerabilidad física.

Fuente: Elaboración propia.

El riesgo se puede definir como el resultado de la interacción entre la vulnerabilidad (V) y el peligro (P) que enfrenta la zona de estudio, junto con los posibles daños (Dikshit et al., 2020; Liu & Miao, 2018), que puede expresarse a través de la siguiente fórmula:

$$Riesgo = Peligro \times Vulnerabilidad fisica$$
 (5)

III. RESULTADOS

3.1. Zonificación del peligro ante flujo de detritos

3.1.1. Parámetro de evaluación

Con el propósito de medir la influencia de los flujos de detritos en el área de estudio, se ha establecido como indicador principal la frecuencia de estos eventos en la zona de investigación. De acuerdo con los datos históricos y los SINPAD registrados y disponibles, se concluye que los flujos de detritos son acontecimientos que ocurren de manera altamente recurrente durante las temporadas de lluvias.

Tabla 18Serie de eventos registrados.

AÑO	DAÑOS
26 de octubre del 2019	Aproximadamente a las 16:30 horas. El 26 de octubre de
	2019 se presentó un flujo de detritos y deslizamiento que se
	originó en la región alta de la quebrada de Guichmal,
	llegando finalmente al tramo final del abanico aluvial. Su
	trayectoria destructiva afectó gravemente a la carretera
	Nuevo Tingo – Magdalena, caminos de acceso, viviendas, un
	muro de contención, cultivos y erosiono su cauce. A pesar
	de su camino de destrucción, el río Utcubamba permaneció
	desbloqueado cuando su caudal llegó a su fin (INGEMMET,
	2020).
29 de noviembre del	Según el reporte del COEN en 2022, a las 16:15 horas del 29
2022	de noviembre de 2022, se produjo una intensa lluvia que
	provocó la activación de la Quebrada, desencadenando un
	aluvión que ocasionó daños en la carretera a Mayno y en las
	viviendas en el área de influencia de la quebrada de
	Guichmal, la cual se encuentra en el distrito de Magdalena,
	provincia de Chachapoyas.

Fuente: Elaboración propia.

Dentro de este contexto, he incorporado el criterio de "Frecuencia" como un elemento esencial en la evaluación. Este criterio se refiere a la cantidad de veces que la zona de estudio

ha experimentado flujos de detritos a lo largo del tiempo. La frecuencia se define como el número de eventos que han tenido lugar en un intervalo de tiempo específico (f = 1/T). Los resultados del análisis jerárquico de este parámetro se presentan a continuación:

Tabla 19Matriz de evaluación para la frecuencia de ocurrencia de flujo de detritos.

Frecuencia	1 años	2 años	3 años	4 años	5 años
1 años	1.00	2.00	3.00	5.00	7.00
2 años	0.50	1.00	2.00	3.00	5.00
3 años	0.33	0.50	1.00	2.00	3.00
4 años	0.20	0.33	0.50	1.00	2.00
5 años	0.14	0.20	0.33	0.50	1.00
SUMA	2.18	4.03	6.83	11.50	18.00
1/SUMA	0.46	0.25	0.15	0.09	0.06

Fuente: Elaboración propia.

Tabla 20Matriz de estandarización para la frecuencia de ocurrencia de flujo de detritos.

Frecuencia	1 años	2 años	3 años	4 años	5 años	Priorización	%
1 años	0.46	0.50	0.44	0.43	0.39	0.444	44.36
2 años	0.23	0.25	0.29	0.26	0.28	0.262	26.18
3 años	0.15	0.12	0.15	0.17	0.17	0.153	15.28
4 años	0.09	0.08	0.07	0.09	0.11	0.089	8.92
5 años	0.07	0.05	0.05	0.04	0.06	0.053 1.00	5.26 100.00

Fuente: Elaboración propia.

3.1.2. Análisis de la susceptibilidad ante flujo de detritos.

3.1.2.1. Análisis de los Factores condicionantes

Se aplicó el método de análisis jerárquico para determinar las ponderaciones de los factores condicionantes, lo que arrojó el siguiente desenlace:

Tabla 21Criterio de evaluación para las características inherentes del área de estudio.

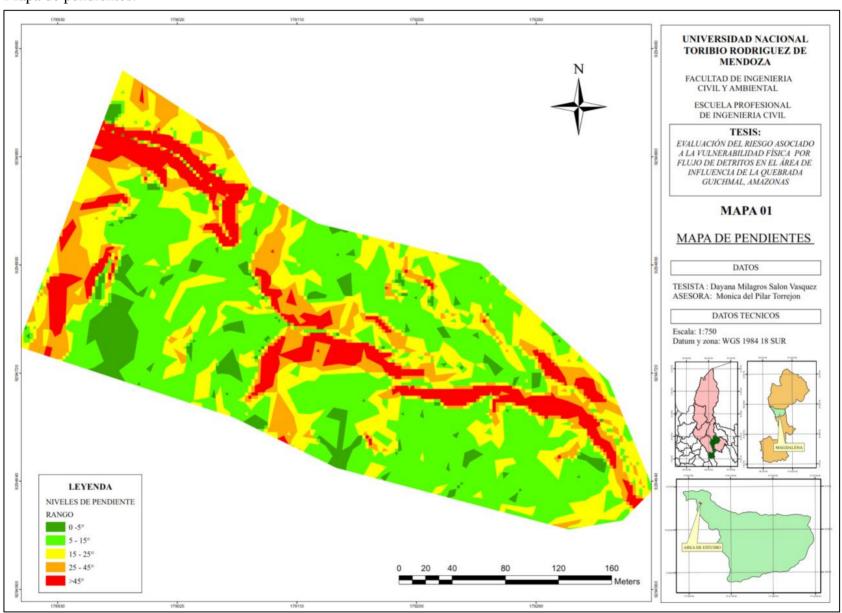
Factores condicionantes	Pendiente	cobertura y uso del suelo	Características geotécnicas del suelo	Geología	Geomorfología
Pendiente	1.00	2.00	3.00	4.00	5.00
Cobertura y uso del suelo	0.500	1.00	2.00	3.00	4.00
Características geotécnicas del suelo	0.333	0.500	1.00	2.00	3.00
Geología	0.250	0.333	0.500	1.00	2.00
Geomorfología	0.200	0.250	0.333	0.500	1.00
SUMA	2.28	4.08	6.83	10.50	15.00
1/SUMA	0.44	0.24	0.15	0.10	0.07

 Tabla 22

 Matriz de estandarización para las características inherentes al área de estudio.

Factore s condicio nantes	Pendi ente	cobertura y uso del suelo	Caracterí sticas geotécnic as del suelo	Geologí a	Geomorf ología	Prioriz ación	%
Pendien te	0.44	0.49	0.44	0.38	0.33	0.416	41.62
cobertu ra y uso del suelo	0.22	0.24	0.29	0.29	0.27	0.262	26.18
Caracte rísticas geotécni cas del suelo	0.15	0.12	0.15	0.19	0.20	0.161	16.11
Geologí a	0.11	0.08	0.07	0.10	0.13	0.099	9.86
Geomor fología	0.09	0.06	0.05	0.05	0.07	0.062	6.24
						1.000	100.000

Fuente: Elaboración propia.


El análisis jerárquico realizado arrojó conclusiones significativas en cuanto a la influencia de los factores condicionantes en la generación de flujo de detritos. En primer lugar, se destaca la pendiente como el factor de mayor relevancia, representando un impresionante 41.62% de importancia en el estudio. A continuación, la cobertura y uso de suelos, con un 26.18%, se posiciona como otro componente clave en este contexto. Las características geotécnicas del suelo, con un sólido 16.11% de importancia, también desempeñan un papel significativo en el análisis. La geología, aunque en menor medida, se considera relevante, con un 9.86% de priorización. Finalmente, la geomorfología se presenta como el factor de menor influencia en este estudio, aportando un 6.24% de importancia en el análisis.

a) Pendiente

La inclinación del terreno desempeña un papel significativo en la formación de flujos de detritos, como se señala en el estudio de Sepúlveda et al. (2016). En líneas generales, se considera que pendientes iguales o superiores a 25 grados son condiciones propicias para la iniciación de estos procesos de movimientos en masa, tal como indican Castro Garro (2022). El mapa de pendientes se generó mediante el siguiente proceso (Escobar Villanueva, 2020):

- Levantamiento fotogramétrico: Para esta fase, se empleó un dron cuadricóptero DJI PHANTOM 4.
- Generación de una nube de puntos: A partir de las imágenes capturadas, se generó una nube de puntos que representa la topografía del terreno. Durante este proceso, se eliminaron los puntos que mostraban irregularidades en la altitud.
- Procesamiento de datos: En esta etapa, se crearon las curvas de nivel y se realizó el procesamiento utilizando ArcMap. A partir de esto, se generó un Modelo de Elevación Digital (DEM) que representa digitalmente la superficie del terreno y es fundamental para la creación de los mapas de pendientes.
- Generación del mapa de pendientes: En la fase final, se creó el mapa de pendientes utilizando el DEM obtenido anteriormente.

Figura 6Mapa de pendientes.

Se utilizó el método de análisis jerárquico para calcular las ponderaciones de los factores condicionantes, lo que resultó en los siguientes resultados:

Tabla 23Matriz de evaluación para la inclinación del terreno o pendiente.

Pendiente	45°	25°-45°	15°-25°	5°-15°	0°-5°
Extremadamente alta	1.00	2.00	4.00	6.00	9.00
Alta	0.50	1.00	2.00	4.00	6.00
Moderada	0.25	0.50	1.00	2.00	4.00
Baja	0.17	0.25	0.50	1.00	2.00
Extremadamente baja	0.11	0.17	0.25	0.50	1.00
SUMA	2.03	3.92	7.75	13.50	22.00
1/SUMA	0.49	0.26	0.13	0.07	0.05

Fuente: Elaboración propia.

Tabla 24Matriz de estandarización para la inclinación del terreno o pendiente.

Pendiente	45°	25°-45°	15°-25°	5°-15°	0°-5°	Priorización	%
Extremadamente alta	0.49	0.51	0.52	0.44	0.41	0.475	47.47
Alta	0.25	0.26	0.26	0.30	0.27	0.266	26.58
Moderada	0.12	0.13	0.13	0.15	0.18	0.142	14.20
Baja	0.08	0.06	0.06	0.07	0.09	0.075	7.51
Extremadamente baja	0.05	0.04	0.03	0.04	0.05	0.042	4.24
						1.00	100.00

Fuente: Elaboración propia.

b) Uso y Cobertura del suelo

El aumento demográfico en el distrito de Magdalena en los últimos años está provocando una disminución en las áreas naturales en el área de investigación. Durante la inspección realizada en el terreno, se ha observado que en la quebrada Guichmal se encuentran las siguientes categorías de uso y ocupación del suelo:

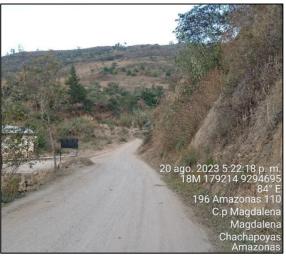
Viviendas e infraestructura educativa

La construcción de las infraestructuras asentadas en el ámbito de estudio, ha generado un efecto notable en el suelo circundante, ya que lo ha debilitado, erosionado y, en algunos

casos, generando cortes en el terreno para acomodar la ubicación de estas viviendas (Salazar Gamboa, 2016).

Figura 7

Vivienda del programa techo propio e institución educativa inicial espiguitas de amor.



- Calles, caminos y escalinatas

La infraestructura vial, que comprende caminos, escalinatas y calles, tiene un impacto significativo en la estabilidad del suelo. Esto se debe a que la construcción de esta infraestructura involucra realizar cortes en las laderas, lo que resulta en alteraciones en el equilibrio mecánico y la continuidad del suelo. Además, cuando se gestiona de manera inadecuada el sistema de drenaje, la situación se agrava aún más (Ramos, 2018).

Figura 8Carretera a Mayno y Jirón Bolognesi.

- Áreas de cultivo

La existencia de zonas de cultivo y de árboles constituye dos elementos que ejercen una influencia importante en la configuración del uso del suelo. En el área de estudio, la actividad agrícola tiene un gran impacto en la generación de flujo de detritos, esto se debe a la existencia de un sistema de riego en condiciones deficientes, caracterizado por tuberías que se rompen con frecuencia y válvulas de control averiadas.

Figura 9Estructuras del sistema de riego en malas condiciones.

- Áreas de vegetación endémicas

Las áreas con vegetación endémica desempeñan un rol crucial en la protección del suelo y en la preservación de ecosistemas autóctonos. Estas áreas suelen albergar especies vegetales adaptadas a las condiciones locales y desempeñan un papel fundamental en la prevención de la erosión y en la retención del suelo (Sambrano, 2017).

- Áreas erosionadas y el cauce de la quebrada

Adicionalmente, es importante considerar las áreas erosionadas y el cauce de la quebrada, ya que estas zonas son especialmente susceptibles a la erosión y a la formación de huaycos. El estado de estas áreas puede ser un indicador crítico de la vulnerabilidad del terreno a eventos naturales adversos (Castro Mendoza, 2014).

Figura 10Mapa de Uso y cobertura de suelos.

Los resultados del análisis jerárquico, que se centraron en el uso y la cobertura del suelo en el área de estudio, resaltaron la mayor prioridad otorgada a las zonas donde se ubican las viviendas y las infraestructuras educativas.

Tabla 25Matriz de evaluación para el uso y cobertura del suelo.

Uso y cobertura del suelo	US1	US2	US3	US4	US5
Vivienda e infraestructura educativa	1.00	2.00	3.00	5.00	7.00
Calles, caminos y escalinatas	0.50	1.00	2.00	3.00	4.00
Áreas erosionadas y cauce de la quebrada	0.33	0.50	1.00	2.00	3.00
Áreas de cultivo y arboles	0.25	0.33	0.50	1.00	2.00
Áreas de vegetación endémicas	0.20	0.25	0.33	0.50	1.00
SUMA	2.28	4.08	6.83	11.50	17.00
1/SUMA	0.44	0.24	0.15	0.09	0.06

Fuente: Elaboración propia.

Tabla 26Matriz de estandarización para la uso y cobertura del suelo.

Uso y cobertura del suelo	US1	US2	US3	US4	US5	Priorización	%
Vivienda e infraestructura							
educativa	0.44	0.49	0.44	0.43	0.41	0.443	44.27
Calles, caminos y							
escalinatas	0.22	0.24	0.29	0.26	0.24	0.251	25.05
Áreas de cultivo y arboles	0.15	0.12	0.15	0.17	0.18	0.153	15.30
Áreas de vegetación							
endémicas	0.11	0.08	0.07	0.09	0.12	0.094	9.38
Áreas erosionadas y cauce							
de quebradas	0.09	0.06	0.05	0.04	0.06	0.060	6.00
						1.00	100.00

Fuente: Elaboración propia.

c) Suelos: Características geotécnicas

Con la finalidad de elaborar el mapa de características geotécnicas del suelo, se llevó a cabo la excavación de cinco calicatas. De cada una de estas excavaciones, se tomaron muestras que representaban distintas capas del suelo, incluyendo tanto muestras en su estado inalterado

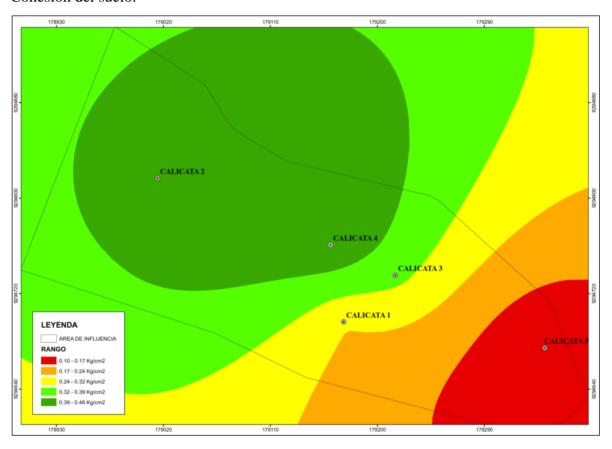
como no inalterado. Estas muestras fueron trasladadas al laboratorio de mecánica de suelos y pavimentos del Grupo Geosup, donde se realizaron los siguientes análisis:

- Análisis granulométrico (NTP 339.128)
- Limite líquido y limite plástico (NTP 339.129)
- Contenido de humedad (NTP 339.127)
- Corte directo (NTP 339.171)

Tabla 27Características geotécnicas del suelo.

Calicata	Profundidad (m)	Clasificación SUCS	Cohesión (kg/cm2)	Angulo de fricción (grados)	Capacidad Portante (kg/cm2)	Contenido de humedad (%)	Densidad natural (gr/cm3)
C-01	2.5	Arena bien gradada (SW)	0.25	25.60	0.70	10.75	1.65
C-02	2.5	Arena bien gradada (SW)	0.45	26.10	0.80	13.65	1.82
C-03	2.0	Arena bien gradada (SW)	0.34	27.30	0.82	13	1.8
C-04	2.5	Arena bien gradada (SW)	0.45	25.50	0.81	11.27	1.84
C-05	3.0	Arena bien gradada (SW)	0.10	27.50	0.83	5.38	1.88

Fuente: Elaboración propia.

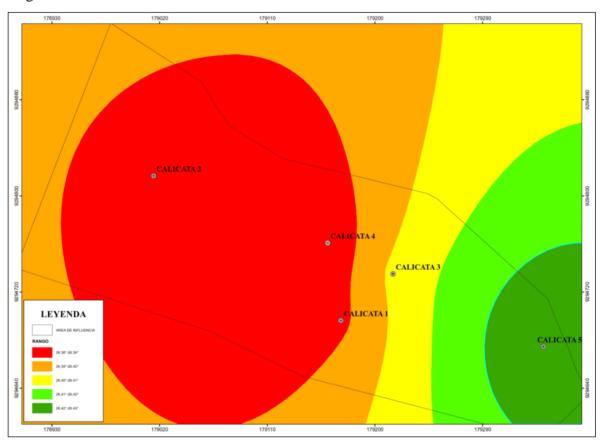

- Tipo de suelo

El tipo de suelo más susceptible suelen ser aquellos que tienen una alta proporción de finos(arcilla y limo) y que retiene fácilmente el agua. Estos suelos son más propensos a volverse saturadas y perder la resistencia, lo que puede desencadenar flujos de detritos (Servicio geológico colombiano,2013). En la zona de investigación se determinó que el tipo de suelo predominante es una arena bien graduada (SW). Sin embrago, es importante tener en cuenta que la presencia de una arena bien graduada en la quebrada Guichmal no es necesariamente indicativa de la ocurrencia de huaycos. La generación de flujo de detritos depende de una serie de factores adicionales, como la geomorfología, pendiente del terreno, la geología, lluvias intensas, topografía, etc.

- Cohesión del suelo

La cohesión del suelo es esencialmente la fuerza de atracción que existe entre las partículas del suelo debido a las fuerzas moleculares y la presencia de películas de agua. Esta cohesión puede variar dependiendo de la humedad del suelo. Dentro de este entorno, la cohesión del suelo juega un papel esencial en la génesis de flujos de detritos, dado que influye de manera importante en la capacidad del suelo para mantener su integridad y resistir el proceso de erosión, como lo señala el estudio de Sambrano (2017).

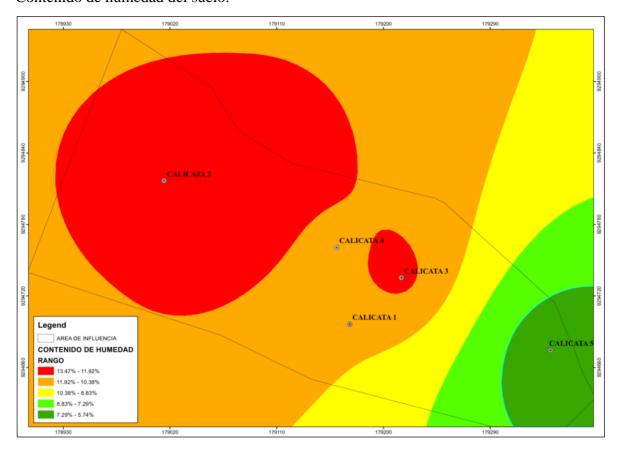
Figura 11Cohesión del suelo.

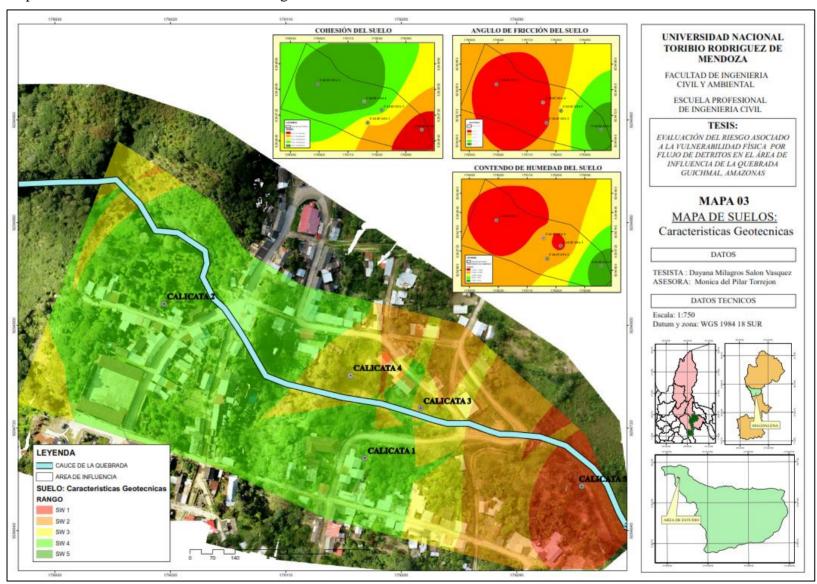


a) Angulo de fricción

El ángulo de fricción del suelo, determinada por la fricción entre las partículas en contacto, es un factor clave que afecta la movilidad del suelo. Cuando esta fricción interna es baja, el suelo muestra una menor resistencia y se vuelve más propenso, lo que, a su vez, puede facilitar la formación de flujos de detritos. Por otro lado, en suelos con una fricción interna más alta, se requieren fuerzas sustancialmente mayores para iniciar un flujo de detritos debido a la mayor resistencia al deslizamiento causada por la fricción entre las partículas.

Esta resistencia a los movimientos en masa depende de varios factores, como la granulometría, la forma de las partículas y la densidad del material (Pilay Pozo y Solano Mejillón, 2019).


Figura 12Angulo de fricción del suelo.


b) Contenido de Humedad del suelo

El contenido de humedad del suelo es un factor clave en la generación de flujos de detritos, ya que afecta la resistencia del suelo, su estabilidad y su capacidad para retener el agua. Un suelo saturado o con un alto contenido de humedad puede ser más propenso a la movilización y la generación de flujos de detritos. En el estudio realizado por Alzate Llano (2015), se analiza cómo la interacción entre la precipitación, el caudal de ríos y el contenido de humedad del suelo puede desencadenar movimientos en masa. Se observó que la presencia de una cantidad elevada de humedad en el suelo, originada por lluvias intensas, puede tener un impacto significativo en la formación de flujos de detritos en las pendientes montañosas.

Figura 13Contenido de humedad del suelo.

Figura 14Mapa temático de Suelos : Características geotécnica

Los resultados del análisis jerárquico de las características geotécnicas del suelo son los siguientes:

Tabla 28

Matriz de evaluación de las características geotécnicas del suelo.

Características geotécnicas del suelo	SW 1	SW 2	SW 3	SW 4	SW 5
SW 1	1.00	2.00	3.00	4.00	5.00
SW 2	0.50	1.00	2.00	3.00	4.00
SW 3	0.33	0.50	1.00	2.00	3.00
SW 4	0.25	0.33	0.50	1.00	2.00
SW 5	0.20	0.25	0.33	0.50	1.00
SUMA	2.28	4.08	6.83	10.50	15.00
1/SUMA	0.44	0.24	0.15	0.10	0.07

Fuente: Elaboración propia.

Tabla 29Matriz de estandarización de las características geotécnicas del suelo.

Características						Priorizació	
geotécnicas del	SW 1	SW 2	SW 3	SW 4	SW 5		%
suelo						n	
SW 1	0.44	0.49	0.44	0.38	0.33	0.416	41.62
SW 2	0.22	0.24	0.29	0.29	0.27	0.262	26.18
SW 3	0.15	0.12	0.15	0.19	0.20	0.161	16.11
SW 4	0.11	0.08	0.07	0.10	0.13	0.099	9.86
SW 5	0.09	0.06	0.05	0.05	0.07	0.062	6.24
						1.00	100.00

Fuente: Elaboración propia.

d) Geología local

En el área de investigación, se pueden identificar formaciones geológicas que datan del Cretácico inferior, siendo notables la formación Aramachay y el Grupo Goyllarisquizga.

- Grupo Goyllarisquizga

Este estrato geológico corresponde al período del Cretáceo inferior. En términos de composición geológica, se compone de una sucesión de areniscas de grano fino, que presentan un tono crema claro y una consolidación limitada. Esta formación se encuentra por encima de las capas de caliza de la formación Aramachay. Además, se observan areniscas cuarzosas de tonalidad blanca-rosada, con algunas capas intercaladas de limolitas y limo-arcillitas grises (INGEMMET, 2020).

Figura 15Arenisca de grano fino con tono color claro, perteneciente al grupo Goyllarisquizga.

- Formación Aramachay

Esta formación se encuentra por debajo del Grupo Goyllarisquizga y se caracteriza por la presencia de calizas bituminosas que exhiben una variación de color que va desde el gris hasta el negro. Estas calizas se alternan con capas tabulares de arcillitas y están delimitadas por superficies planas y paralelas, las cuales muestran signos de fracturación significativa (INGEMMET, 2020).

Figura 16Calizas alternadas en capas de la formación Aramachay.

En el área de estudio también existen depósitos cuaternarios, estos se refieren a sedimentos y materiales geológicos relativamente recientes. En este contexto, los depósitos cuaternarios desempeñan un papel significativo en la generación y el comportamiento de los flujos de detritos (Huaman Yoplac, 2023).

- Deposito Aluvial Reciente

Esta unidad ha sido identificada en el curso de la quebrada Guichmal y está compuesta por una variedad de materiales, que incluyen arena, limo y material rocoso de diversos tamaños que son transportados y depositados en el cauce.

Figura 17Cauce de la quebrada Guichmal con presencia de material rocoso, limos y arena.

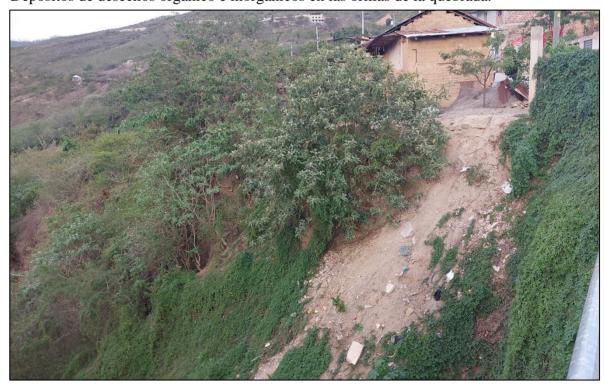
- Deposito Coluvial

Los depósitos coluviales se localizan en las laderas como resultado de procesos tales como caídas, deslizamientos y la meteorización de las rocas previamente existentes (Carrillo Ortiz y Gómez Avalos). Esta formación geológica se ubica específicamente en el area de influencia de la quebrada Guichmal, dentro del área que ahora alberga la zona urbana de la localidad de Magdalena (INGEMMET, 2020).

Figura 18

Deposito coluvial próximo a las construcciones de las viviendas de la localidad.

- Deposito Coluvial v Aluvial Antiguos


Situado en la zona de transición entre las pendientes montañosas y las llanuras, en las áreas examinadas se puede observar una mezcla diversa de partículas de arena, incluyendo fragmentos con formas que varían desde angulares hasta subredondeadas. En menor medida, también se encuentran partículas de limo, lo que confiere a este suelo una alta capacidad de permeabilidad. Esta formación geológica se encuentra particularmente en el sector de Guichmal, situada en las proximidades del área urbana del distrito de Magdalena (INGEMMET, 2020).

- Deposito Antrópico

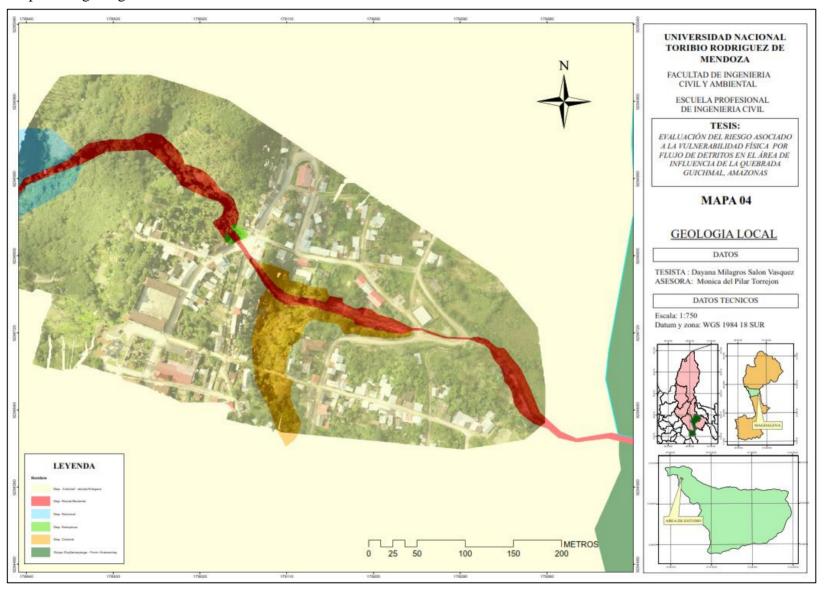

Se trata de materiales cuya formación está vinculada a acciones humanas, como la acumulación de desechos, tanto orgánicos como inorgánicos. Esta formación geológica se halla en las zonas cercanas de la quebrada.

Figura 19

Depósitos de desechos orgánico e inorgánicos en las orillas de la quebrada.

Figura 20Mapa de la geología local.

El análisis jerárquico produjo los siguientes resultados, que reflejan la priorización de cada factor identificado de la geología local identificada en el área de influencia de la quebrada Guichmal. Se observó que los depósitos aluviales recientes obtuvieron la priorización más alta, con un destacado 46.97%. En segundo lugar, los depósitos coluviales fueron significativos, con una priorización del 26.48%. Los depósitos coluviales y aluviales antiguos presentaron una priorización del 14.33%, seguidos de cerca por los depósitos antrópicos, con una priorización del 7.81%. Por último, la formación Aramachay se ubicó en el quinto lugar en términos de priorización, con un 4.41%.

Tabla 30Matriz de evaluación para la geología local.

Geología	Qh-Al	Qh-Co	Qh-Ca	Q-An	Ji-a
Dep. Aluvial Reciente	1.00	2.00	3.00	7.00	9.00
Dep. Coluvial	0.50	1.00	2.00	3.00	7.00
Dep. Coluvial - aluvial Antiguos	0.33	0.50	1.00	2.00	3.00
Dep. Antrópicos	0.14	0.33	0.50	1.00	2.00
Grupo Goyllarisquizga - Form. Aramachay	0.11	0.14	0.33	0.50	1.00
SUMA	2.09	3.98	6.83	13.50	22.00
1/SUMA	0.48	0.25	0.15	0.07	0.05

Fuente: Elaboración propia.

Tabla 31Matriz de estandarización para la geología local.

Geología	Qh- Al	Qh- Co	Qh- Ca	Q- An	Ji-a	Priorización	%
Dep. Aluvial Reciente	0.48	0.50	0.44	0.52	0.41	0.470	46.97
Dep. Coluvial	0.24	0.25	0.29	0.22	0.32	0.265	26.48
Dep. Coluvial - aluvial Antiguos	0.16	0.13	0.15	0.15	0.14	0.143	14.33
Dep. Antrópicos	0.07	0.08	0.07	0.07	0.09	0.078	7.81
Grupo Goyllarisquizga - Form. Aramachay	0.05	0.04	0.05	0.04	0.05	0.044	4.41
						1.00	100.00

Fuente: Elaboración propia.

e) Geomorfología

Geoformas de carácter tectónico degradacional y erosional

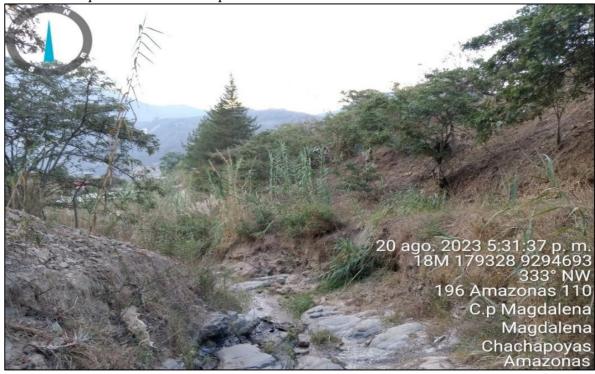
Estas geoformas se refieren a las características del terreno que son el resultado de la degradación y erosión sobre las formas de relieve iniciales originadas por las actividades tectónicas y las condiciones climáticas cambiantes (Sosa Senticala y Núñez Peredo, 2021).

- Montaña en roca sedimentaria

Esta subunidad está compuesta por secuencias sedimentarias que consisten principalmente en areniscas de grano fino, de tono crema claro y con una consolidación fracturada, pertenecientes a la formación Aramachay. Las laderas de esta montaña presentan predominantemente pendientes pronunciadas que oscilan entre 25° y 45°. Esta unidad está compuesta mayormente por materiales aluviales y abarca una porción significativa del área de estudio (INGEMMET, 2019).

Figura 21Geomorfología de montaña en roca sedimentaria.

Geoformas de carácter deposicional y agradacional.


Estas geoformas se originan como resultado de la acción de procesos de movimientos en masa y agentes móviles, tales como la morfología de los ríos y la escorrentía de agua. Estos

procesos se caracterizan por la acumulación de materiales sólidos que provienen de la erosión de áreas más elevadas (Medina Allcca, 2018).

- Cauce de quebrada o cauce aluvial

Este representa el lecho de la quebrada Guichmal, y su morfología es influenciada por factores como el caudal, la pendiente, el tamaño de los sedimentos y el grado de erosión del lecho rocoso subyacente. En otras palabras, esta geoforma se origina a partir de un equilibrio dinámico entre la carga de sedimentos y su capacidad de transporte. Cabe destacar que la Quebrada Guichmal es propensa a experimentar flujos de detritos en caso de precipitaciones extremas.

Figura 22
Cauce de la quebrada Guichmal que recorre el área urbana.

- Vertiente con depósito de deslizamiento

Esta unidad representa la acumulación originada por fenómenos de deslizamiento. Asimismo, puede englobar la acumulación de materiales finos y fragmentados que se desplazan o se depositan en las laderas debido al escurrimiento superficial, incluyendo materiales no consolidados o apenas consolidados. Con el tiempo, estos materiales se van depositando gradualmente en la parte inferior de las pendientes (Carrillo et al., 2023).

Figura 23Geomorfología de ladera con acumulación por desplazamiento.

- Piedemonte Coluvio – deluvial

El piedemonte representa la zona de transición entre terrenos accidentados, como laderas con pendientes pronunciadas de 25° a 45°, y áreas más planas con pendientes menores de 5° a 15°. En esta situación, se produce la acumulación de suelos de textura fina, como arenas y arcillas, que incluyen fragmentos rocosos pequeños o angulares (Mendoza y Huamán, 2021).

Figura 24Geomorfología de ladera con acumulación por deslizamiento.

- Abanico Aluvional

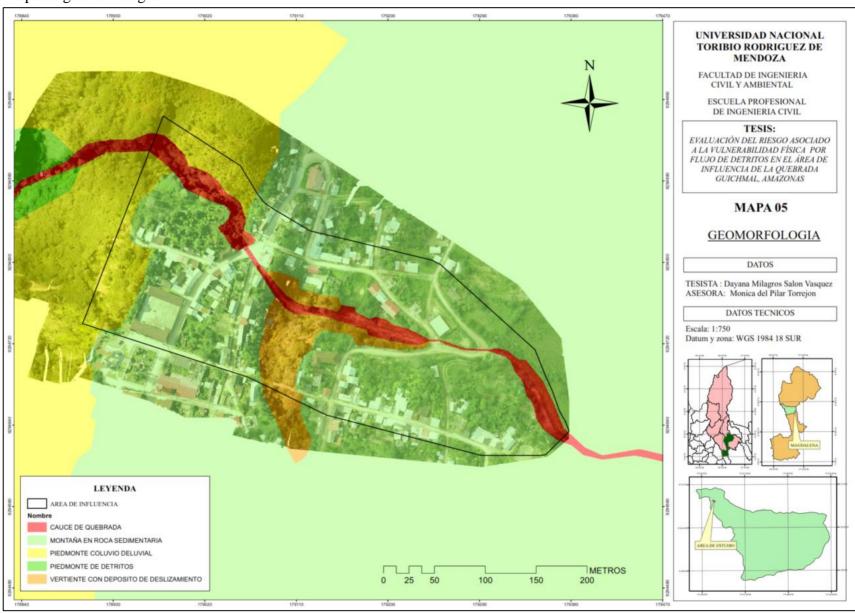

Esta unidad corresponde a las superficies inclinadas que se ubican en la parte inferior de la quebrada Guichmal. Estas áreas actúan como zonas de depósitos para los materiales que han sido erosionados desde la cabecera de la quebrada y luego transportado hacia abajo por flujos aluvionales provenientes de la Quebrada Guichmal.

Figura 25

La parte inferior de la Quebrada Guichmal exhibe la presencia de una formación geomorfológica conocida como un abanico aluvial.

Figura 26Mapa de geomorfología.

Tabla 32Matriz de evaluación para la geomorfología.

Geomorfología	Cd	V - dd	RM-rs	P- cd	P - d
Cauce aluvial	1.00	2.00	3.00	4.00	6.00
Vertiente con depósito de deslizamiento	0.50	1.00	2.00	3.00	4.00
Montaña en roca sedimentaria	0.33	0.50	1.00	2.00	3.00
Piedemonte Coluvio Deluvial	0.25	0.33	0.50	1.00	2.00
Piedemonte detritos	0.17	0.25	0.33	0.50	1.00
SUMA	2.25	4.08	6.83	10.50	16.00
1/SUMA	0.44	0.24	0.15	0.10	0.06

Tabla 33Matriz de estandarización para la geomorfología.

Coomonfología	Cd	V -	P-	RM-	P -	Priorización	%
Geomorfología	Cu	dd	cd	rs	d	Priorizacion	70
Cauce aluvial	0.55	0.64	0.52	0.39	0.38	0.496	49.62
Vertiente con depósito de deslizamiento	0.18	0.21	0.31	0.33	0.25	0.258	25.75
Piedemonte Coluvio Deluvial	0.11	0.07	0.10	0.20	0.21	0.138	13.80
Montaña en roca sedimentaria	0.09	0.04	0.03	0.07	0.13	0.072	7.20
Piedemonte detritos	0.06	0.04	0.02	0.02	0.04	0.036	3.62
						1.00	100.00

Fuente: Elaboración propia.

3.1.2.2. Análisis de los Factor detonante

Las lluvias intensas pueden variar en cuanto a su duración e intensidad, y su impacto en la generación de flujos de detritos está condicionado por una serie de factores adicionales, que incluyen la topografía del terreno, el uso y la cobertura del suelo, las características geotécnicas del suelo, la geología local y la geomorfología. Las lluvias desencadenan flujos

de detritos al saturar el suelo, disminuir la cohesión del mismo, aumentar la carga y superar el ángulo de fricción límite.

a) Precipitación

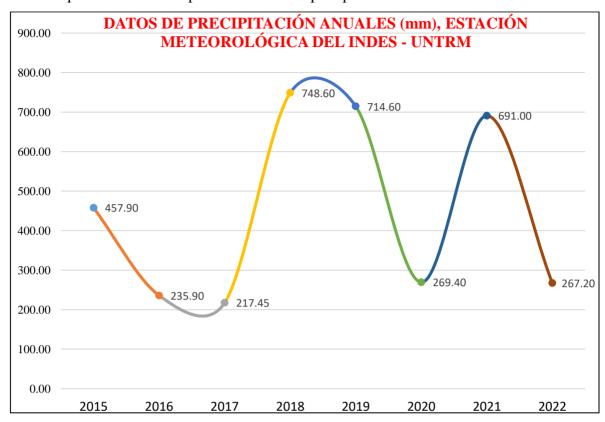

En este estudio específico, se ha considerado la precipitación como el factor desencadenante y se ha clasificado en función de su magnitud, teniendo en cuenta la cantidad de agua que cayó por unidad de tiempo y área. Los registros de precipitación se recopilaron de la estación meteorológica de la Universidad Nacional Toribio Rodríguez de Mendoza, abarcando el período desde 2015 hasta 2022.

Tabla 34Precipitación mensual (mm), estación meteorológica de INDES – UNTRM.

I	NFORM	ACIÓN	MENSU	AL DE I	LLUVIAS	S (MM)		
AÑO	2015	2016	2017	2018	2019	2020	2021	2022
MES	2010	2010		2010	2019	2020		
ENERO	-	97.00	171.21	132.10	465.20	269.40	40.80	43.00
FEBRERO	457.90	235.90	175.80	96.80	599.40	2.00	136.20	267.20
MARZO	175.10	204.90	217.45	0.00	714.60	0.00	623.40	161.80
ABRIL	156.70	160.10	192.63	547.80	473.80	0.00	372.00	166.60
MAYO	101.40	51.10	82.20	133.20	215.00	71.60	150.20	42.40
JUNIO	22.20	64.70	47.69	20.80	401.00	44.00	149.80	46.40
JULIO	30.10	12.10	8.34	4.80	185.00	0.00	10.80	11.80
AGOSTO	-	55.40	169.42	7.00	30.40	8.80	262.60	29.40
SEPTIEMBRE	41.80	51.20	98.97	188.20	14.60	128.60	208.80	49.60
OCTUBRE	91.60	142.10	135.16	748.60	476.80	139.80	495.60	131.00
NOVIEMBRE	144.10	53.60	146.37	583.60	522.60	126.40	417.80	24.20
DICIEMBRE	312.60	127.90	166.68	541.40	445.60	56.60	691.00	59.60
TOTAL	1533.50	1256.00	1611.92	3004.30	4544.00	847.20	3559.00	1033.00
PRECIPITACION MAXIMA ANUAL	457.90	235.90	217.45	748.60	714.60	269.40	691.00	267.20

Fuente: Elaboración propia en base de datos del INDES (2023).

Figura 27Grafico que muestra el comportamiento de las precipitaciones anuales.

Analizando la información de la Tabla 34 se observa que la precipitación máxima anual sobrepasa los 200 mm/ año llegando a un máximo de 748.60 mm/año del año 2018. Asimismo, en la figura 27, se aprecia un gráfico que brinda una comprensión más clara del comportamiento de las precipitaciones en la zona de estudio. Se observan temporadas con notables picos de precipitación seguidos de declives que corresponden a épocas de escasa lluvia. Esto ha permitido estratificar las precipitaciones en cinco categorías: Extremadamente Lluvioso (PP > 650 mm), Muy Lluvioso (550 mm < PP \leq 650 mm), Lluvioso (450 mm < PP \leq 550 mm), Moderadamente Lluvioso (350 mm < PP \leq 450 mm) y Escasamente Lluvioso (PP < 350 mm).

Se utilizó el método de análisis jerárquico para determinar las ponderaciones de los factores que desencadenan los eventos, y los resultados se presentan a continuación:

Tabla 35Matriz de evaluación para la precipitación.

Precipitación	LL1	LL2	LL3	LL4	LL5
Extremadamente Lluvioso	1.00	2.00	3.00	4.00	5.00
(PP>650mm)	1.00	2.00	3.00	4.00	3.00
Muy Lluvioso (550mm <pp≤650mm)< th=""><th>0.50</th><th>1.00</th><th>2.00</th><th>3.00</th><th>4.00</th></pp≤650mm)<>	0.50	1.00	2.00	3.00	4.00
Lluvioso (450mm <pp\u20ad5550mm)< th=""><th>0.33</th><th>0.50</th><th>1.00</th><th>2.00</th><th>3.00</th></pp\u20ad5550mm)<>	0.33	0.50	1.00	2.00	3.00
Moderadamente Lluvioso (350mm	0.25	0.33	0.50	1.00	2.00
< PP ≤450mm)	0.23	0.33	0.30	1.00	2.00
Escasamente Lluvioso (350mm <pp)< th=""><th>0.20</th><th>0.25</th><th>0.33</th><th>0.50</th><th>1.00</th></pp)<>	0.20	0.25	0.33	0.50	1.00
SUMA	2.28	4.08	6.83	10.50	15.00
1/SUMA	0.44	0.24	0.15	0.10	0.07

Tabla 36Matriz de estandarización para la precipitación.

Precipitación	LL1	LL2	LL3	LL4	LL5	Priorización	%
Extremadamente Lluvioso	0.44	0.49	0.44	0.38	0.33	0.416	41.62
Muy Lluvioso	0.22	0.24	0.29	0.29	0.27	0.262	26.18
Lluvioso	0.15	0.12	0.15	0.19	0.20	0.161	16.11
Moderadamente Lluvioso	0.11	0.08	0.07	0.10	0.13	0.099	9.86
Escasamente Lluvioso	0.09	0.06	0.05	0.05	0.07	0.062	6.24
						1.00	100.00

Fuente: Elaboración propia.

3.1.3. Diagnóstico del grado de peligro

Después de completar el análisis jerárquico de todos los componentes que intervienen en la evaluación del peligro para el área de influencia de la quebrada Guichmal, se ha generado la Tabla 37. Esta tabla resume y establece el grado de priorización de cada criterio utilizado en la evaluación de peligros.

Tabla 37Resumen del análisis jerárquico de los parámetros de evaluación del peligro.

		FACTOR		PARÁMETRO		DESCRIPTO	R
						45°	0.475
						25-45°	0.266
				Pendiente	0.416	15-25°	0.142
						5-15°	0.075
70						0-5°	0.042
DETRITOS						US1	0.444
						US2	0.262
				cobertura y uso del suelo	0.262	US3	0.153
DE						US4	0.089
	SUCEPTIBILIDAD ANTE FLUJO DE				US5	0.053	
10						SW 1	0.416
		Condicionante	80%	Características geotécnicas del suelo		SW 2	0.262
					0.161	SW 3	0.161
E	90%			sucio		SW 4	0.099
	70 70					SW 5	0.062
A					0.099	Qh-Al	0.470
₽ P						Qh-Co	0.265
				Geología		Qh-Ca	0.143
						Q-An	0.078
I B						Ji-a	0.044
PI						P - d	0.426
CE						P- cd	0.259
) O				Geomorfología	0.062	V - dd	0.159
						Cd	0.097
						RM-rs	0.059
						PP>650mm	0.416
		Desencadenante	20%	Precipitación		550mm	0.262
						<pp≤650mm< td=""><td>0.202</td></pp≤650mm<>	0.202

					450mm <pp≤550mm< th=""><th>0.161</th></pp≤550mm<>	0.161
					350mm <pp≤450mm< td=""><td>0.099</td></pp≤450mm<>	0.099
					350mm < PP	0.062
					1 años	0.444
DADÁ	METRO DE				2 años	0.262
	LUACIÓN	10%	Frecuencia	1.000	3 años	0.153
LVA	LUACION				4 años	0.089
					5 años	0.053

Tabla 38Calculo para estratificar los resultados del análisis del peligro ante flujo de detritos.

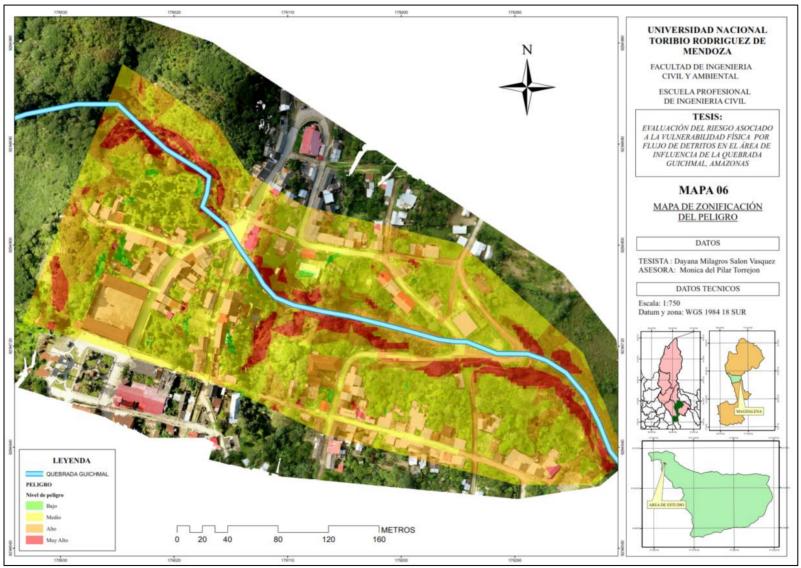
COND	ICION	ANTE	DECEN	CADEN	NANTE	SUSCEPTI	BILIDAD	PÁRÁMETRO DE EVALUACIÓN		DE EVALUACIÓN		DE EVALUACIÓN		DE EVALUACIÓN		DE EVALUACIÓN		DE EVALUACIÓN		DE EVALUACIÓN				
∑ Ppar X Pdesc	Peso con	Valor con	∑ Pdes x Pdesc	Peso des	Valor des	Valor sucs	Peso susc	Valor par-eval	Peso par- eval	PELIGROSIDAD	RANGO	NIVEL												
0.454		0.363	0.416		0.083	0.446		0.262		0.428	0.291 - 0.428	Muy alto												
0.264		0.211	0.416		0.083	0.294		0.262		0.291	0.208 - 0.291	Alto												
0.149	80%	0.119	0.416	20%	0.083	0.203	90%	0.262	10%	0.208	0.162 - 0.208	Medio												
0.084		0.067	0.416		0.083	0.151		0.262		0.162	0.137 - 0.162	Bajo												
0.049		0.040	0.416		0.083	0.123		0.262		0.137														

Fuente: Elaboración propia.

Tabla 39Rangos del Grado de peligro.

Nivel de peligro		Rango	
Peligro muy alto	0.291	≤P≤	0.428
Peligro alto	0.208	≤P <	0.291
Peligro medio	0.162	≤ P <	0.208
Peligro bajo	0.137	≤P <	0.162

Los resultados del mapa de zonificación del peligro ante flujo de detritos indican que 0.742 hectáreas, ubicadas en la zona del cauce de la quebrada, presentan un riesgo extremadamente alto. Además, 3.379 hectáreas en el área de estudio, que abarca las zonas donde se encuentran las viviendas, exhiben un riesgo alto, mientras que 3.432 hectáreas en el área de cultivos y huertas de las viviendas presentan un riesgo moderado. En resumen, el área de estudio muestra predominantemente niveles de riesgo altos y moderados.


Tabla 40Resultado del análisis del peligro ante flujo de detritos.

PI	PELIGRO ANTE FLUJO DE DETRITOS									
Nivel del peligro	área (m2)	hectáreas (he)	porcentaje							
Muy Alto	7417.21771	0.742	10%							
Alto	33787.3515	3.379	44%							
Bajo	836.796811	0.084	1%							
Medio	34323.5304	3.432	45%							
	76364.8964	7.636	100%							

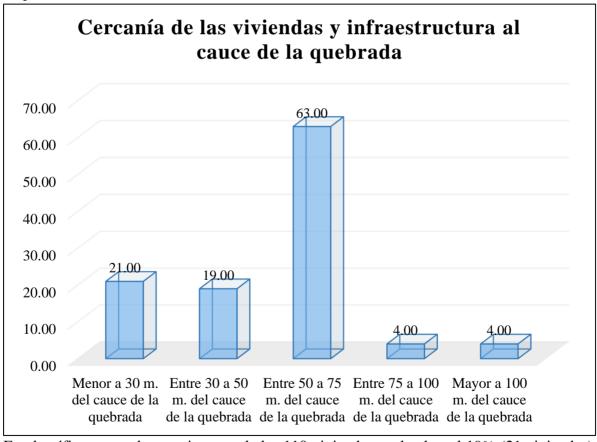
Fuente: Elaboración propia.

3.1.4. Mapa de Zonificación del peligro ante flujo de detritos

Figura 28Mapa de Zonificación del peligro.

3.2. Análisis de la vulnerabilidad física debido a flujos de detritos

3.2.1. Resultados de la ficha con la que se evaluó la vulnerabilidad física de las edificaciones en la zona de estudio.

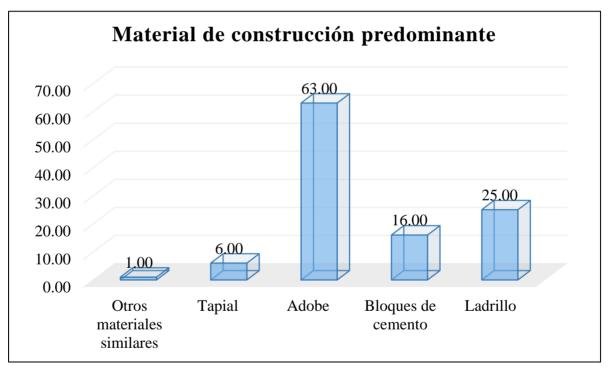

El análisis de la vulnerabilidad física de las viviendas se efectuó mediante el uso de una ficha elaborada a partir de las pautas proporcionada por el manual del CENEPRED. La importancia atribuida a los criterios seleccionados se basa en las condiciones y características específicas de las edificaciones existentes.

3.2.1.1. Proximidad de las viviendas e infraestructura al cauce de la quebrada

La construcción de las infraestructuras cercanas al cauce de la quebrada, aumenta su vulnerabilidad.

Figura 29

Tendencia de Vulnerabilidad en función de la Proximidad de las edificaciones al cauce de la quebrada Guichmal.


En el gráfico se puede apreciar que, de las 110 viviendas evaluadas, el 19% (21 viviendas) se encuentra a una distancia inferior a 30 metros del cauce de la quebrada. Asimismo, el 17% (19 viviendas) está ubicado entre 30 y 50 metros del cauce. Un total del 57% (63 viviendas)

se halla a una distancia de 50 a 75 metros del cauce de la quebrada. En cuanto a las viviendas que se encuentran a una distancia mayor de 75 metros, pero no más de 100 metros, representan el 4% (4 viviendas). Finalmente, un 4% (4 viviendas) se encuentra a una distancia superior a 100 metros del cauce de la quebrada.

3.2.1.2. Material de construcción predominante

Las viviendas predominantes del área de estudio, están construidas con adobe, un material que se considera precario y poco resistente, especialmente cuando está deteriorada. Dado que la mayoría de las viviendas en la zona están hechas de este material, esto las hace particularmente vulnerables a los flujos de detritos.

Figura 30Tendencia de Vulnerabilidad en función del material predominante en la construcción de las edificaciones.

El gráfico revela que, de las 111 viviendas que se evaluó, 25 de ellas, lo que equivale al 23% del total, están construidas principalmente con ladrillos, un material que se considera especialmente resistente ante eventos catastróficos según el análisis. Por otro lado, 16 viviendas, representan el 14% del conjunto, están edificadas con bloques de cemento. Además, un total de 63 viviendas, lo que constituye el 57% del total, están hechas de adobe, ya sea con o sin recubrimiento. Por último, 6 viviendas, que corresponden al 5% del área en

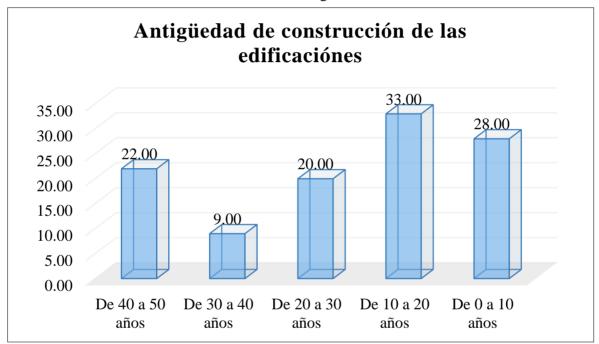
estudio, se construyeron con tapial, y se identificó una vivienda, equivalente al 1%, que utiliza otro material, como superboard.

3.2.1.3. Estado de conservación de las Edificaciones

Las condiciones de conservación de las edificaciones tienen un impacto significativo en su capacidad para resistir los flujos de detritos. Las edificaciones que presentan daños, debilitamientos estructurales o falta de mantenimiento adecuado son más vulnerables a los flujos de detritos. Estas estructuras pueden experimentar daños graves o incluso colapsos durante el evento, incrementando de esta manera el riesgo para la seguridad de los individuos que se hallen en su interior.

Figura 31

Tendencia de Vulnerabilidad en función a las condiciones de conservación de las edificaciones.

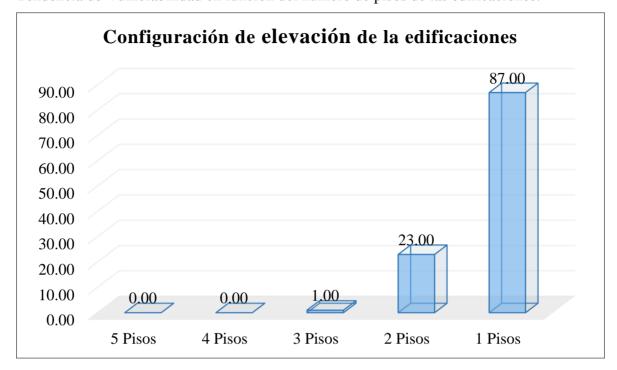

El gráfico refleja la condición de las viviendas en el área de estudio, destacando los siguientes hallazgos: En primer lugar, 10 viviendas, equivalente al 9%, presentan un estado crítico, lo que las hace susceptibles de colapsar en situaciones de desastres significativos. Además, 26 viviendas, representando el 23%, muestran daños visibles en la estructura, instalaciones y acabados, aunque no se considera que estén en riesgo inminente de colapso. Por otro lado, 38 viviendas, que constituyen el 34%, presentan daños reparables. Un total de 29 viviendas, lo que representa el 26%, muestran únicamente deterioro en sus acabados sin afectar

gravemente la estructura. Finalmente, se identifican 8 viviendas nuevas, equivalente al 7%, que se encuentran en excelente estado y no presentan daños notables.

3.2.1.4. Antigüedad de construcción de la edificación

Las edificaciones más antiguas, han perdido la capacidad para resistir los eventos. La antigüedad de las viviendas se caracteriza por haber sido construidos por una mala calidad de materiales, por no haber tenido en consideración las normas técnicas, entre otros factores.

Figura 32Tendencia de Vulnerabilidad en función a la antigüedad de las edificaciones .

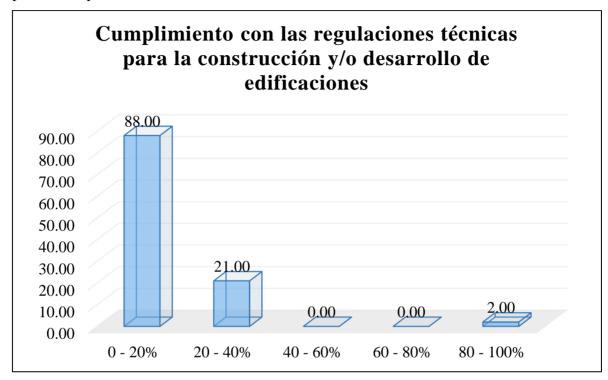


El gráfico muestra que, de un total de 28 viviendas, ninguna tiene una antigüedad superior a 10 años, lo que representa el 25% del conjunto. A continuación, 33 viviendas tienen entre 10 y 20 años de antigüedad, lo que equivale al 30%. Además, se identifican 20 viviendas con una antigüedad de 20 a 30 años, correspondiendo al 18%. Asimismo, se observan 9 viviendas con una antigüedad de 30 a 40 años, lo que constituye el 8% del total. Por último, se encuentran 22 viviendas que se consideran muy antiguas, representando el 20%.

3.2.1.5. Configuración de elevación de las edificaciones

Las edificaciones predominantes son de un solo piso, y esto es una característica notable debido a que están construidas principalmente con adobe. Esta elección de materiales y diseño arquitectónico condiciona la limitación de construir viviendas de niveles superiores.

Figura 33Tendencia de Vulnerabilidad en función del número de pisos de las edificaciones.



El 78% de las viviendas evaluadas constan de un solo nivel, mientras que el 21% de ellas son de dos niveles. Por último, solamente existe una vivienda de tres niveles, lo que representa el 1%.

3.2.1.6. Cumplimiento con las regulaciones técnicas para la construcción y/o desarrollo de edificaciones.

Las viviendas que han cumplido con las normas técnicas de edificación tienden a ser más resilientes frente a los eventos de flujos de detritos. Las normas técnicas de edificación incluyen pautas y requisitos específicos para diseñar y construir edificaciones que sean resistentes a diferentes tipos de riesgos, incluidos los flujos de detritos. Estas normas aseguran que las viviendas estén construidas de manera adecuada, utilizando materiales apropiados y técnicas de construcción seguras.

Figura 34Tendencia de Vulnerabilidad en función del cumplimiento de las normas técnicas pertinentes para las edificaciones.

De las 111 edificaciones del estudio, 88 de ellas, lo que representa el 79%, no han empleado ni considerado las normas técnicas de construcción. Luego, 21 viviendas, que equivalen a un rango del 20-40%, han cumplido las normas debido a la existencia de planimetría de la vivienda y recomendaciones sobre materiales. Estas viviendas se han construido en base al proyecto de "Techo Propio". Por último, solo existen 2 edificaciones, la Institución Educativa Secundaria César Vallejo y la Institución Educativa Inicial, que han cumplido con un rango del 80-100% de las normas técnicas.

3.2.2. Análisis de los criterios de vulnerabilidad física de las edificaciones

Para llevar a cabo este análisis, es necesario tener conocimiento detallado de las edificaciones en la zona de estudio, centrándose en especialmente en aspectos como la capacidad de resiliencia, la exposición y la fragilidad (Padrón, 2019). En el caso de las edificaciones, la vulnerabilidad depende de la integridad estructural y de sus características, es decir que las casas construidas con concreto armado son menos vulnerables que las casas de adobe (Crozier, 2013).

Los resultados del análisis jerárquico, en el cual se compararon la exposición, fragilidad y resiliencia, indicaron que el 63.335% de la importancia en la generación de la vulnerabilidad recae en el parámetro de exposición. Además, el 26.050% de la fragilidad de estas viviendas contribuye a su vulnerabilidad. Por último, la falta de una gran resiliencia ante estos eventos tiene una importancia del 10.616%.

Tabla 41Matriz de evaluación de los criterios de la vulnerabilidad Física.

Dimensión Física	Exposición	Fragilidad	Resiliencia
Exposición	1.00	3.00	5.00
Fragilidad	0.33	1.00	3.00
Resiliencia	0.20	0.33	1.00
SUMA	1.53	4.33	9.00
1/SUMA	0.65	0.23	0.11

Fuente: Elaboración propia.

Tabla 42Matriz de estandarización de los criterios de la vulnerabilidad física.

Dimensión Económica	Exposición	Fragilidad	Resiliencia	Priorización	Porcentaje (%)
Exposición	0.652	0.692	0.556	0.63	63.335
Fragilidad	0.217	0.231	0.333	0.26	26.050
Resiliencia	0.130	0.077	0.111	0.11	10.616

Fuente: Elaboración propia.

3.2.2.1. Elementos Expuestos

Los elementos expuestos mencionados hacen referencia a las viviendas ubicadas en el área de influencia de la quebrada Guichmal.

a) Proximidad de las edificaciones al cauce de la quebrada

La evaluación de la vulnerabilidad en relación a la proximidad de las edificaciones al cauce de la quebrada se estratificó en viviendas ubicadas a menos de 30 metros, entre 30 y 50 metros, entre 50 y 75 metros, entre 75 y 100 metros del cauce de la quebrada, y viviendas que se encuentran a una distancia mayor a 100 metros.

Tabla 43Matriz de evaluación para el criterio de proximidad de la vivienda al cauce de la quebrada.

Proximidad de las edificaciones al cauce de la	Menor a 30 m. del cauce de la	Entre 30 a 50 m. del cauce de la	Entre 50 a 75 m. del cauce de la	Entre 75 a 100 m. del cauce de la	Mayor a 100 m. del cauce de la
quebrada	quebrada	quebrada	quebrada	quebrada	quebrada
Menor a 30 m.					
del cauce de la	1.00	2.00	3.00	4.00	5.00
quebrada					
Entre 30 a 50					
m. del cauce de	0.50	1.00	2.00	3.00	4.00
la quebrada					
Entre 50 a 75					
m. del cauce de	0.33	0.50	1.00	2.00	3.00
la quebrada					
Entre 75 a 100					
m. del cauce de	0.25	0.33	0.50	1.00	2.00
la quebrada					
Mayor a 100 m.					
del cauce de la	0.20	0.25	0.33	0.50	1.00
quebrada					
SUMA	2.28	4.08	6.83	10.50	15.00
1/SUMA	0.44	0.24	0.15	0.10	0.07

Tabla 44Matriz de estandarización para el criterio de proximidad de la vivienda al cauce de la quebrada.

Proximida d de la vivienda al cauce de la quebrada	Menor a 30 m. del cauce de la quebrad a	Entre 30 a 50 m. del cauce de la quebrad a	Entre 50 a 75 m. del cauce de la quebrad a	Entre 75 a 100 m. del cauce de la quebrad a	Mayor a 100 m. del cauce de la quebrad a	Priori zació n	Porcentaje (%)
Menor a 30 m.	0.438	0.490	0.439	0.381	0.333	0.416	41.62
Entre 30 a 50 m.	0.219	0.245	0.293	0.286	0.267	0.262	26.18
Entre 50 a 75 m.	0.146	0.122	0.146	0.190	0.200	0.161	16.11
Entre 75 a 100 m.	0.109	0.082	0.073	0.095	0.133	0.099	9.86
Mayor a 100 m.	0.088	0.061	0.049	0.048	0.067	0.062	6.24
					SUMA	1.000	100.0

Los resultados del análisis jerárquico en relación a la proximidad de las viviendas al cauce de la quebrada revelaron que las viviendas ubicadas a menos de 30 metros del cauce tienen una contribución del 41.62% a la vulnerabilidad de las edificaciones. Asimismo, las viviendas situadas entre 30 y 50 metros del cauce presentan una contribución del 26.18%. Las viviendas que se encuentran a una distancia de 50 a 75 metros del cauce tienen una contribución del 16.11%. Luego, las viviendas ubicadas entre los 75 metros y 100 metros del cauce tienen una contribución del 9.86%. Por último, las viviendas que se sitúan a una distancia mayor de 100 metros del cauce de la quebrada tienen una priorización del 6.24% en la evaluación del nivel de vulnerabilidad.

3.2.2.2. Fragilidad física

La fragilidad física en esta investigación se caracteriza a través de múltiples aspectos, incluyendo los materiales de construcción de las edificaciones, su condición, su antigüedad y su disposición en términos de elevación. Estos elementos tienen un efecto considerable en la evaluación de la vulnerabilidad en el área de estudio.

Tabla 45Matriz de evaluación para los criterios de Fragilidad físicas de las edificaciones.

Fragilidad Física	Material de construcción predominante en la edificación y vivienda	Estado de conservación de la Edificación.	Antigüed ad de construcc ión de la edificació n	Configuración de elevación de las edificaciones	
Material de					
construcción					
predominante en la	1.00	2.00	3.00	5.00	
edificación y					
vivienda					
Estado de					
conservación de la	0.50	1.00	2.00	3.00	
Edificación.					
Antigüedad de					
construcción de la	0.33	0.50	1.00	2.00	
edificación					
Configuració					
n de elevación	0.20	0.33	0.50	1.00	
de las	5. 2 0	0.00	0.00	1.00	
edificaciones					
SUMA	2.03	3.83	6.50	11.00	
1 / SUMA	0.49	0.26	0.15	0.09	

Tabla 46Matriz de estandarización para los criterios de Fragilidad físicas de las edificaciones.

Fragilidad Física	Material de construcci ón predomin ante en la edificación y vivienda	Estado de conservac ión de la Edificació n.	Antigüed ad de construcc ión de la edificació n	Configuraci ón de elevación de las edificacione s	Prioriza ción	Porcent aje (%)
Material de construcci ón predomina nte en la edificación y vivienda Estado de	0.492	0.522	0.462	0.455	0.482	48.2
conservaci ón de la Edificació n.	0.246	0.261	0.308	0.273	0.272	27.2
Antigüeda d de construcci ón de la edificación	0.164	0.130	0.154	0.182	0.158	15.8
Configura ción de elevación de las edificacion es	0.098	0.087	0.077	0.091	0.088	8.8

La Tabla 46, que resume los resultados del análisis jerárquico para los criterios de evaluación de la fragilidad de las viviendas, establece que el 48.2% de la influencia en el análisis de la vulnerabilidad proviene del criterio del material de construcción predominante. El estado de conservación de la edificación contribuye con un 27.2%. La antigüedad de la edificación

aporta un 15.8%, y, por último, la configuración de elevación de la edificación contribuye con un 8.8%.

a) Material de construcción

La fragilidad física, en el contexto del criterio del material de construcción en el estudio, se evaluará considerando diversos factores, como la madera, el tapial, el adobe, los bloques de cemento y los ladrillos. Se ha determinado que los ladrillos son el material más adecuado debido a su mayor resistencia frente a eventos naturales.

Tabla 47Matriz de evaluación para el criterio de material de construcción predominante.

Material de construcción predominante	Madera / Piedra / Estera / Superboad (otros materiales similares)	Tapial	Adobe	Bloques de cemento	Ladrillo
Madera / Piedra / Estera / Superboad (otros materiales similares)	1.00	2.00	4.00	6.00	7.00
Tapial	0.50	1.00	2.00	4.00	6.00
Adobe	0.25	0.50	1.00	2.00	4.00
Bloques de cemento	0.17	0.25	0.50	1.00	2.00
Ladrillo	0.14	0.17	0.25	0.50	1.00
SUMA	2.06	3.92	7.75	13.50	20.00
1/SUMA	0.49	0.26	0.13	0.07	0.05

Tabla 48Matriz de estandarización para el criterio del material de construcción predominante.

Material de				Bloques			
construcción	Otros	Tapial	Adobe	de	Ladrillo	Priorización	Porcentaje
predominante				cemento			(%)
Otros	0.486	0.511	0.516	0.444	0.350	0.461	46.135
Tapial	0.243	0.255	0.258	0.296	0.300	0.270	27.049
Adobe	0.121	0.128	0.129	0.148	0.200	0.145	14.525
Bloques de cemento	0.081	0.064	0.065	0.074	0.100	0.077	7.667
Ladrillo	0.069	0.043	0.032	0.037	0.050	0.046	4.624
					SUMA	1.000	100.000

b) Estado de conservación de las edificaciones

Para analizar la vulnerabilidad estructural en términos de la conservación de las viviendas, se tiene en cuenta varios criterios. Estos incluyen viviendas muy deterioradas que afectan la estabilidad de su estructura, viviendas con deterioros que son subsanables y no afectan su estabilidad, así como viviendas en estado regular con deterioros originados por el uso normal de las edificaciones. Por último, se incluyen viviendas en óptimas condiciones.

Tabla 49Matriz de evaluación para el criterio del estado de conservación.

Estado de conservación de las Edificaciones	Deterio rado	En proceso de deterioro	Con reparaciones	Regular estado	Buen estado	
Las construcciones exhiben						
un nivel de deterioro tan significativo que sugiere la	1.00	2.00	4.00	7.00	9.00	
posibilidad de colapso						
Las construcciones exhiben						
daños que la debilitan, sin						
embargo, no presentan	0.50	1.00	2.00	4.00	7.00	
riesgo de colapso y, además,						
muestran defectos visibles en						
sus instalaciones y acabados.						
Las construcciones exhiben						
daños que no representan un						
riesgo significativo y que						
pueden ser reparados, o	0.25	0.50	1.00	2.00	4.00	
aquellas en las que se pueden						
observar daños en sus						
instalaciones y acabados.						
Las construcciones exhiben						
únicamente desgastes	0.14	0.25	0.50	1.00	2.00	
menores en los acabados	0.14	0.25	0.50	1.00	2.00	
debido al uso común.						
Las construcciones no						
exhiben ningún tipo de	0.11	0.14	0.25	0.50	1.00	
deterioro.						
SUMA	2.00	3.89	7.75	14.50	23.00	
1/SUMA	0.50	0.26	0.13	0.07	0.04	

Tabla 50Matriz de estandarización para el criterio del estado de conservación de las edificaciones.

Estado de conservación	Deteri orado	En proceso de deterioro	Con reparacio nes	Regular estado	Buen estado	Priorizaci ón	Porcent aje (%)
Las construcciones exhiben un nivel de deterioro tan significativo que sugiere la posibilidad de colapso	0.49 9	0.514	0.516	0.483	0.391	0.481	48.059
Las construcciones exhiben daños que la debilitan, sin embargo, no presentan riesgo de colapso y, además, muestran defectos visibles en sus instalaciones y acabados.	0.25	0.257	0.258	0.276	0.304	0.269	26.893
Las construcciones exhiben daños que no representan un riesgo significativo y que pueden ser reparados, o aquellas en las que se pueden observar daños en sus instalaciones y acabados.	0.12	0.128	0.129	0.138	0.174	0.139	13.881
Las construcciones exhiben únicamente desgastes menores en los acabados debido al uso común.	0.07	0.064	0.065	0.069	0.087	0.071	7.119
Las construcciones no exhiben ningún tipo de deterioro.	0.05 5	0.037	0.032	0.034	0.043 SUMA	0.040 1.000	4.047

c) Antigüedad de las viviendas

La vulnerabilidad aumenta debido a factores como la antigüedad de las edificaciones. Con el fin de analizar esta vulnerabilidad, se estratificaron las viviendas en grupos según su antigüedad: viviendas con menos de 10 años, viviendas de 10 a 20 años, viviendas de 20 a 30 años, viviendas de 30 a 40 años y, finalmente, viviendas con una antigüedad superior a 40 años.

Tabla 51Matriz de evaluación del criterio de la Antigüedad de las edificaciones.

Antigüedad de construcción de la edificación	Mayor a 40 años	De 30 a 40 años	De 20 a 30 años	De 10 a 20 años	De 0 a 10 años
Mayor a 40 años	1.00	2.00	4.00	6.00	8.00
De 30 a 40 años	0.50	1.00	2.00	4.00	6.00
De 20 a 30 años	0.25	0.50	1.00	2.00	4.00
De 10 a 20 años	0.17	0.25	0.50	1.00	2.00
De 0 a 10 años	0.13	0.17	0.25	0.50	1.00
SUMA	2.04	3.92	7.75	13.50	21.00
1/SUMA	0.49	0.26	0.13	0.07	0.05

Fuente: Elaboración propia.

Tabla 52Matriz de estandarización para la Antigüedad de las edificaciones.

Antigüedad de construcción de la edificación	Mayor a 40 años	De 30 a 40 años	De 20 a 30 años	De 10 a 20 años	De 0 a 10 años	Priorización	Porcentaje (%)
Mayor a 40 años	0.490	0.511	0.516	0.444	0.381	0.468	46.839
De 30 a 40 años	0.245	0.255	0.258	0.296	0.286	0.268	26.806
De 20 a 30 años	0.122	0.128	0.129	0.148	0.190	0.144	14.355
De 10 a 20 años	0.082	0.064	0.065	0.074	0.095	0.076	7.586
De 0 a 10 años	0.061	0.043	0.032	0.037	0.048	0.044	4.414

Fuente: Elaboración propia.

d) Configuración de elevación de las edificaciones

Las edificaciones en el área de estudio se caracterizan principalmente por tener un solo piso. Esto se debe a la consideración de que añadir más niveles implica una carga adicional en la base de la estructura. Cada piso extra aumenta la carga vertical en la cimentación, lo que podría resultar en asentamientos desiguales o incluso en fallos estructurales si la cimentación no está diseñada para soportar ese peso extra. Para el análisis, clasificamos las viviendas en un piso, dos pisos, tres pisos, cuatro pisos y más de cuatro pisos.

Tabla 53Matriz de evaluación del criterio de elevación de las edificaciones.

Configuración de elevación	Mayor a 4	4 nigog	2 nigog	2 nigog	1 nigog	
de las edificaciones	Pisos	4 pisos	3 pisos	2 pisos	1 pisos	
Mayor a 4 Pisos	1.00	2.00	4.00	7.00	9.00	
4 pisos	0.50	1.00	2.00	4.00	7.00	
3 pisos	0.25	0.50	1.00	2.00	4.00	
2 pisos	0.14	0.25	0.50	1.00	2.00	
1 pisos	0.11	0.14	0.25	0.50	1.00	
SUMA	2.00	3.89	7.75	14.50	23.00	
1/SUMA	0.50	0.26	0.13	0.07	0.04	

Fuente: Elaboración propia.

Tabla 54Matriz de estandarización del criterio de elevación de las edificaciones.

Configuración de elevación de las edificaciones	Mayor a 4 Pisos	4 pisos	3 pisos	2 pisos	1 pisos	Priorización	Porcentaje (%)
Mayor a 4 Pisos	0.499	0.514	0.516	0.483	0.391	0.481	48.059
4 pisos	0.250	0.257	0.258	0.276	0.304	0.269	26.893
3 pisos	0.125	0.128	0.129	0.138	0.174	0.139	13.881
2 pisos	0.071	0.064	0.065	0.069	0.087	0.071	7.119
1 pisos	0.055	0.037	0.032	0.034	0.043	0.040	4.047

3.2.2.3. Resiliencia física

a) Cumplimiento con las regulaciones técnicas aplicables para la construcción y/o desarrollo de edificaciones.

La resiliencia física de las viviendas se puede mejorar considerablemente mediante la aplicación de las normas técnicas. En este estudio, se considera que el cumplimiento de estas normas es un enfoque fundamental para garantizar una mejor capacidad de respuesta de las edificaciones frente a flujos de detritos. Estas normas abordan aspectos relacionados con la resistencia estructural, la ubicación adecuada, la elección de materiales resistentes, y otras consideraciones de seguridad.

Además, la aplicación de las regulaciones técnicas también puede implicar la implementación de medidas de mitigación específicas, como sistemas de retención de sedimentos, estructuras de contención, o cimentaciones adecuadas que ayuden a reducir el riesgo de daños durante un flujo de detritos.

Para el análisis de vulnerabilidad en relación del cumplimiento con las regulaciones, se estratifico el criterio de la siguiente manera:

- En el rango del 0-20%, se incluyen viviendas que no han considerado el cumplimiento de las normas técnicas, mayoritariamente representativas de construcciones de adobe y tapial.
- En el rango del 20-40%, se encuentran viviendas del programa "Techo Propio", que cuentan con planimetría, pero utilizan materiales económicos y frágiles.
- En el rango del 40-60%, se incluyen viviendas con planimetría, pero emplean materiales de mala calidad, y el personal a cargo carece de formación en normas técnicas.
- En el rango del 60-80%, se ubican viviendas que han realizado estudios básicos, disponen de planimetría, utilizan materiales de calidad y cuentan con mano de obra especializada y capacitada.
- Por último, en el rango del 80%-100%, se representan edificaciones, como instituciones educativas, que han cumplido al 100% con las normativas técnicas.

Tabla 55Matriz de evaluación para el criterio de cumplimento de las regulaciones técnicas para la construcción.

Cumplimiento de las regulaciones técnicas aplicables para la construcción	0 - 20%	20 - 40%	40 - 60%	60 - 80%	80 - 100%
0 - 20%	1.00	3.00	5.00	7.00	9.00
20 - 40%	0.33	1.00	3.00	5.00	7.00
40 - 60%	0.20	0.33	1.00	3.00	5.00
60 - 80%	0.14	0.20	0.33	1.00	3.00
80 - 100%	0.11	0.14	0.20	0.33	1.00
SUMA	1.79	4.68	9.53	16.33	25.00
1/SUMA	0.56	0.21	0.10	0.06	0.04

Tabla 56

Matriz de estandarización para el criterio de cumplimento de normas técnicas para la construcción.

Cumplimiento de las regulaciones técnicas para construcción	0 - 20%	20 - 40%	40 - 60%	60 - 80%	80 - 100%	Vector Priorización	Porcentaje (%)
0 - 20%	0.560	0.642	0.524	0.429	0.360	0.503	50.282
20 - 40%	0.187	0.214	0.315	0.306	0.280	0.260	26.023
40 - 60%	0.112	0.071	0.105	0.184	0.200	0.134	13.435
60 - 80%	0.080	0.043	0.035	0.061	0.120	0.068	6.778
80 - 100%	0.062	0.031	0.021	0.020	0.040	0.035	3.482

Fuente: Elaboración propia.

3.2.3. Diagnóstico de la vulnerabilidad ante flujo de detritos

Después de completar el análisis jerárquico de todos los componentes que intervienen en el análisis de la vulnerabilidad física para el área de influencia de la quebrada Guichmal, se ha generado la Tabla 57. Esta tabla resume y establece el grado de priorización de cada criterio utilizado en la en el análisis de la vulnerabilidad física.

Tabla 57Resumen de los resultados del análisis jerárquico de los criterios de la vulnerabilidad física.

DIM	ENSIÓN	FACTOR		PARÁMETRO		DESCRIPTOR	
	1.00	EXPOSICIÓN	0.633	Cercanía de las		Menor a 30 m. del cauce de la quebrada	0.416
				viviendas e		Entre 30 a 50 m. del cauce de la quebrada	0.262
				infraestructura al cauce	1.000	Entre 50 a 75 m. del cauce de la quebrada	0.161
				de la quebrada		Entre 75 a 100 m. del cauce de la quebrada	0.099
						Mayor a 100 m. del cauce de la quebrada	0.062
CA		FRAGILIDAD	0.260	Material de construcción		Madera / Piedra / Estera / Superboad (otros materiales similares)	0.461
FISI						Tapial	0.270
AD				predominante	0.482	Adobe	0.145
						Bloques de cemento	0.077
[AB]						Ladrillo	0.046
VULNERABILIDAD FISICA				Estado de conservación de las Edificaciones		Las construcciones exhiben un nivel de deterioro tan significativo que sugiere la posibilidad de colapsó	0.481
					0.272	Las construcciones exhiben daños que la debilitan, sin embargo, no presentan riesgo de colapso y, además, muestran defectos visibles en sus instalaciones y acabados.	0.269
						Las construcciones exhiben daños que no representan un riesgo significativo y que pueden ser reparados, o aquellas en las que	0.139

				se pueden observar daños en sus instalaciones y acabados. Las construcciones exhiben únicamente desgastes menores en los acabados debido al uso común.	0.071
				Las construcciones no exhiben ningún tipo de deterioro.	0.040
		Antigüedad de		Mayor a 40 años	0.468
		construcción de la		De 30 a 40 años	0.268
		edificación	0.158	De 20 a 30 años	0.144
				De 10 a 20 años	0.076
				De 0 a 10 años	0.044
		Configuración de		Mayor a 4 pisos	0.481
		elevación de las		4 pisos	0.269
		edificaciones	0.088	3 pisos	0.139
				2 pisos	0.071
				1 pisos	0.040
RESILENCIA	0.106	Cumplimiento con las		0 - 20%	0.503
		regulaciones técnicas		20 - 40%	0.260
		para la construcción y/o	1.000	40 - 60%	0.134
		desarrollo de		60 - 80%	0.068
		edificaciones		80 - 100%	0.035

Tabla 58Calculo para estratificar los resultados del análisis jerárquico de la vulnerabilidad física.

	VULNERABILIDAD FISICA DE LAS VIVIENDAS											
Exposi	ición		Fragilidad				liencia	[1]	A			
Cercanía de las viviendas e	infraestructura a la zona de peligro	Material de construcción predominante	de conservación de las Edificaciones	Antigüedad de construcción de la edificación	ción de elevación de las edificaciones	ır Fragilidad	Peso Fragilidad Física	Cumplimiento con las regulaciones técnicas	para la construcción y/o desarrollo de edificaciones	RABILIDAD FISICA DE VIVIENDAS	VULNERABILIDAD FISICA LAS VIVIENDAS	LA VULNERABILIDAD FISICA
Valor Exposición	Peso Exposición	Material pre	Estado de c Edi	Antigüedad d ed	Configuración edifi	Valor	Peso Fr	Valor resiliencia	Peso Resiliencia	VULNEI LAS	DE LA DE	VALOR DE LA V
Pdes x P par	P_FAC TOR	Pdes x P par	Pdes x P par	Pdes x P par	Pdes x P par		P_FACTO R	Pdes x P par	P_FACTOR	VALOR	PESO	VAJ
0.42	0.63	0.22	0.13	0.07	0.04	0.47	0.260	0.50	1.00	0.889	1.00	0.889
0.26	0.63	0.13	0.07	0.04	0.02	0.27	0.260	0.26	1.00	0.496	1.00	0.496
0.16	0.63	0.07	0.04	0.02	0.01	0.14	0.260	0.13	1.00	0.274	1.00	0.274
0.10	0.63	0.04	0.02	0.01	0.01	0.07	0.260	0.07	1.00	0.150	1.00	0.150
0.06	0.63	0.02	0.01	0.01	0.00	0.04	0.260	0.03	1.00	0.086	1.00	0.086

Tabla 59Rangos del grado de vulnerabilidad.

Grado de vulnerabilidad		Rangos	
Vulnerabilidad Muy Alta	0.496	≤ v <	0.889
Vulnerabilidad Alta	0.274	≤ v <	0.496
Vulnerabilidad Media	0.150	≤ v <	0.274
Vulnerabilidad Baja	0.086	≤ v <	0.150

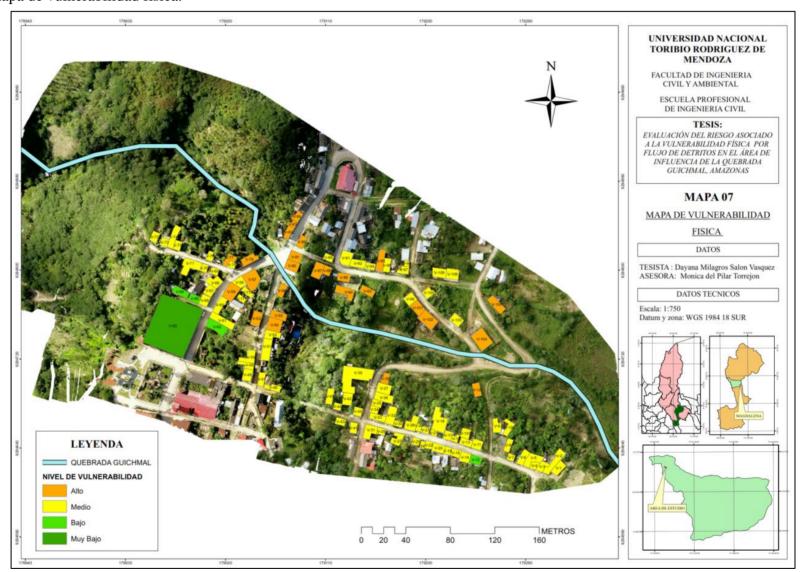

Los resultados del análisis de la vulnerabilidad revelaron que 26 viviendas se encuentran con una vulnerabilidad alta, 80 viviendas presentan vulnerabilidad media, 4 viviendas presenta una vulnerabilidad baja y 1 edificación con una vulnerabilidad muy baja. En conclusión, la vulnerabilidad del sector Guichmal se encuentra en una vulnerabilidad alta, moderada, baja y muy alta.

Tabla 60Resultado de la evaluación de la vulnerabilidad física vinculado al flujo de detritos.

Nivel de Vulnerabilidad	Viviendas	Porcentaje
Alto	26	23%
Medio	80	72%
Bajo	4	4%
Muy bajo	1	1%
	111	100%

3.2.4. Mapa de vulnerabilidad física ante flujo de detritos

Figura 35Mapa de vulnerabilidad física.

3.3. Cálculo del riesgo vinculado a la vulnerabilidad física

3.3.1. Diagnóstico del grado de riesgo ante la vulnerabilidad física

Después de llevar a cabo los análisis jerárquicos para evaluar el peligro y la vulnerabilidad, la estratificación de estos valores nos permitió cuantificar los rangos de riesgo frente a la vulnerabilidad física. Como resultado de este proceso, se construyó una matriz de riesgo que caracteriza los niveles de riesgo en las viviendas, clasificándolas en categorías de alto, medio y bajo riesgo.

La ecuación 5, se utilizó para calcular los valores necesarios para construir una matriz en la que se contrastaron los niveles de peligrosidad y vulnerabilidad

Tabla 61Matriz del grado de riesgo ante la vulnerabilidad física.

Matriz del Riesgo								
ad	Muy alto	0.428	0.064	0.117	0.212	0.380		
Peligrosidad	Alto	0.291	0.044	0.080	0.144	0.259		
elign	Medio	0.208	0.031	0.057	0.103	0.185		
	Bajo	0.162	0.024	0.044	0.080	0.144		
			0.150	0.274	0.496	0.889		
			Bajo	Medio	Alto	Muy alto		
				Vulnera	bilidad			

Fuente: Elaboración propia.

Tabla 62Rangos del grado de riesgo ante la vulnerabilidad física.

Grado del Riesgo	Rango	
Riesgo Muy alto	$0.144 \qquad \leq R < \qquad 0.$.378
Riesgo Alto	$0.057 \qquad \leq R < \qquad 0.$.144
Riesgo Medio	$0.024 \qquad \leq R < \qquad 0.$.057
Riesgo Bajo	$0.001 \qquad \leq R < \qquad \qquad 0.$.024

3.3.2. Mapa del riesgo ante la vulnerabilidad física ante flujo de detritos

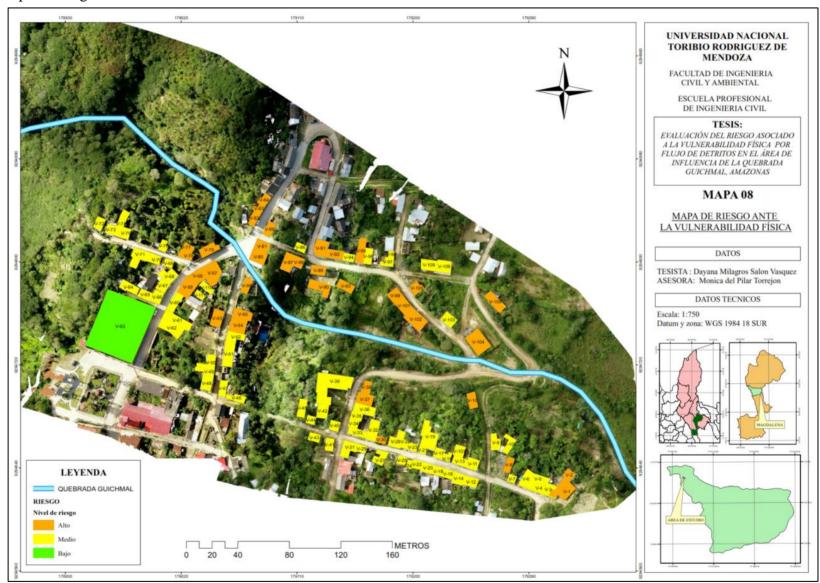

El mapa de riesgo ante la vulnerabilidad física frente al flujo de detritos no arrojó los resultados mencionados en la Tabla 63, donde se clasificaron las viviendas en el área de estudio en categorías de alto, medio y bajo riesgo.

Tabla 63Resultado de la evaluación del riesgo asociado a la vulnerabilidad física vinculado al flujo de detritos.

RIESGO ASOCIADO A LA VULNERABILIDAD FISICA ANTE FLUJO DE DETRITOS

Nivel de riesgo	Edificaciones	Porcentaje
Alto	38	34%
Medio	72	65%
Bajo	1	1%
	111	100%

Figura 36Mapa de riesgo ante la vulnerabilidad física.

IV. DISCUSION

- ✓ A partir de las evaluaciones de riesgo relacionadas con la vulnerabilidad física, se confirmó la hipótesis como válida, ya que en el área de estudio se identificaron viviendas con niveles de riesgo alto, medio y bajo.
- ✓ En la investigación de Sambrano (2017) en su tesis de grado, de evaluación del riesgo de deslizamientos de suelos en la Residencial Magisterial de Chachapoyas reveló la presencia de niveles de peligro moderados (31.17%) y altos (68.83%). Este análisis se fundamentó en varios factores, como el uso actual y la cobertura vegetal, la geomorfología, la geología y las precipitaciones. La geomorfología fue identificada como el factor más destacado debido a la existencia de características como rocas calizas, áreas húmedas, zonas propensas a deslizamientos y asentamientos. En este estudio, se consideraron factores análogos, como las pendientes, las precipitaciones, el uso del suelo y su cobertura, la geomorfología, las propiedades geotécnicas del suelo y la geología. No obstante, en este caso, se determinó que el factor más influyente era la inclinación del terreno, ya que se identificaron pendientes superiores al 45° y áreas inestables con fuertes inclinaciones.
- En su tesis de grado, Torrejón y Guivin (2017) llevaron a cabo un análisis del nivel de riesgo relacionado con deslizamientos de suelos en la zona comprendida entre la prolongación Santo Domingo y la quebrada Santa Lucía. En el área de estudio, se determinó un riesgo medio del 35.50%, el cual está vinculado a factores como la cobertura vegetal, los efectos de las lluvias, el tipo de suelos, las pendientes y la cobertura vegetal. Estos resultados indicaron que la mayoría de las viviendas se encuentran en proximidad a pendientes peligrosas. La vulnerabilidad total en la zona de estudio se situó en un 71.01%, lo que representa una vulnerabilidad alta, y la peligrosidad por deslizamiento se clasificó como un 50%, considerándose un peligro medio. En este estudio se identificó un nivel de riesgo alto que afecta a aproximadamente 38 viviendas que se caracterizan por estar muy cerca del cauce de la quebrada. Las viviendas con riesgo medio se ubican a una distancia superior a 50 metros, mientras que una vivienda tiene un riesgo bajo al encontrarse a más de 100 metros del cauce de la quebrada. Estos

- resultados subrayan la importancia de la ubicación de las viviendas con respecto al área de peligro.
- En la tesis de Tirado (2020), se realizó una investigación que tenía como finalidad establecer una conexión entre la vulnerabilidad física y la peligrosidad relacionada con laderas inestables en el tramo de la carretera Cajamarca-Gavilán. Para lograrlo, se identificaron factores intrínsecos que incluyeron la pendiente del terreno, la cobertura vegetal, la geología y las características del suelo a través de la obtención de 5 muestras representativas. Además, se identificó el factor detonante en este caso, que fueron las precipitaciones. Adicionalmente, se llevó a cabo una encuesta dirigida a 100 viviendas ubicadas en las proximidades de la carretera con el propósito de caracterizar su vulnerabilidad. Los resultados revelaron un alto porcentaje, específicamente el 76% de las edificaciones, presentaban una alta probabilidad de riesgo. Esta situación se debe en gran medida a que estas viviendas están construidas con materiales de baja calidad y presentan deficiencias estructurales. Estos hallazgos coinciden con el estudio realizado, que indica que alrededor del 34% de las edificaciones exhiben una vulnerabilidad alta debido a su antigüedad, a la fragilidad de los materiales de construcción, su estado de conservación y la configuración en términos de elevación.
- ✓ En relación con la zonificación del peligro, los resultados y la elección de parámetros se relacionan con la investigación llevada a cabo por Pérez Rubio y Chappa Mallap (2021). En su estudio, evaluaron el riesgo de deslizamiento de suelos en la primera cuadra de prolongación Triunfo en Chachapoyas. Con el propósito de determinar la zonificación, se tomaron en consideración criterios como la inclinación del terreno, las precipitaciones, el uso actual del suelo, las propiedades físico-mecánicas del suelo, la cobertura vegetal, el nivel freático y la distancia a las fuentes de agua. Esto condujo a la identificación de una alta peligrosidad en relación con el deslizamiento de suelos en esa área. De manera similar, en este estudio, se consideraron similares parámetros como esenciales. Se determinó que el 44% del ámbito de estudio presenta un alto riesgo en relación con los flujos de detritos.

✓ Según Cruz Hidalgo y Salazar Olascoaga (2021) en su investigación sobre el riesgo de las viviendas construidas en el cauce de la quebrada Zeta frente a las inundaciones máximas, se concluyó que las viviendas autoconstruidas en el área de influencia de la quebrada presentan un riesgo extremadamente alto frente a inundaciones. Además, se identificó un alto nivel de peligro asociado con la gravedad de las inundaciones, que depende de la altura máxima alcanzada y la frecuencia de estos eventos. También se realizó un análisis de las viviendas en el área de estudio, y se observó que muchas de ellas están construidas con materiales como adobe, concreto y madera, careciendo de una técnica de construcción adecuada. Esta situación aumenta la vulnerabilidad física de las edificaciones. Estos hallazgos concuerdan con el método utilizado para determinar las zonas de peligro, que se basó en la revisión de registros históricos de eventos pasados para calcular la frecuencia de ocurrencia. En cuanto a la vulnerabilidad física, se atribuye principalmente a los materiales utilizados en la construcción de las viviendas, que contribuyen a su fragilidad y, por lo tanto, a su mayor vulnerabilidad física.

V. CONCLUSIONES

- ✓ Para la evaluación del peligro, se emplearon diversos criterios, incluyendo la pendiente del terreno, el uso y la cobertura del suelo, las propiedades geotécnicas, la geología, la geomorfología y la precipitación. Estos criterios proporcionaron una visión integral que permitió llevar a cabo una zonificación del peligro. Los resultados revelaron que el 10% del área de estudio presenta un peligro muy alto, principalmente en el cauce de la quebrada. El 44% de la zona muestra un peligro alto, mientras que el 45% presenta un riesgo medio. Por último, solo el 1% del área de estudio se clasifica como de bajo peligro.
- ✓ Los criterios considerados en el análisis de vulnerabilidad incluyeron la ubicación y proximidad de las viviendas al cauce de la quebrada, destacándose como el factor más influyente. Le siguen en importancia el tipo de material de construcción predominante, el estado de conservación de las estructuras, la antigüedad de las viviendas y, en menor medida, el número de pisos. De las 111 viviendas evaluadas, se concluye que el 23% (26 viviendas) exhibe un nivel de vulnerabilidad alto. Asimismo, el 72% (80 viviendas) muestra un grado de vulnerabilidad medio. Un 5% (5 viviendas) posee un nivel de vulnerabilidad bajo.
- ✓ A partir del cálculo del riesgo, se determinaron tres niveles: alto, medio y bajo. Al evaluar las viviendas, se evidenció que el 34% (38 viviendas) enfrenta un riesgo alto, el 65% (72 viviendas) se sitúa en la categoría de riesgo medio, mientras que únicamente el 1% (1 vivienda) exhibe un riesgo bajo.

VI. RECOMENDACIONES

- ✓ En el análisis para determinar el nivel de peligro, se destacó como factor crucial el uso y cobertura del suelo, con especial énfasis en el parámetro de áreas de cultivo. Este factor adquiere una relevancia significativa al condicionar la generación de flujos de detritos, dado que se utiliza un sistema de riego que incorpora tuberías y válvulas de control susceptibles a fugas de agua. Se recomienda a los usuarios de este sistema de riego realizar la reparación de las válvulas de control y tuberías presentes en sus terrenos como medida paliativa. Además, se sugiere que la Municipalidad Distrital de Magdalena formule un proyecto de inversión con el propósito de reparar y modernizar integralmente el sistema de riego.
- Al procesar la información obtenida del levantamiento fotogramétrico y generar el perfil longitudinal junto con las secciones de la quebrada, se evidencia que el cauce presenta dimensiones reducidas, fuertes pendientes y acumulación de material debido a flujos de detritos previos. Ante esta situación, se recomienda a los pobladores que participen en trabajos comunales para limpiar el cauce de la quebrada y las estructuras de drenaje existentes, como alcantarilla y canal. Además, sugerimos a la Municipalidad Distrital de Magdalena llevar a cabo actividades de limpieza y descolmatación del cauce de la quebrada Guichmal, especialmente antes de los meses comprendidos entre diciembre y marzo, cuando se espera un aumento de las lluvias intensas. Esta medida preventiva contribuirá significativamente a reducir el riesgo de posibles eventos relacionados con flujos de detritos.
- ✓ Con base en los resultados obtenidos mediante la zonificación del peligro, se ha identificado la presencia de áreas con un elevado nivel de riesgo, especialmente en las proximidades del cauce de la quebrada, donde se observa un proceso de urbanización en desarrollo. Ante esta situación, se recomienda implementar programas de capacitación en gestión de riesgos para sensibilizar a los pobladores del área de estudio sobre los peligros asociados. Es fundamental que los residentes tomen conciencia de los riesgos al ubicar sus viviendas en zonas vulnerables y sobre la importancia del cumplimiento de las normas técnicas de construcción

- como una medida de seguridad esencial en las futuras edificaciones. Estas acciones contribuirán significativamente a mejorar la preparación y resiliencia de la población frente a posibles eventos de flujos de detritos.
- ✓ Durante la visita para identificar las formaciones geológicas, se identificó un depósito antrópico en una zona cercana a la quebrada. Por este motivo, se sugiere a la municipalidad que evalúe la implementación de una ordenanza municipal que prohíba la disposición de basura, desmontes y escombros en esta área. La adopción de esta medida no solo contribuirá significativamente a preservar el entorno natural, sino que también minimizará el riesgo de impactos inesperados de flujos de detritos en la zona.

VII. REFERENCIAS BIBLIOGRAFICAS

- Aguaron, J., Escobar, MT y Moreno-Jiménez, JM (2003). *Intervalos de estabilidad de consistencia para un juicio en los sistemas de soporte de decisiones AHP*. European Journal of Operational Research, 145 (2), 382-393.
- Alzate Llano, M. (2015). Análisis de precipitaciones máximas como factor detonante para la amenaza por movimientos en masa en el municipio de santa rosa de cabal Risaralda [Universidad de Manizales].

 https://ridum.umanizales.edu.co/bitstream/handle/20.500.12746/2764/Alzate_Llano_Monica_2016.pdf?sequence=1&isAllowed=y}
- Castro Mendoza, C. M. (2014). Evaluación del riesgo de desastres por peligros naturales y antrópicos del área urbana del distrito de Punta Hermosa [Tesis de pregrado]. Universidad Nacional Mayor de San Marcos.
- Castro Garro, D. A. (2022). *Umbral de precipitación para deslizamientos de tierra en la cuenca del río Rímac* [Universidad Nacional Agraria La Molina]. https://repositorio.lamolina.edu.pe/handle/20.500.12996/5237
- Carrión Limones, M. V. (2023). Modelo para la protección de taludes en carreteras de montaña. Metodología para la protección de taludes en carreteras de montaña [Universidad técnica de Machala]. http://repositorio.utmachala.edu.ec/bitstream/48000/21632/1/CARRION%20LIMO NES%2C%20MARCO-08-09-23.pdf
- Carrillo, R., Ortiz, S., & Gómez Avalos, J. C. (2023). Inspección geodinámica en la quebrada
 Limón del distrito de Canchaque (provincia de Huancabamba región
 Piura). INSTITUTO GEOFISICO DEL PERU.

 https://repositorio.igp.gob.pe/handle/20.500.12816/5397
- Carajulca Bernal, H. O. (2017). Estabilidad de taludes del tramo km 07+000 al km 09+000 de la carretera Pedro Ruíz Chachapoyas, Amazonas 2016. Repositorio

- institucional Universidad Nacional Toribio Rodríguez de Mendoza. https://hdl.handle.net/20.500.14077/1290
- Catacora Calderón, J. M., & Luque Aldana, A. F. (2021). Evaluación de riesgos por flujo de detritos en las asociaciones nueva Barranquilla y Wari del distrito ciudad nueva Tacna 2021. Repositorio Universidad Privada de Tacna.

 https://repositorio.upt.edu.pe/bitstream/handle/20.500.12969/2195/Luque-Aldana-Catacora-Calderon.pdf?sequence=1&isAllowed=y
- Cerquera Pedraos, L. C. (2022). *Determinación de la amenaza por flujo de detritos en la cuenca de la quebrada Estaquecá* [Escuela Colombiana de Ingeniería Julio Garavito]. https://repositorio.escuelaing.edu.co/handle/001/2121
- Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres. (2014).

 Manual de Evaluación de Riesgos originados por Fenómenos Naturales (2da edición).

 https://sigrid.cenepred.gob.pe/sigridv3/documento/257
- Cotelo, M. A. (2019). Análisis de riesgo por eventos de remoción en masa, propuesta de Plan de Mitigación. Ruta Nacional 40 sur, Lago Guillelmo, Departamento. http://rid.unrn.edu.ar/handle/20.500.12049/3693
- Cruz Hidalgo, G. F., & Salazar Olascoaga, J. R. (2021). Evaluación del nivel de riesgo de las viviendas construidas en el cauce de la quebrada Zeta ante una máxima avenida, Chachapoyas-Amazonas 2018 [Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas]. https://repositorio.untrm.edu.pe/handle/20.500.14077/2338?locale-attribute=en
- Dikshit A, Satyam N, Pradhan B, Kushal S (2020) Estimating rainfall threshold and temporal probability for landslide occurrences in Darjeeling Himalayas. Geosci J 24:225–233. https://doi.org/10.1007/s12303-020-0001-3
- Escobar Villanueva, J. (2020). Contribuciones metodológicas para la obtención de información altimétrica requerida en la evaluación local de amenazas por

- *inundaciones a partir de nuevas tecnologías geoespaciales* [Universidad Politecnica de Madrid]. https://doi.org/10.20868/upm.thesis.58112
- Fell, R., Hungr, O., Couture, R., y Eberhardt, I. (2005). *Landslide Risk Management | Oldrich Hungr, Robin Fell, Rejean Couture,*. Taylor & Francis. https://www.taylorfrancis.com/books/edit/10.1201/9781439833711/landslide-risk-management-oldrich-hungr-robin-fell-rejean-couture-erik-eberhardt
- Huamán Yopla, H. E. (2023). Evaluación de Peligros Geológicos en el Centro Poblado La Ramada Manzanas Alto [Universidad Nacional de Cajamarca]. http://hdl.handle.net/20.500.14074/5573
- Instituto Nacional de Defensa Civil. (2006). *Manual básico para la estimación del riesgo*. http://bvpad.indeci.gob.pe/doc/pdf/esp/doc319/doc319.htm
- Instituto Geológico Minero y Metalúrgico. Dirección de Geología Ambiental y Riesgo Geológico. (2020). Evaluación de movimientos en masa en la quebrada Guichmal. Región Amazonas, provincia Chachapoyas, distrito Magdalena (Informe técnico N° A7009). https://hdl.handle.net/20.500.12544/2558
- Instituto Geológico Minero y Metalúrgico. Dirección de Geología Ambiental y Riesgo Geológico (2021). Represamiento y desembalse del río Utcubamba en el sector Aserradero. Distrito de Jamalca, provincia de Utcubamba, departamento de Amazonas (Informe técnico N° A7198). https://hdl.handle.net/20.500.12544/3536
- Instituto Geológico Minero y Metalúrgico. Dirección de Geología Ambiental y Riesgo Geológico (2022). Efectos geológicos asociados al sismo 7.5 Mw del 28 de noviembre 2021 en el departamento de Amazonas. Repositorio INGEMMET. https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/3622/3/A7227-Efectos_geologicos_sismo_7.5-Amazonas.pdf
- Liu, X., y Miao, C. (2018). Large-scale assessment of landslide hazard, vulnerability and risk in China. Geomatics, Natural Hazards and Risk, 9(1), 1037-1052. https://doi.org/10.1080/19475705.2018.1502690

- Medina Allcca, L., y Dueñas Bravo, S. (2007). *Informe de zonas críticas región Amazonas* (Informe técnico N° A6545). Instituto Geológico, Minero y Metalúrgico. https://hdl.handle.net/20.500.12544/2003
- Medina Allcca, L. (2018). Evaluación de peligro por inundación y erosión fluvial de la localidad de islandia. Repositorio Ingemmet. https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/1963/1/A6852-Evaluaci%c3%b3n_de_peligro_por_inundaci%c3%b3n...Islandia-Loreto.pdf
- Mendoza, D. P., & Huamán, G. A. (2021). Elaborado por la Dirección de Geología Ambiental y Riesgo Geológico del INGEMMET. https://sigrid.cenepred.gob.pe/sigridv3/storage/biblioteca/11830_informe-tecnico-n0-a7172-evaluacion-de-peligros-geologicos-en-las-quebradas-sacramayo-san-qorimachaqhuayniyoc-y-racramayo-distrito-santiago-provincia-.pdf
- Muñiz Jauregui, J. A., y Hernández Madrigal, V. M. (2012). Zonificación de procesos de remoción en masa en Puerto Vallarta, Jalisco, mediante combinación de análisis multicriterio y método heurístico. Revista mexicana de ciencias geológicas, 29(1), 103-114. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1026-87742012000100007&lng=es&tlng=es
- Osorio Gómez, J. C., & Orejuela Cabrera, J. P. (2008). El proceso de análisis jerárquico (AHP) y la toma de decisiones multicriterio. Ejemplo de aplicación. *Scientia Et Technica*, *XIV*, 247–252.
- Padrón Chacón,C.A. (2017). Metodología para evaluar la vulnerabilidad física de viviendas en barrios urbanos autoproducidos. Terra. Nueva Etapa. http://saber.ucv.ve/ojs/index.php/rev_terr/article/view/13672
- Padrón Chacón, C.A. (2019). Evaluación del riesgo de desastres por deslizamientos activados por lluvias. Caso estudio: barrios informales de mamera el Junquito. *Terra. Nueva Etapa*. https://www.redalyc.org/articulo.oa?id=72163802004

- Perez Rubio, N., y Chappa Mallap, E. (2021). *Riesgo de deslizamiento de suelos en la cuadra 01 de la prolongación Triunfo, Chachapoyas, Amazonas, 2020* [Universidad nacional Toribio Rodríguez de Mendoza]. https://hdl.handle.net/20.500.14077/2423
- Pilay Pozo, E. L., & Solano Mejillón, V. O. (2019). Caracterización geotécnica y microzonificación sísmica en el área urbana de la ciudad de Pelileo, provincia de Tungurahua [Universidad Estatal Península de Santa Elena]. https://repositorio.upse.edu.ec/bitstream/46000/4771/1/UPSE-TIC-2019-0001.pdf
- Ramos, R. N. (2018). Estudio de la susceptibilidad al deslizamiento de laderas en el Estado de Guerrero, México, aplicando Tecnologías de Información Geográfica [Universidad Rey Juan Carlos]. https://burjcdigital.urjc.es/handle/10115/15869
- Salazar Gamboa, L. K. (2016). Evaluacion del grado de vulnerabilidad fisica ante riesgos de sismo en el distrito de Agallpampa- provincia de Otuzco- Dpto. La Libertad, Año 2016 [Universidad privada de Trujillo]. http://repositorio.uprit.edu.pe/bitstream/handle/UPRIT/48/SALAZAR%20GAMBO A%20LAURA%20KATHERIN.pdf?sequence=1&isAllowed=y
- Saaty, T. (1980). Architectural Design by the Analytic Hierarchy Process.
- Saaty, T. (2008). The Analytic Network Process. DOI:10.1007/0-387-33987-6_1
- Sambrano Goicochea, A. (2017). Evaluación del peligro de deslizamiento de suelos de la residencial magisterial de la ciudad de Chachapoyas [Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas]. https://repositorio.untrm.edu.pe/handle/20.500.14077/1215
- Sepúlveda, A., Patiño, J. y Rodríguez, C. (2016). *Metodología para evaluación de riesgo por flujo de detritos detonados por lluvia: caso Útica, Cundinamarca, Colombia*. Obras y Proyectos 20, 31-43

- Suárez, J. (2009). *Deslizamientos. Análisis Geotécnico*. Volumen I. España: Universidad de Santander.
- Servicio Geológico Colombiano, S. G. (2013). Documento metodológico de la zonificación de susceptibilidad y amenaza por movimientos en masa escala 1: 100.000. *Bogotá DC*, *Colombia*.
- Sosa Senticala, N. L., & Núñez Peredo, M. A. (2021). Evaluación de peligros geológicos en los sectores de Shanuco y Pacchac Pacha. Región Ancash, provincia Carhuaz, distrito Amashca. *Instituto Geológico, Minero y Metalúrgico*, 38. https://repositorio.ingemmet.gob.pe/handle/20.500.12544/3110
- Tirado, K. M. S. (2020). Evaluación del riesgo asociado a la vulnerabilidad física por laderas inestables en el tramo de carretera Cajamarca Gavilán, 2018 [Universidad Nacional De Cajamarca Facultad De Ingenieria]. https://repositorio.unc.edu.pe/bitstream/handle/20.500.14074/4012/TESIS%20FINAL%20EMPASTAR.pdf?sequence=1
- Torrejón, M. D. P., y Guivin, J. G. (2017). Análisis del nivel de riesgo en las viviendas por deslizamiento del suelo en la zona comprendida entre la quebrada Santa Lucía y prolongación Santo Domingo, Chachapoyas-Amazonas–2016. http://repositorio.unrtm.edu.pe/handle/UNTRM/1343
- Vilchez, M. (2018). Casos históricos de movimientos en masa que causaron grandes daños en Perú. Fortalecimiento de capacidades para mitigar los impactos de huaicos en Perú. https://hdl.handle.net/20.500.12544/2590
- Villacorta Chambi, S. P., Fidel Smoll, L., y Zavala Carrión, B. L. (2012). Mapa de susceptibilidad por movimientos en masa del Perú. *Revista de la Asociación Geológica Argentina*, 69(3). https://hdl.handle.net/20.500.12544/694

ANEXOS

Anexo 1: Datos de precipitación (mm) recopilados durante el período de 2015 a 2022, provenientes de la estación meteorológica INDES-CES.

ESTACIÓN METEOROLÓGICA CHACHAPOYAS

Departamento : Amazonas Altitud :2348 m.s.n.m Tipo : Meteorológica-Automática

Provincia : Chachapoyas Latitud :6°14'3.81"S Modelo : Vantage Pro2 Plus

Distrito : Chachapoyas Longitud :77°51'10.81"O Marca : DAVIS

Mes	Precipitación (mm)
Ene-15	-
Feb-15	457.90
Mar-15	175.10
Abr-15	156.70
May-15	101.40
Jun-15	22.20
Jul-15	30.10
Ago-15	-
Set-15	41.80
Oct-15	91.60
Nov-15	144.10
Dic-15	312.60
TOTAL	1533.5

Precipitación máx. (mm) 457.9 Feb-15

Departamento : Amazonas Altitud :2348 m.s.n.m Tipo : Meteorológica-Automática

Provincia : Chachapoyas Latitud :6°14'3.81"S Modelo : Vantage Pro2 Plus

Distrito : Chachapoyas Longitud :77°51'10.81"O Marca : DAVIS

Mes	Precipitación (mm)
Ene-16	97
Feb-16	235.90
Mar-16	204.90
Abr-16	160.10
May-16	51.10
Jun-16	64.70
Jul-16	12.10
Ago-16	55.40
Set-16	51.20
Oct-16	142.10
Nov-16	53.60
Dic-16	127.90
TOTAL	1256

Precipitación máx. (mm) 235.9 Feb-16

Departamento : Amazonas Altitud :2348 m.s.n.m Tipo : Meteorológica-Automática

Provincia : Chachapoyas Latitud :6°14'3.81"S Modelo : Vantage Pro2 Plus

Distrito : Chachapoyas Longitud :77°51'10.81"O Marca : DAVIS

Mes	Precipitación (mm)
Ene-17	171.21
Feb-17	175.8
Mar-17	217.45
Abr-17	192.63
May-17	82.2
Jun-17	47.69
Jul-17	8.34
Ago-17	169.42
Set-17	98.97
Oct-17	135.16
Nov-17	146.37
Dic-17	166.68
TOTAL	1611.92

Precipitación máx. (mm) 217.45 Mar-17

Departamento: Amazonas Altitud :2348 m.s.n.m Tipo : Meteorológica-Automática

Provincia : Chachapoyas Latitud :6°14'3.81"S Modelo : Vantage Pro2 Plus

Distrito : Chachapoyas Longitud :77°51'10.81"O Marca : DAVIS

Mes	Precipitación (mm)
Ene-18	132.1
Feb-18	96.8
Mar-18	0
Abr-18	104.8
May-18	43.4
Jun-18	20.8
Jul-18	4.8
Ago-18	5.8
Set-18	23
Oct-18	92.6
Nov-18	87.6
Dic-18	541.4
TOTAL	1153.1

Precipitación máx. (mm) 541.4 Dic-18

Departamento : Amazonas Altitud :2348 m.s.n.m Tipo : Meteorológica-Automática

Provincia : Chachapoyas Latitud :6°14'3.81"S Modelo : Vantage Pro2 Plus

Distrito : Chachapoyas Longitud :77°51'10.81"O Marca : DAVIS

Mes	Precipitación (mm)
Ene-19	465.2
Feb-19	599.4
Mar-19	714.6
Abr-19	2764.8
May-19	215
Jun-19	20.8
Jul-19	4.8
Ago-19	7
Set-19	188.2
Oct-19	748.6
Nov-19	583.6
Dic-19	541.4
TOTAL	6853.4

Precipitación máx. (mm) 2764.8 Abr-19

Departamento : Amazonas Altitud :2348 m.s.n.m Tipo : Meteorológica-Automática

Provincia : Chachapoyas Latitud :6°14'3.81"S Modelo : Vantage Pro2 Plus

Distrito : Chachapoyas Longitud :77°51'10.81"O Marca : DAVIS

Mes	Precipitación (mm)
Ene-20	59.2
Feb-20	10
Mar-20	0
Abr-20	0
May-20	15.4
Jun-20	11.4
Jul-20	0
Ago-20	6
Set-20	26.4
Oct-20	24.2
Nov-20	41.2
Dic-20	66.6
TOTAL	260.4

Precipitación máx. (mm) 66.6 Dic-20

Departamento: Amazonas Altitud :2348 m.s.n.m Tipo : Meteorológica-Automática

Provincia : Chachapoyas Latitud :6°14'3.81"S Modelo : Vantage Pro2 Plus

Distrito : Chachapoyas Longitud :77°51'10.81"O Marca : DAVIS

Mes	Precipitación (mm)
Ene-21	40.80
Feb-21	136.20
Mar-21	623.40
Abr-21	372.00
May-21	150.20
Jun-21	149.80
Jul-21	10.80
Ago-21	262.60
Set-21	208.80
Oct-21	495.60
Nov-21	417.80
Dic-21	691.00
TOTAL	3559

Precipitación máx. (mm) 691.00 Dic-21

Departamento : Amazonas Altitud :2348 m.s.n.m Tipo : Meteorológica-Automática

Provincia : Chachapoyas Latitud :6°14'3.81"S Modelo : Vantage Pro2 Plus

Distrito : Chachapoyas Longitud :77°51'10.81"O Marca : DAVIS

Mes	Precipitación (mm)
Ene-22	43.00
Feb-22	267.20
Mar-22	161.80
Abr-22	166.60
May-22	42.40
Jun-22	46.40
Jul-22	11.80
Ago-22	29.40
Set-22	49.60
Oct-22	131.00
Nov-22	24.20
Dic-22	59.60
TOTAL	1033

Precipitación máx. (mm) 267.2 Feb-22

Anexo 2: Validación de la Ficha creada con el propósito de recopilar y evaluar datos relacionados con las viviendas.

DECLARACIÓN JURADA DE EXPERTO EN VALIDADCIÓN DE INSTRUMENTOS PARA RECOLECCIÓN DE DATOS

Yo, José Luis Santillán Tafur, identificada con el DNI Nº 45861855 y con formación en Ingeniería Civil, especializada como Evaluador de Riesgo de Desastres (RJ Nº045-2019-CENEPRED/J), con domicilio en Chachapoyas, distrito Chachapoyas, provincia Chachapoyas, y región Amazonas, hago la presente declaración bajo juramento:

He tenido el honor de revisar y validar los instrumentos de recolección de datos destinados a ser empleados en la investigación titulada "EVALUACIÓN DEL RIESGO ASOCIADO A LA VULNERABILIDAD FÍSICA POR FLUJO DE DETRITOS EN EL ÁREA DE INFLUENCIA DE LA QUEBRADA GUICHMAL, AMAZONAS". Dicha investigación es llevada a cabo por DAYANA MILAGROS SALON VASQUEZ, con DNI Nº 76302718, de la Escuela Profesional de Ingeniería Civil.

Después de un riguroso proceso de evaluación, confirmo que los instrumentos propuestos son altamente confiables y adecuados para su uso en el proyecto de tesis mencionado. Este instrumento se describe a continuación:

 FICHA DE EVALUACION DE LA VULNERABILIDAD FISICA DE LAS EDIFICACIONES.

Esta declaración se emite con la intención de respaldar el proceso de investigación y tesis de DAYANA MILAGROS SALON VASQUEZ, y reafirmar que los instrumentos propuestos cumplen con los estándares de confiabilidad y pertinencia necesarios para la obtención del Grado Académico de Ingeniero Civil.

> OSE/LUIS SANTILLAN TAPO INGENIERO CIVIL CIP Nº182354 EVALUADOR DE RIESGOS BUR 945-2019-CENEPREDA

INFORME DE OPINION SOBRE INTRUMENTOS DE EVALUACION DE LA VULNERABILIDAD FISICA DE LAS EDIFICACIONES.

I.DATOS GENERALES

Apellidos y Nombres del experto: José Luis Santillán Tafur.

Carrera profesional: Ingeniería Civil.

Especialidad: Evaluador de Riesgo de Desastres (RJ N°045-2019-CENEPRED/J)

Instrumento de evaluación: Ficha

Autor del instrumento: Dayana Milagros Salón Vásquez

II. ASPECTOS DE VALIDACIÓN

(1), poco satisfactorio (2), aceptable (3), bueno (4), sobresaliente (5).

CRITERIOS	INDICADORES	1	2	3	4	5	
CLARIDAD	Los ítems están redactados con un lenguaje apropiado.					×	
OBJETIVIDAD	Los ítems del instrumento posibilitan la recopilación de información objetiva, lo que conduce a la obtención de los resultados deseados.			×			
CONSISTENCIA	La información que recoja a través de los ítems del instrumento, permite analizar, describir y explicar la realidad, motivo de la investigación.			×			
COHERENCIA	Los ítems del instrumento expresan relación con los indicadores de cada dimensión de la variable.				×		
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.				×		
PUNTAJE TOTAL	E TOTAL 19						

II. OPINION DE APLICABILIDAD

Instrumento Bueno.

Promedio de valoración = 4

Chachapoyas, 5 de octubre del 2023

GEMERO CIVIL CIP Nº182354 EVALUADOR DE RIESGOS RJNº 045-2019-CENEPREDAJ

INFORME DE OPINIÓN SOBRE INTRUMENTOS DE EVALUACION DE LA VULNERABILIDAD FISICA DE LAS EDIFICACIONES.

-				CRITERIOS JUIC					JUICIO)																
		E	ENCUESTA		Clarid	ad	01	jetivid:	ad	Con	istencia	Coherencia		Pertinencia	Elimina	Medifica										
DIMENSIO N	FACTOR	PARAMETR O		1	2 3	4 5	1	2 3 4	5	1 2	3 4	5 1 2 3 4	5 1	2 3 4 5	r	r	confirma r									
			Menor a 30 m. de la zona de peligro			×		×			x	x		X			X									
	-		Entre 30 a 50 m. de la zona de peligro			×		×			×	×		X			×									
	EXPOSICIÓ N	Localización de la vivienda	Entre 50 a 75 m. de la zona de peligro			×		×			×	X	T	X			×									
			Entre 75 a 100 m. de la zona de peligro			X		×			×	X		X			×									
			Mayor a 100 m. de la zona de peligro			×		X	П		×	X		X			×									
			Madera / Piedra / Estera / Superboad (otros materiales similares)			×		×			x	X		×			X									
	l M	Material de	Tapial			×		X			x	l x		X			×									
		Estado de conservación de las Edificaciones					construcción	construcción	construcción			Adobe			×		×			×	X		X			×
d L			Bloques de cemento			×		×			×	×		X		1	X									
ERA			Ladrillo			×		×			X	X		k			X									
вплол	FRAGILIDA D		Deteriorado: Las edificaciones en que las estructuras presentan un deterioro tal que hace presumir su colapso.			×		×			X	x		X			×									
VULNERABILIDAD FISICA			En proceso de deterioro: Las edificaciones cuya estructura presenta deterioros que la comprometen, aunque sin peligro de desplome y los acabados e instalaciones tienen visibles desperfectos.			×		×			X	×		×			×									
64			Con reparaciones: Las edificaciones cuyas estructuras no tienen deterioro y si lo tienen, no lo comprometen y es subsanable, o que los acabados e instalaciones tienen deterioro visibles debido al mal uso.			×		×			X	X		×			X									
			Regular estado: Las edificaciones que solo tienen ligeros deterioros en los acabados debido al uso normal.			χ		×			X	×		×			×									
			Buen estado: Las edificaciones que no presentan deterioro alguno.			×		X			x	×	1	×			×									
		Antigüedad de	mayor de 40 años			×		V			k	×	T	×			×									
		construcción de la	De 30 a 40 años			x		M				لا		×			×									
		edificación	De 20 a 30 años			X	T	V	1.	1	+	X		×			X									

JOSÉ LUIS SANTILLAN TAFUR MODRERO CIVIL CIP Nº182354 EVALUADOR DE RIESGOS RJ Nº 045-2019-CENEPREDIJ

		De 10 a 20 años	×	X	* × ·	- X	X	
		De 0 a 10 años	×	x	×	×	×	
		mayor a 4 pisos	X	×	×	x	×	
	Configuració	4 Pisos	×	×	×	×	×	
	n de elevación de la	3 Pisos	×	×	×	×	×	
	edificaciones	2 Pisos	×	x	×	×	×	
		1 Pisos	×	×	×	×	×	
	Comparison	0 - 20%: se refiere a viviendas que no han considerado el cumplimiento de las normas técnicas, mayoritariamente representativas de construcciones de adobe y tapial.	×	×	×	x	×	
	Cumplimient o con las	20 - 40%; se refiere a viviendas del programa "Techo Propio"	×	×	×	×		
RESILENC.	para la	40 - 60%: se refieren a viviendas que han realizado estudios básicos, disponen de planimetria, utilizan materiales de calidad y cuentan con mano de obra especializada y capacitada.	×	×	×	×	×	
	construcción y/o desarrollo de edificaciones	60 - 80%: se ubican viviendas que han realizado estudios básicos, disponen de planimetria, utilizan materiales de calidad y cuentan con mano de obra especializada y capacitada.	×	×	×	×	×	
		80 - 100%: se representan edificaciones, como instituciones educativas, que han cumplido al 100% con las normativas técnicas.	×	×	×	×	×	
		1	OBSERVACION	IES				
		IOSE LUIS SANTILIÁN TAFUR INGENIERO CIVIL CIP Nº182354 EVALUADOR DE RIESGOS RJ Nº 045-2019-CENEPREDAJ						
EXPERTO	: José Luis Sant	illán Tafur						
	855							
DNI: 45861								

DECLARACIÓN JURADA DE EXPERTO EN VALIDADCIÓN DE INSTRUMENTOS PARA RECOLECCIÓN DE DATOS

Yo, Hugo Alex Bazan Durand , identificada con el DNI Nº
1665964 y con formación en Arquitectura, especializada como
Evaluadora de Riesgo de Desastres (RJN°045-2019), con domicilio en
Chachapoyas, distrito Chachapoyas, provincia Chachapoyas, y región Amazonas, hago
la presente declaración bajo juramento:
He tenido el honor de revisar y validar los instrumentos de recolección de datos
destinados a ser empleados en la investigación titulada "EVALUACIÓN DEL RIESGO
ASOCIADO A LA VULNERABILIDAD FÍSICA POR FLUJO DE DETRITOS EN
EL ÁREA DE INFLUENCIA DE LA QUEBRADA GUICHMAL, AMAZONAS".
Dicha investigación es llevada a cabo por DAYANA MILAGROS SALON VASQUEZ,
con DNI 76302718, de la Escuela Profesional de Ingeniería Civil.
Después de un riguroso proceso de evaluación, confirmo que los instrumentos propuestos
son altamente confiables y adecuados para su uso en el proyecto de tesis mencionado.
Este instrumento se describe a continuación:

FICHA DE EVALUACION DE LA VULNERABILIDAD FISICA DE LAS EDIFICACIONES.

Esta declaración se emite con la intención de respaldar el proceso de investigación y tesis de DAYANA MILAGROS SALON VASQUEZ, y reafirmar que los instrumentos propuestos cumplen con los estándares de confiabilidad y pertinencia necesarios para la obtención del Grado Académico de Ingeniero Civil.

Firma

DNI Nº 16659264

Nombre: Hugo Alex Boxon Decord

INFORME DE OPINION SOBRE INTRUMENTOS DE EVALUACION DE LA VULNERABILIDAD FISICA DE LAS EDIFICACIONES.

LDATOS GENERALES

Apellidos y Nombres del experto: Bazán Durand, Hugo Auex

Carrera profesional: Arquitectura

Especialidad: Evaluador de riesgo (RJN°045-2019 CENEPRED-J)

Instrumento de evaluación: Ficha

Autor del instrumento: Dayana Milagros Salón Vásquez

II. ASPECTOS DE VALIDACIÓN

(1), poco satisfactorio (2), aceptable (3), bueno (4), sobresaliente (5).

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los ítems están redactados con un lenguaje apropiado.					X
OBJETIVIDAD	Los ítems del instrumento posibilitan la recopilación de información objetiva, lo que conduce a la obtención de los resultados deseados.				×	
CONSISTENCIA	La información que recoja a través de los ítems del instrumento, permite analizar, describir y explicar la realidad, motivo de la investigación.				×	
COHERENCIA	Los ítems del instrumento expresan relación con los indicadores de cada dimensión de la variable.				X	
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.					X
PUNTAJE TOTAL			2	2		

II. OPINION DE APLICABILIDAD

Instrumento Bueno.

Promedio de valoración = 4

Chachapoyas, 04 de octubre del 2023

Firma

DNI Nº 166,5964

INFORME DE OPINIÓN SOBRE INTRUMENTOS DE EVALUACION DE LA VULNERABILIDAD FISICA DE LAS EDIFICACIONES.

				0.50		4			CRITERIOS				TAICIO	T by
			ENCUESTA	Cta	uridad		ОБј	etividad	Consistencia	Coherencia	Pertinencia	Eliminar	Modifi car	confirm ar
DIMENSION	FACTOR	PARAMETRO	DESCRIPTOR	1 2	3 4	5	1 2	3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5			
	× ×		Menor a 30 m. de la zona de peligro		1			X	×	X	X			V
	CC	Localización de	Entre 30 a 50 m. de la zona de peligro			X		×	×	×	x			×
	EXPOSICIÓN	la vivienda	Entre 50 a 75 m. de la zona de peligro			d		X	X	×	k			V
	28	ENGRAPH SAME	Entre 75 a 100 m. de la zona de peligro		1	X		Y	×		×			V
	H		Mayor a 100 m. de la zona de peligro					X	×	X	X			×
		Material de	Madera / Piedra / Estera / Superboad (otros materiales similares)			X		х	×	×	×			X
		construcción	Tapial			4		Х	X	×	×			×
		predominante	Adobe	2 20		X		X	×	×	×			×
			Bloques de cemento			7	+	×	×	×	_ X			×
5			Ladrillo			X	+	X	×	X	×			×
LNE			Deteriorado: Las edificaciones en que las estructuras presentan un deterioro tal que hace presumir su colapso.			4		X	×	×	×			X
VULNERABILIDAD	40	Estado de	En proceso de deterioro: Las edificaciones cuya estructura presenta deterioros que la comprometea, aunque sin peligro de desplome y los acabados e instalaciones tienen visibles desperfectos.			X		X	×	×	×			×
D FISICA	FRAGILIDAD	conservación de las Edificaciones	Con reparaciones: Las edificaciones cuyas estructuras no tienen deterioro y si lo tienen, no lo comprometen y es subsanable, o que los acabados e instalaciones tienen deterioro visibles debido al mal uso.			X		×	×	×	×			×
			Regular estado: Las edificaciones que solo tienen ligeros deterioros en los acabados debido al uso normal.		×	(x	×	×	×			×
			Buen estado: Las edificaciones que no presentan deterioro alguno.			(X	x	×	×			X
			mayor de 40 años		1	X		X	×	×				×
		Antigüedad de	De 30 a 40 años					×	N X	X	V			×
		construcción de			5	1		X	X	×	X			×
		la edificación	De 10 a 20 años		1	V		V	×	x		_		×
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_	+		X		- X			2000
			De 0 a 10 años mayor a 4 pisos	-		1	+	×	X	X	X			×

	Configuración	4 Pisos		X	X	X		X	X	
	de elevación de	3 Pisos		X	X	. X	1	×	×	
	la edificaciones	2 Pisos		X	X	l. x		x	×	
		1 Pisos		X	×	X		X	×	
		0 - 20%: se refiere a viviendas que no han considerado el cumplimiento de las normas técnicas, mayoritariamente representativas de construcciones de adobe y tapial.		χ	X	X		x	X	
	C	20 - 40%: se refiere a viviendas del programa "Techo Propio"		X	X	X		x	×	
RESILENCIA	Cumplimiento con las regulaciones técnicas aplicables para	40 - 60%; se refieren a viviendas que han realizado estudios básicos, disponen de planimetría, utilizan materiales de calidad y cuentan con mano de obra especializada y capacitada.		X	X	×		×	×	
RESI	la construcción y/o desarrollo de edificaciones	60 - 80%: se ubican viviendas que han realizado estudios básicos, disponen de planimetria, utilizan materiales de calidad y cuentan con mano de obra especializada y capacitada.		Х	x	·×		x	X	
		80 - 100%: se representan edificaciones, como instituciones educativas, que han cumplido al 100% con las normativas técnicas.		Х	X	X		X	×	
	Vii	OBSI	ERVAC	IONES						

EXPERTO: HUGO Alex Bazan Durand

Identificación: 1665964

Afiliación RJNº 045-2019-CENEPRED/J

Titulo y grado Académico: Arquitecto

DECLARACIÓN JURADA DE EXPERTO EN VALIDADCIÓN DE INSTRUMENTOS PARA RECOLECCIÓN DE DATOS

Yo, Jhessica María Guerrero Pinedo , identificada con el DNI Nº 73999107 y con

formación en Ingeniería Ambiental, especializada como Evaluador de Riesgo de

Desastres (RJ N°00024-2022-CENEPRED/J), con domicilio en Chachapoyas, distrito

Chachapoyas, provincia Chachapoyas, y región Amazonas, hago la presente declaración

bajo juramento:

He tenido el honor de revisar y validar los instrumentos de recolección de datos

destinados a ser empleados en la investigación titulada "EVALUACIÓN DEL RIESGO

ASOCIADO A LA VULNERABILIDAD FÍSICA POR FLUJO DE DETRITOS EN

EL ÁREA DE INFLUENCIA DE LA QUEBRADA GUICHMAL, AMAZONAS".

Dicha investigación es llevada a cabo por DAYANA MILAGROS SALON VASQUEZ,

con DNI Nº 76302718, de la Escuela Profesional de Ingeniería Civil.

Después de un riguroso proceso de evaluación, confirmo que los instrumentos propuestos

son altamente confiables y adecuados para su uso en el proyecto de tesis mencionado.

Este instrumento se describe a continuación:

- FICHA DE EVALUACION DE LA VULNERABILIDAD FISICA DE LAS

EDIFICACIONES.

Esta declaración se emite con la intención de respaldar el proceso de investigación y tesis

de DAYANA MILAGROS SALON VASQUEZ, y reafirmar que los instrumentos

propuestos cumplen con los estándares de confiabilidad y pertinencia necesarios para la

obtención del Grado Académico de Ingeniero Civil.

Ing. Jhessica María Guerrero Pinedo

REG CIP: 223859

128

INFORME DE OPINION SOBRE INTRUMENTOS DE EVALUACION DE LA VULNERABILIDAD FISICA DE LAS EDIFICACIONES.

I.DATOS GENERALES

Apellidos y Nombres del experto: Jhessica María Guerrero Pinedo.

Carrera profesional: Ingeniería Ambiental.

Especialidad: Evaluador de Riesgo de Desastres (RJ N°00024-2022-CENEPRED/J)

Instrumento de evaluación: Ficha

Autor del instrumento: Dayana Milagros Salón Vásquez

II. ASPECTOS DE VALIDACIÓN

(1), poco satisfactorio (2), aceptable (3), bueno (4), sobresaliente (5).

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los ítems están redactados con un				X	
	lenguaje apropiado.					
OBJETIVIDAD	Los ítems del instrumento posibilitan la				X	
	recopilación de información objetiva, lo					
	que conduce a la obtención de los					
	resultados deseados.					
CONSISTENCIA	La información que recoja a través de los				Х	
	ítems del instrumento, permite analizar,					
	describir y explicar la realidad, motivo de					
	la investigación.					
COHERENCIA	Los items del instrumento expresan				Х	
	relación con los indicadores de cada					
	dimensión de la variable.					
PERTINENCIA	La redacción de los ítems concuerda con					Х
	la escala valorativa del instrumento.					
PUNTAJE TOTAL				21		

II. OPINION DE APLICABILIDAD

Instrumento Bueno.

Promedio de valoración = 4

Chachapoyas, 04 de octubre del 2023

Ing. Jhessica Maria Guerrero Pinedo

REG CIP: 223859

INFORME DE OPINIÓN SOBRE INTRUMENTOS DE EVALUACION DE LA VULNERABILIDAD FISICA DE LAS EDIFICACIONES.

					All Car Copy		100		CR	ITE	RIC	SC	(J)						JUICIG)·
		E	NCUESTA	Cla	ridad	c	bjen	vidad	c	onsis	tencia	C	her	encia	T	ertio	encia	Elimina	14.00	R. P. Co.
DIMENSIO N	FACTOR	PARAMETR O	DESCRIPTOR	1 2	3 4 -	1	2 3	4	5 1	2, 3	4		2 3	4	1	2 3	4 5	7/1/1003	Modifica r	confirm ar
			Menor a 30 m. de la zona de peligro		x			x			x			x			x			×
			Entre 30 a 50 m. de la zona de peligro		x			x			x		Γ	x			x			×
	EXPOSICIÓ N	Localización de la vivienda	Entre 50 a 75 m. de la zona de peligro		x			x			x			x			x			×
			Entre 75 a 100 m. de la zona de peligro		x			x			x			x			x			×
			Mayor a 100 m. de la zona de peligro		x			x			x			x			x			×
			Madera / Piedra / Estera / Superboad (otros materiales similares)		x			x			x			х			x			×
		Material de	Tapial		x			x			x			x			x			×
_		construcción predominant	Adobe		x			x			x			x			x			×
, OLA		e	Bloques de cemento		x			x			x			x			х			×
ERA			Ladrillo		x			x			x			х			x			×
впла			Deteriorado: Las edificaciones en que las estructuras presentan un deterioro tal que hace presumir su colapso.		x			x			x			x			x			×
VULNERABILIDAD FISICA	FRAGILIDA D	Estado de	En proceso de deterioro: Las edificaciones cuya estructura presenta deterioros que la comprometen, aunque sin peligro de desplome y los acabados e instalaciones tienen visibles desperfectos.		. x			x			x		Ī	x			x			×
		conservación de las Edificaciones	Con reparaciones: Las edificaciones cuyas estructuras no tienen deterioro y si lo tienen, no lo comprometen y es subsanable, o que los acabados e instalaciones tienen deterioro visibles debido al mal uso.		x			x			x			x			x			×
			Regular estado: Las edificaciones que solo tienen ligeros deterioros en los acabados debido al uso normal.		x			x			x			x			x			×
			Buen estado: Las edificaciones que no presentan deterioro alguno.		x			x			x	Ħ		х			x			×
		Antigüedad de	mayor de 40 años		x			x			x			х			x			×
		construcción de la	De 30 a 40 años		x			x			х			х			x			×
		edificación	De 20 a 30 años		x			x			x			х			x			×

		De 10 a 20 años	x	x	x	x	x	
		De 0 a 10 años	x	x	x	x	x	
		mayor a 4 pisos	x	x	x	x	x	
	Configuració n de	4 Pisos	x	x	x	x	x	
	elevación de	3 Pisos	x	x	x	x	x	
	edificaciones	2 Pisos	x	x	x	x	x	
		1 Pisos	x	x	x	x	x	
		0 - 20%: se refiere a viviendas que no han considerado el cumplimiento de las normas técnicas, mayoritariamente representativas de construcciones de adobe y tapial.	x	x	x	x	x	
	Cumplimient o con las	20 - 40%: se refiere a viviendas del programa "Techo Propio"	x	x	x	x	x	
RESILENCI A	regulaciones técnicas aplicables para la construcción	40 - 60%: se refieren a viviendas que han realizado estudios básicos, disponen de planimetría, utilizan materiales de calidad y cuentan con mano de obra especializada y capacitada.	x	x	x	x	x	
	y/o desarrollo de edificaciones	60 - 80%: se ubican viviendas que han realizado estudios básicos, disponen de planimetría, utilizan materiales de calidad y cuentan con mano de obra especializada y capacitada.	x	x	х	x	x	
		80 - 100%: se representan edificaciones, como instituciones educativas, que han cumplido al 100% con las normativas técnicas.	x	x	x	x	x	

EXPERTO: Jhessica María Guerrero Pinedo.

DNI: 73999107

Ing. Jhessica María Guerrero Pinedo

REG CIP: 223859

Titulo y grado Académico: Ingeniería Ambiental.

Anexo 3: Ficha creada con el propósito de recopilar y evaluar datos relacionados con las viviendas.

ENCUESTA PARA LA ELABORACIÓN DEL INFORME DE EVALUACIÓN DEL RIESGO ASOCIADO A LA VULNERABILIDAD FÍSICA POR FLUJO DE DETRITOS EN EL ÁREA DE INFLUENCIA DE LA QUEBRADA GUICHMAL, AMAZONAS.

Vivienda: 1
Nombre y Apellidos del Jefe

de familia: IGLESIA EVANGELICA LA PERUANA

Coordenadas: 179317.937 9294620.373

Direccion del predio

(Referencia): CALLE LIBERTAD N°583

Fecha de encuesta:

Responsable: Dayana Milagros Salon Vasquez

FOTOGRAFÍA DE LA VIVIENDA

			ENCUESTA	
DIMENSION	FACTOR	PARAMETRO	DESCRIPTOR	MARCAR (X
			Menor a 30 m. del cauce de la quebrada	
			Entre 30 a 50 m. del cauce de la guebrada	
	EXPOSICIÓN	Localización de la vivienda	Entre 50 a 75 m. del cauce de la quebrada	
			Entre 75 a 100 m. del cauce de la quebrada	
			Mayor a 100 m. del cauce de la quebrada	
			Madera / Piedra / Estera / Superboad (otros materiales similares)	
V		Material de construccion	Tapial	
U		predominante	Adobe	
			Bloques de cemento	
L			Ladrillo	
N E			Deteriorado: Las edificaciones en que las estructuras presentan un deterioro tal que hace presumir su colapso.	
R A B			En proceso de deterioro: Las edificaciones cuya estructura presenta deterioros que la comprometen aunque sin peligro de desplome y los acabados e instalaciones tienen visibles desperfectos.	
I L I D	FRAGILIDAD	Estado de conservacion de las Edifícaciones	Con refacciones: Las edificaciones cuyas estructuras no tienen deterioro y si lo tienen, no lo comprometen y es subsanable, o que los acabados e instalaciones tienen deterioro visibles debido al mal uso.	
A D			Regular estado: Las edificaciones que solo tienen ligeros deterioros en los acabados debido al uso normal.	
F			Buen estado: Las edificaciones que no presentan deterioro alguno.	
			mayor a 40 años	
<u> </u>		A of the first of the control of the first	De 30 a 40 años	
S		Antigüedad de construcción de la edificación	De 20 a 30 años	
I		ia edificación	De 10 a 20 años	
С			De 0 a 10 años	
Α			mayor a 4 pisos	
		Configuración de elemetro de	4 Pisos	
		Configuración de elevación de la edificaciones	3 Pisos	
		ia edificaciones	2 Pisos	
			1 Pisos	
			0 - 20%	
		Adherencia a las regulaciones	20 - 40%	
	RESILENCIA	técnicas aplicables para la construcción y/o desarrollo de	40 - 60%	
		edificaciones	60 - 80%	
		euiricaciones	80 - 100%	

Anexo 4: Resultado de las fichas sobre la vulnerabilidad física.

DIMENSIO	CLASIFICACIO N													VUI	LNERA	BILID	AD FIS	ICA												
N	PESO															100%														
E A CECOP	NOMBRE		E	XPOSI	CIÓN											FRAGI	LIDAD											RES	SILENC	CIA
FACTOR	PESO			0.63	3											0.2	260												0.106	
PARAMETRO	NOMBRE				vivieno zona d	las y e peligro			de cons domina		n	Esta		onserva		e las	Antig		de const dificació		ı de la	Confi		n de ele ificacio	evación nes	de las	regu l	lacion a cons	ies técn strucció	con las icas para ón y/o ficaciones
PA	PES0			1.00	0				0.482					0.272					0.158					0.088					1.000	
DESCRIPTOR	CLASIFICACIÓN	Menor a 30 m. del cauce de la quebrada	Entre 30 a 50 m. del cauce de la quebrada	Entre 50 a 75 m. del cauce de la quebrada	Entre 75 a 100 m. del cauce de la quebrada	Mayor a 100 m. del cauce de la quebrada	Otros materiales similares	Tapial	Adobe	Bloques de cemento	Ladrillo	En mal estado	En proceso de deterioro	Con reparaciones	Regular estado	Buen estado	De 40 a 50 años	De 30 a 40 años	De 20 a 30 años	De 10 a 20 años	De 0 a 10 años	5 Pisos	4 Pisos	3 Pisos	2 Pisos	1 Pisos	0 - 20%	20 - 40%	40 - 60%	60 - 80% 80 - 100%
	PESO	0.416	0.262	0.161	0.099	0.062	0.451	0.277	0.157	0.076	0.039	0.470	0.261	0.155	0.080	0.035	0.445	0.298	0.148	0.068	0.041	0.470	0.261	0.155	0.080	0.035	0.50	0.26 0	0.13 4	0.06 8 0.03 5
VIVIENDA	LOTE			<u> </u>														l	ı	I	I									
V-1	1		1						1				1							1						1	1			
V-2	2		1							1			1							1						1		1		
V-3	3			1							1			1					1							1	1			
V-4	4			1						1				1						1						1		1		_
V-5	5			1					1					1				1								1	1			
V-6	6			1					1				1						1							1	1			_
V-7	7			1						1			1							1						1		1		_
V-8	8			1					1			1					1									1	1			
V-9	9			1					1				1				1								1		1			-
V-10	10	1							1				1						1							1	1			-
V-11	11			1					1					1					1							1	1		-	
V-12	12				1					1			1							1						1		1		

V-13	13		1			1					1				1							1	1		
V-14	14		1					1					1					1				1	1		
V-15	15		1					1					1						1			1		1	
V-16	16		1						1					1	1				1			1		1	
V-17	17		1				1					1							1			1	1		
V-18	18		1					1				1					1					1		1	
V-19	19		1				1						1				1					1	1		
V-20	20		1				1				1					1						1	1		
V-21	21		1						1			1							1			1	1		
V-22	22		1					1			1								1			1	1		
V-23	23		1					1			1								1			1	1		
V-24	24		1		1						1								1			1	1		
V-25	25		1						1			1							1			1	1		
V-26	26			1					1		1								1			1	1		
V-27	27		1				1			1					1							1	1		
V-28	28		1				1				1					1						1	1		
V-29	29		1				1					1				1						1	1		
V-30	30		1			1				1					1							1	1		
V-31	31		1				1					1				1						1	1		
V-32	32		1				1					1							1			1	1		
V-33	33		1						1			1							1		1		1		
V-34	34		1				1				1				1							1	1		 _
V-35	35		1						1				1					1				1	1		 _
V-36	36	1							1			1						1				1		1	
V-37	37	1				1						1						1				1		1	
V-38	38	1					1			1					1							1	1	_	
V-39	39	1							1				1					1			1			_	
V-40	40		1						1		1								1		1		1	_	
V-41	41		1				1			1					1						1		1	_	
V-42	42		1						1				1						1			1		1	

V-43	43			1				1						1						1			1	1			
V-44	44			1						1			1						1				1		1		
V-45	45			1				1					1				1						1	1			
V-46	46			1				1			1								1				1	1			
V-47	47			1						1				1						1		1		1			
V-48	48				1			1			1			1		1						1		1			
V-49	49			1					1					1					1				1	1			
V-50	50			1				1					1						1			1		1			
V-51	51		1					1						1					1				1	1			
V-52	52		1						1					1					1				1		1		
V-53	53		1					1				1					1						1	1			
V-54	54	1						1					1					1					1	1			
V-55	55	1						1				1						1					1	1			
V-56	56	1						1				1					1						1	1			
V-57	57	1						1					1			1						1		1			
V-58	58		1							1										1			1	1	\square		
V-59	59		1					1					1			1						1		1			
V-60	60			1				1						1		1							1	1			
V-61	61			1				1					1			1						1		1			
V-62	62				1					1					1				1			1		1			
V-63	63					1				1				1					1			1					1
V-64	64					1		1					1					1					1	1		_	
V-65	65					1		1						1					1				1	1		_	
V-66	66					1		1					1			1						1		1			
V-67	67			1				1						1					1			1		1		\bot	\perp
V-68	68			1						1				1						1		1			1	\bot	\perp
V-69	69			1						1				1					1				1		1	\bot	\perp
V-70	70			1						1					1					1			1	1		\bot	\perp
V-71	71			1				1						1					1				1		1		
V-72	72			1				1					1						1				1	1			

V-73	73			1				1				1					1					1	1	ĺ	
V-74	74			1				1				1					1					1		1	
V-75	75			1					1				1					1				1		1	
V-76	76			1		1					1				1							1	1		
V-77	77	1					1					1				1						1	1		
V-78	78		1				1						1			1					1		1		
V-79	79	1					1					1					1				1		1		
V-80	80	1							1					1				1		1				1	
V-81	81	1					1					1					1					1	1		
V-82	82	1					1				1					1						1	1		
V-83	83	1					1					1				1						1	1		
V-84	84	1					1					1				1						1	1		
V-85	85	1							1			1					1					1	1		
V-86	86		1				1				1					1						1		1	
V-87	87	1					1				1				1							1	1		
V-88	88	1						1				1					1					1		1	
V-89	89	1					1					1			1						1		1		
V-90	90	1							1					1				1				1	1		
V-91	91		1				1							1			1				1		1		
V-92	92		1				1							1				1				1	1		
V-93	93	1					1			1					1							1	1		
V-94	94			1		1					1				1							1	1		
V-95	95		1				1					1			1						1		1		
V-96	96			1				1					1				1					1		1	
V-97	97			1			1					1				1					1		1		
V-98	98			1			1						1					1				1	1		
V-99	99		1				1						1					1				1	1		
V-100	100		1						1					1				1				1	1		
V-101	101	1					1						1					1				1	1		
V-102	102	1					1						1					1				1	1		

V-103	103			1				1						1					1						1	1			
V-104	104	1							1			1							1						1	1			
V-105	105		1						1			1						1							1	1			
V-106	106			1					1				1						1						1	1			
V-107	107			1					1						1					1					1	1			
V-108	108			1					1				1						1						1	1			
V-109	109			1						1				1							1				1	1			
V-110	110			1					1						1		1							1		1			
V-111	111			1							1				1					1					1	1			
		21	19	63	4	4	1	6	63	16	25	10	26	38	29	8	22	9	20	33	28		1	23	87	8	2		2

Anexo 5: Resultado del ensayo de capacidad portante realizado en el laboratorio de pavimentos y suelos del Grupo GEOSUP.

CAPACIDAD DE CARGA - Cimentación Superficial C - 1

Cota de Superficie (m) :

0.00

A.- DATOS GENERALES

Ángulo de Fricción Interna (Φ) Cohesión (c) Tipo de falla por corte Ángulo de Fricción Interna corregido (Φ_c) Cohesión corregida (c), Peso Unitario de Sobre Carga (γ₁) Peso Unitario del Suelo de Cimentación (Y2) Relación Ancho / Largo (B/L) Ancho (diámetro) Inicial de la Cimentación Incremento de base (Δb) Cota de Terreno bajo piso terminado Profundidad de Desplante (Df) Incremento de profundidad (ADf) Posición del Nivel Freático (N.F.) Inclinación de la carga Factor de Seguridad (F.S.asume 3.0) Clasificación SUCS del suelo de cimentación Cimentación sugerida

25.6	grados
0.25 Local	kg/cm ²
17.7	grados
0.17	kg/cm ²
1.65	gr/cm ³
1.60	gr/cm ³
1.00	(1.0 si es circular o cuadrada)
1.50	m
0.00	m
0.00	m
1.50	m (0.0 si es indeterminado)
0.15	m
50.0	m (50m si no presenta)
0.0	grados
3	
sw	
Zonata Cundenda	

Zapata Cuadrada

B.- FACTORES DE CAPACIDAD DE CARGA

Nc = 12.884
Nq = 5.117
Ny = 1.974

$$N_c = (N_{\varphi} - 1) \cot \phi$$

 $N_{\varphi} = ig^2 (45 + \frac{\phi}{2}) e^{\sigma i \varphi}$
 $N_{\varphi} = 2(N_{\varphi} + 1)ig\phi$

C.- FACTORES DE FORMA

$$\begin{array}{lll} \text{Sc} & = 1.397 \\ \text{Sq} & = 1.320 \\ \text{Sy} & = 0.600 \end{array} & \begin{array}{lll} S_c = 1 + \frac{B}{L} \frac{N_e}{N_e} \\ & \\ S_q = 1 + \frac{B}{L} t g \phi \end{array} \bigg| S_q = 1 + 0.4 \frac{B}{L} \end{array}$$

D.- FACTORES DE INCLINACIÓN

$i_c = 1.000$ $i_s = 1.000$	$i_e = i_q = (1 - \frac{\beta}{90})^2$				
$i_q = 1.000$ $i_q = 1.000$	$i_r = (1 + \frac{\beta}{\delta})^2$				

E.- COEFICIENTES DE PRESION LATERAL

Ka = 0.533 Kp = 1.875Ko = 0.696

NOTA: Coeficientes de empuje encontrados según Rankine.

F.- CAPACIDAD ADMISIBLE

Cimentación sugerida Zapata Cuadrada

			Gimentación sugenda Zapata Guadrada				
COTA	DESPLANTE	ANCHO	FACTORE	S POR N.F.	q _d	q _{adm}	Detalle
RELATIVA	Df (m)	B (m)	w	W'	(kg/cm ²)	(kg/cm²)	Detaile
-1.50	1.50	1.5	1.00	1.00	2.11	0.70	
-1.50	1.50	1.5	1.00	1.00	2.11	0.70	
-1.50	1.50	1.5	1.00	1.00	2.11	0.70	
-1.50	1.50	1.5	1.00	1.00	2.11	0.70	
-1.50	1.50	1.5	1.00	1.00	2.11	0.70	
-1.50	1.50	1.5	1.00	1.00	2.11	0.70	
-1.65	1.65	1.5	1.00	1.00	2.28	0.76	
-1.65	1.65	1.5	1.00	1.00	2.28	0.76	
-1.65	1.65	1.5	1.00	1.00	2.28	0.76	

ABORATORIO DE SVELOS VIDAVIMENTOS
GRUPO GENES PE
AGE MARICOL ENGEL SOCILIA ES PENEZ
ESCULVACIONO ES SUELDA NOVAMENTOS
LIGAR CONTRACTOR STUDIO NOVAMENTOS
LIGAR CONTRACTOR STUDIO NOVAMENTOS

LABORATORIO DE SE PELOS Y PAMILIENTOS SUPO LICOSUP

TEC SIANI CARRON EMPOLIMINATOR FLORES ESPE DIALISTA DE SUCCIO SE PAMILISTA DE SUPO SE PERMISSA DE SUPO SE PERMISSA

+ 05	4.05	1.5	1.00	1.00	0.00	0.70	
-1.65	1.65	1.5	1.00	1.00	2.28	0.76	
-1.65	1.65	1.5	1.00	1.00	2.28	0.76	
-1.65	1.65	1.5	1.00	1.00	2.28	0.76	
-1.80	1.80	1.5	1.00	1.00	2.45	0.82	100
-1.80	1.80	1.5	1.00	1.00	2.45	0.82	흔
-1.80	1.80	1.5	1.00	1.00	2.45	0.82	100
-1.80	1.80	1.5	1.00	1.00	2.45	0.82	S 8
-1.80	1.80	1.5	1.00	1.00	2.45	0.82	Zapata Cuadrada
-1.80	1.80	1.5	1.00	1.00	2.45	0.82	23
-1.95	1.95	1.5	1.00	1.00	2.61	0.87	
-1.95	1.95	1.5	1.00	1.00	2.61	0.87	
-1.95	1.95	1.5	1.00	1.00	2.61	0.87	
-1.95	1.95	1.5	1.00	1.00	2.61	0.87	
-1.95	1.95	1.5	1.00	1.00	2.61	0.87	
-1.95	1.95	1.5	1.00	1.00	2.61	0.87	
-2.10	2.10	1.5	1.00	1.00	2.78	0.93	
-2.10	2.10	1.5	1.00	1.00	2.78	0.93	
-2.10	2.10	1.5	1.00	1.00	2.78	0.93	
-2.10	2.10	1.5	1.00	1.00	2.78	0.93	
-2.10	2.10	1.5	1.00	1.00	2.78	0.93	
-2.10	2.10	1.5	1.00	1.00	2.78	0.93	
-2.25	2.25	1.5	1.00	0.50	2.88	0.96	

G.- ASENTAMIENTO (S_i)

Presión por carga admisible	$\mathbf{q}_{\mathrm{adm}}$	=	0.70	Kg/cm ²	
Relación de Poisson	m	=	0.23	100	
Módulo de Elasticidad	E,	=	400	Kg/cm ²	
Asentamiento permisible	S _{I (max)}	=	2.54	cm	$S_i = \frac{q B (1 - \mu^2)}{\pi} If$
Ancho de la cimentación	В	=	1.50	m	$S_i = \frac{1}{E_s} If$
Factor de forma	N.	-	0.93	m/m	
Asentamiento	Si	-	0.002	m	
Asentamiento	Si	-	0.23	cm	$I_f = \frac{\sqrt{B}}{\beta_s}$
Presión por carga	Q _{adm}	=	0.70	Kg/cm ²	
Presión de carga asumida por asentamiento	$\mathbf{q}_{\mathrm{adm}}$	=	0.70	Kg/cm ²	
	Sı	=	0.23	cm	OK!
	Si	=	0.23	cm	OK!

LABORATORIO DE SUELOS Y PAVIMENTOS

TEC. MAN CARLOS GANTOUHIUANCA FLORES ESPECIALISMO DE SUELOS Y PAVIMENTOS DNI Nº 72646453 GRUP GERSUP

GRUP

CAPACIDAD DE CARGA - Cimentación Superficial C - 2

Cota de Superficie (m) :

A.- DATOS GENERALES

Angulo de Fricción Interna (ф)	
Cohesión (c)	
Tipo de falla por corte	
Ángulo de Fricción Interna corregido (Φ,	d
Cohesión corregida (c) _c	
Peso Unitario de Sobre Carga (γ ₁)	
Peso Unitario del Suelo de Cimentación (Relación Ancho / Largo (R/L) Ancho (diámetro) Inicial de la Cimentacion (Incremento de base (Δb) Cota de Terreno bajo piso terminado Profundidad de Desplante (Df) Incremento de profundidad (ΔDf) Posición del Nivel Freático (N.F.) Inclinación de la carga Factor de Seguridad (F.S.asume 3.0) Clasificación SUCS del suelo de cimenta Cimentación superida	ón

26.1	grados
0.45	kg/cm²
Local	
18.1	grados _
0.30	kg/cm ²
1.62	gr/cm ³
1.82	gr/cm ³
1.00	(1.0 si es circular o cuadrada
1.20	m
0.50	m
0.00	m
1.50	m (0.0 si es indeterminado)
0.10	m
50.0	m (50m si no presenta)
0.0	grados
3	· ·
SW	
Zapata Cuadrada	

B.- FACTORES DE CAPACIDAD DE CARGA

$$\begin{array}{lll} \text{Nc} &=& 13.179 \\ \text{Nq} &=& 5.306 \\ \text{Ny} &=& 2.110 \\ \end{array} \\ \begin{array}{lll} N_c = (N_q - 1) \cot \phi \\ \hline N_q = tg^2 (45 + \frac{\phi}{2}) e^{\pi i \phi t} \\ \hline N_p = 2(N_q + 1) tg \phi \\ \end{array}$$

D.- FACTORES DE INCLINACIÓN

$$i_c = 1.000$$
 $i_q = 1.000$
 $i_q = 1.000$
 $i_r = (1 + \frac{\beta}{90})^2$

C.- FACTORES DE FORMA

$$\begin{array}{lll} \text{Sc} & = 1.403 & \overline{S_c = 1 + \frac{B}{L} \frac{N_q}{N_c}} \\ \text{Sq} & = 1.327 & \overline{S_g = 1 + \frac{B}{L} t g \phi} \\ \overline{S_g = 1 + \frac{B}{L} t g \phi} & \overline{S_g = 1 + 0.4 \frac{B}{L}} \end{array}$$

E.- COEFICIENTES DE PRESION LATERAL

NOTA: Coeficientes de empuje encontrados según Rankine.

F.- CAPACIDAD ADMISIBLE

Cimentación superida Zapata Cuadrada

				9411	unacion sugeriua	capata canarasa	
COTA DESPLANTE	DESPLANTE	ANCHO	FACTORE	S POR N.F.	Q _d	Q _{adm}	Detalle
RELATIVA	Df (m)	B (m)	w	W.	(kg/cm ²)	(kg/cm ²)	Details
-1.50	1.50	1.2	1.00	1.00	2.40	0.80	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.60	1.60	1.2	1.00	1.00	2.52	0.84	
-1.60	1.60	1.5	1.00	1.00	2.55	0.85	
-1.60	1.60	1.5	1.00	1.00	2.55	0.85	

LABORATORIO DE SUELOS Y PAVIMENTOS

CAPACIDAD DE CARGA - Cimentación Superficial C - 2

Cota de Superficie (m) :

0.00

A.- DATOS GENERALES

Angulo de Fricción Interna (Φ)	
Cohesión (c)	
Tipo de falla por corte	
Ángulo de Fricción Interna corregido (d	(o
Cohesión corregida (c) _c	
Peso Unitario de Sobre Carga (γ ₁)	
Peso Unitario del Suelo de Cimentación Relación Ancho / Largo (B/L) Ancho (diámetro) Inicial de la Cimentac Incremento de base (Δb) Cota de Terreno bajo piso terminado Profundidad de Desplante (Df) Incremento de profundidad (ΔDf) Posición del Nivel Freático (N.F.) Inclinación de la carga Factor de Seguridad (F.S.asume 3.0) Clasificación SUCS del suelo de ciment Cimentación sugerida	ión

26.1	grados
0.45	kg/cm ²
Local	40.5000
18.1	grados _
0.30	kg/cm ²
1.62	gr/cm ³
1.82	gr/cm ³
1.00	(1.0 si es circular o cuadrada)
1.20	m
0.50	m
0.00	m
1.50	m (0.0 si es indeterminado)
0.10	m
50.0	m (50m si no presenta)
0.0	grados
3	- 4
SW	

Zapata Cuadrada

B.- FACTORES DE CAPACIDAD DE CARGA

Nc = 13.179
Nq = 5.306
Ny = 2.110
$$|N_c - (N_c - 1) \cot \phi |$$

$$|N_c$$

D.- FACTORES DE INCLINACIÓN

$$i_e = 1.000$$

 $i_q = 1.000$
 $i_g = 1.000$
 $i_r = (1 + \frac{\beta}{\phi})^2$

C.- FACTORES DE FORMA

$$\begin{array}{lll} \text{Sc} & = 1.403 & S_{x} = 1 + \frac{B}{L} \frac{N_{y}}{N_{x}} \\ \text{Sq} & = 1.327 & S_{y} = 0.600 & S_{x} = 1 + \frac{B}{L} t_{g} \phi \end{array} \bigg| S_{q} = 1 + 0.4 \frac{B}{L} \bigg|$$

E.- COEFICIENTES DE PRESION LATERAL

Ka = 0.526 Kp = 1.901 Ko = 0.689

NOTA: Coeficientes de empuje encontrados según Rankine.

F.- CAPACIDAD ADMISIBLE

Cimentación sugerida Zapata Cuadrada

COTA	COTA DESPLANTE ANCHO		TA DESPLANTE ANCHO FACTORES POR N.F.		Q _d	q _{adm}	Detalle
RELATIVA	Df (m)	B (m)	w	W.	(kg/cm ²)	(kg/cm²)	Detaile
-1.50	1.50	1.2	1.00	1.00	2.40	0.80	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.50	1.50	1.5	1.00	1.00	2.44	0.81	
-1.60	1.60	1.2	1.00	1.00	2.52	0.84	
-1.60	1.60	1.5	1.00	1.00	2.55	0.85	
-1.60	1.60	1.5	1.00	1.00	2.55	0.85	

LEBORATORIO DE SO TOS Y JAMBIENTOS

LIGURAS DE SOS ESTADORIO DE LEBORATORIO DE SUPLOS Y PAVMENTOS

USPER-MANDETE SE SUPLOS Y PAVMENTOS

LABORATORIO DE SUELOS Y PAVIMENTOS
CHARACO GERSUP
TEC, ELY CALCOS CHARACORES
ESPECIALIS IN DE SUBLOS Y PAVIMENTOS

-1.60	1.60	1.5	1.00	1.00	2.55	0.85	
-1.60	1.60	1.5	1.00	1.00	2.55	0.85	
-1.60	1.60	1.5	1.00	1.00	2.55	0.85	
-1.70	1.70	1.2	1.00	1.00	2.63	0.88	<u>.ea</u>
-1.70	1.70	1.5	1.00	1.00	2.67	0.89	2
-1.70	1.70	1.5	1.00	1.00	2.67	0.89	Pa Pa
-1.70	1.70	1.5	1.00	1.00	2.67	0.89	5
-1.70	1.70	1.5	1.00	1.00	2.67	0.89	Zapata Guadrada
-1.70	1.70	1.5	1.00	1.00	2.67	0.89	23
-1.80	1.80	1.2	1.00	1.00	2.75	0.92	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.90	1.90	1.2	1.00	1.00	2.86	0.95	
-1.90	1.90	1.5	1.00	1.00	2.89	0.96	
-1.90	1.90	1.5	1.00	1.00	2.89	0.96	
-1.90	1.90	1.5	1.00	1.00	2.89	0.96	
-1.90	1.90	1.5	1.00	1.00	2.89	0.96	
-1.90	1.90	1.5	1.00	1.00	2.89	0.96	

G.- ASENTAMIENTO (S₁)

Presión por carga admisible	q _{adm}	=	0.80	Kg/cm ²	
Relación de Poisson	m	-	0.32		
Módulo de Elasticidad	E,	=	400	Kg/cm ²	
Asentamiento permisible	S _{i (max)}	=	2.54	cm	$S_t = \frac{q B (1 - \mu^2)}{r} If$
Ancho de la cimentación	В	=	1.20	m	$S_i = \frac{1}{E_i} If$
Factor de forma	l _t	=	0.93	m/m	
Asentamiento	Sı	_	0.002	m	\overline{L}
Asentamiento	S	=	0.20	cm	$I_f = \frac{\sqrt{B}}{\beta_x}$
Presión por carga	Q adra	=	0.80	Kg/cm ²	
Presión de carga asumida por asentamiento	Q adra	=	0.80	Kg/cm ²	
	Sı	=	0.20	cm	OK!
	Sı	=	0.20	cm	OK!

Junior TE SEE TO MANUENTOS

JUNIOR TE SEE TO MANUENTOS

LINEARIO NO PROMINENTOS

LABORATORIO DE SUELOS Y PAVIMENTOS
GRUPO GECTUP

16C. SEN CAMILES CHRITORIMICA FLORES
ESPECIALISTA DE SUESOS Y PANIMENTOS
UM IN 72648453

CAPACIDAD DE CARGA - Cimentación Superficial C - 3

Cota de Superficie (m) :

n nn

A.- DATOS GENERALES

Ángulo de Fricción Interna (Φ) Cohesión (c) Tipo de falla por corte Ángulo de Fricción Interna corregido (\$\Phi_c\$) Cohesión corregida (c)_c Peso Unitario de Sobre Carga (V1) Peso Unitario del Suelo de Cimentación (y2) Relación Ancho / Largo (B/L) Ancho (diámetro) Inicial de la Cimentación Incremento de base (Δb) Cota de Terreno bajo piso terminado Profundidad de Desplante (Df) Incremento de profundidad (ΔDf) Posición del Nivel Freático (N.F.) Inclinación de la carga Factor de Seguridad (F.S.asume 3.0) Clasificación SUCS del suelo de cimentación Cimentación sugerida

27.3	grados
0.34	kg/cm ²
Local	
19.0	grados
0.23	kg/cm ²
1.58	gr/cm ³
1.80	gr/cm ³
1.00	(1.0 si es circular o cuadrada)
1.20	m
0.50	m
0.00	m
1.50	m (0.0 si es indeterminado)
0.10	m
50.0	m (50m si no presenta)
0.0	grados
3	
sw	
Zanata Cuadrada	

B.- FACTORES DE CAPACIDAD DE CARGA

Nc = 13.923
Nq = 5.791
Ny = 2.473

$$\begin{vmatrix} N_c = (N_{\varphi} - 1) \cot \phi \\ N_{\psi} - tg^2 (45 + \frac{\phi}{2}) e^{-\alpha t} \\ N_{\psi} - 2(N_{\psi} + 1) tg \phi \end{vmatrix}$$

C.- FACTORES DE FORMA

Sc	= 1.416	$S_e = 1 + \frac{B}{r} \frac{N_q}{r}$	
Sq Sy	= 1.344 = 0.600	2.77	$S_q = 1 + 0.4 \frac{B}{L}$
o y	- 0.000	$S_q = 1 + \frac{1}{L} \log \varphi$	

D.- FACTORES DE INCLINACIÓN

$$\begin{aligned} i_c &= 1.000 \\ i_q &= 1.000 \\ i_g &= 1.000 \end{aligned} \qquad \begin{aligned} i_c &= i_q = (1 - \frac{\beta}{90})^2 \\ i_r &= (1 + \frac{\beta}{4})^2 \end{aligned}$$

E.- COEFICIENTES DE PRESION LATERAL

Ka = 0.509 Kp = 1.965Ko = 0.675

NOTA: Coeficientes de empuje encontrados según Rankine.

F.- CAPACIDAD ADMISIBLE

Cimentación sugerida Zapata Cuadrada

COTA	DESPLANTE	ANCHO	FACTORES POR N.F.		q _d	q _{adm}	Detalle
RELATIVA	Df (m)	B (m)	W	w	(kg/cm ²)	(kg/cm²)	Detaile
-1.50	1.50	1.2	1.00	1.00	2.45	0.82	
-1.50	1.50	1.5	1.00	1.00	2.49	0.83	
-1.50	1.50	1.5	1.00	1.00	2.49	0.83	
-1.50	1.50	1.5	1.00	1.00	2.49	0.83	
-1.50	1.50	1.5	1.00	1.00	2.49	0.83	
-1.50	1.50	1.5	1.00	1.00	2.49	0.83	
-1.60	1.60	1.2	1.00	1.00	2.57	0.86	
-1.60	1.60	1.5	1.00	1.00	2.61	0.87	
-1.60	1.60	1.5	1.00	1.00	2.61	0.87	

JULIANDO SE SU OS Y PIMILENTOS
JULIANDO LEGISTO
JULIANDO SEGOS Y PRIMILENTOS
IES OF 2013 SEGOS Y PRIMILENTOS
IES OF 2013 Y PRIMILENTOS

LABORATORIO DE SUELOS Y PAVIMENTOS CHUPO GEORUP

TEC, JIAN COS OS CHARLEMBANCA FLORES ESPL JANUSTA DE SUS OS Y PAVIMENTOS DON IN TAGRASTA

-1.60	1.60	1.5	1.00	1.00	2.61	0.87	
-1.60	1.60	1.5	1.00	1.00	2.61	0.87	
-1.60	1.60	1.5	1.00	1.00	2.61	0.87	
-1.70	1.70	1.2	1.00	1.00	2.70	0.90	.00
-1.70	1.70	1.5	1.00	1.00	2.74	0.91	22
-1.70	1.70	1.5	1.00	1.00	2.74	0.91	200
-1.70	1.70	1.5	1.00	1.00	2.74	0.91	S
-1.70	1.70	1.5	1.00	1.00	2.74	0.91	Zapata Cuadrada
-1.70	1.70	1.5	1.00	1.00	2.74	0.91	E7
-1.80	1.80	1.2	1.00	1.00	2.82	0.94	
-1.80	1.80	1.5	1.00	1.00	2.86	0.95	
-1.80	1.80	1.5	1.00	1.00	2.86	0.95	
-1.80	1.80	1.5	1.00	1.00	2.86	0.95	
-1.80	1.80	1.5	1.00	1.00	2.86	0.95	
-1.80	1.80	1.5	1.00	1.00	2.86	0.95	
-1.90	1.90	1,2	1.00	1.00	2.94	0.98	
-1.90	1.90	1.5	1.00	1.00	2.98	0.99	
-1.90	1.90	1.5	1.00	1.00	2.98	0.99	
-1.90	1.90	1.5	1.00	1.00	2.98	0.99	
-1.90	1.90	1.5	1.00	1.00	2.98	0.99	
-1.90	1.90	1.5	1.00	1.00	2.98	0.99	

G.- ASENTAMIENTO (S₁)

$= \frac{q B (1-\mu^2)}{c} If$
$=\frac{1}{E_{\star}}If$
[L]
$I_f = \frac{\sqrt{B}}{2}$
$I_f = \frac{1}{\beta_x}$
OK I
OK!

LABORATORIO DE SUELOG Y PAVIMENTOS GRUPO GEOSUP TEC MAN CARLOSA HUDURHUANCA FLORES LABORATORIO DE SUELOS A PARTIMENTOS GRUPO GROSO PARTIMENTOS MAINOS ENGEL GONZALES PEREZ ESPECIALISTADE SUELOS Y PARAMENTOS SEG OP 2017/19 S

CAPACIDAD DE CARGA - Cimentación Superficial C - 4

Cota de Superficie (m) :

0.00

A.- DATOS GENERALES

Ángu	lo de Fricción Interna (Φ)
Cohe	sión (c)
Tipo	de falla por corte
Ángu	lo de Fricción Interna corregido (φ _c)
Cohe	sión corregida (c) _e
Peso	Unitario de Sobre Carga (y ₁)
	Unitario del Suelo de Cimentación (\(\gamma_2\))
	ión Ancho / Largo (B/L)
	o (diámetro) Inicial de la Cimentación
	mento de base (Δb)
	de Terreno bajo piso terminado
Profu	ndidad de Desplante (Df)
Incre	mento de profundidad (ΔDf)
Posic	ión del Nivel Freático (N.F.)
Inclin	ación de la carga
Facto	r de Seguridad (F.S.asume 3.0)
Clasit	licación SUCS del suelo de cimentación
Cime	ntación sugerida

25.5	grados
0.45	kg/cm ²
Local	1975/1000
17.6	grados
0.30	kg/cm ²
1.75	gr/cm ³
1.60	gr/cm ³
1.00	(1.0 si es circular o cuadrada)
1.50	m
0.00	m
0.00	m
1.50	m (0.0 si es indeterminado)
0.10	m
50.0	m (50m si no presenta)
0.0	grados
3	
SW	
Zapata Cuadrada	

B.- FACTORES DE CAPACIDAD DE CARGA

Me	= 12.809	$N_c = (N_q - 1)\cot\phi$
	= 5.070	$N_q = tg^2 (45 + \frac{\phi}{2}) e^{x \cos \theta}$
Ny	= 1.939	$N_r = 2(N_a + 1)rg\phi$

D.- FACTORES DE INCLINACIÓN

$$i_e = 1.000$$
 $i_q = 1.000$
 $i_q = 1.000$
 $i_{r} = 1.000$
 $i_{r} = (1 + \frac{\beta}{\phi})^2$

C.- FACTORES DE FORMA

$$\begin{array}{lll} \text{Sc} & = 1.396 & & \\ \text{Sq} & = 1.318 & & \\ \text{Sy} & = 0.600 & & \\ & & \\ S_{q} = 1 + \frac{B}{L} t_{S\phi} \end{array} \bigg| S_{q} = 1 + 0.4 \frac{B}{L} \end{array}$$

E.- COEFICIENTES DE PRESION LATERAL

Ka = 0.535Kp = 1.869Ko = 0.697

NOTA: Coeficientes de empuje encontrados según Rankine.

F.- CAPACIDAD ADMISIBLE

COTA	COTA	DESPLANTE	ANCHO	FACTORES POR N.F.		q _f	q _{adm}	Detalle
RELATIVA	Df (m)	B (m)	w	W'	(kg/cm ²)	(kg/cm ²)	Detaile	
-1.50	1.50	1.5	1.00	1.00	2.43	0.81		
-1.50	1.50	1.5	1.00	1.00	2.43	0.81		
-1.50	1.50	1.5	1.00	1.00	2.43	0.81		
-1.50	1.50	1.5	1.00	1.00	2.43	0.81		
-1.50	1.50	1.5	1.00	1.00	2.43	0.81		
-1.50	1.50	1.5	1.00	1.00	2.43	0.81		
-1.60	1.60	1.5	1.00	1.00	2.55	0.85		
-1.60	1.60	1.5	1.00	1.00	2.55	0.85		
-1.60	1.60	1.5	1.00	1.00	2.55	0.85		

-1.60	1.60	1.5	1.00	1.00	2.55	0.85	
-1.60	1.60	1.5	1.00	1.00	2.55	0.85	
-1.60	1.60	1.5	1.00	1.00	2.55	0.85	
-1.70	1.70	1.5	1.00	1.00	2.66	0.89	m
-1.70	1.70	1.5	1.00	1.00	2.66	0.89	Zapata Guadrada
-1.70	1.70	1.5	1.00	1.00	2.66	0.89	in the second
-1.70	1.70	1.5	1.00	1.00	2.66	0.89	5
-1.70	1.70	1.5	1.00	1.00	2.66	0.89	E.
-1.70	1.70	1.5	1.00	1.00	2.66	0.89	23
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.80	1.80	1.5	1.00	1.00	2.78	0.93	
-1.90	1.90	1.5	1.00	1.00	2.90	0.97	
-1.90	1.90	1.5	1.00	1.00	2.90	0.97	
-1.90	1.90	1.5	1.00	1.00	2.90	0.97	
-1.90	1.90	1.5	1.00	1.00	2.90	0.97	
-1.90	1.90	1.5	1.00	1.00	2.90	0.97	
-1.90	1.90	1.5	1.00	1.00	2.90	0.97	
-2.00	2.00	1.5	1.00	0.50	2.94	0.98	

G.- ASENTAMIENTO (S_i)

Presión por carga admisible	q _{adm}	=	0.81	Kg/cm ²	
Relación de Poisson	m	=	0.30	- 2	
Módulo de Elasticidad	E _s	=	1,000	Kg/cm ²	
Asentamiento permisible	S _{i (max)}	=	2.54	cm	$S_{i} = \frac{q B (1 - \mu^{2})}{r} If$
Ancho de la cimentación	В	=	1.50	m	$S_i = \frac{3 - (E_i - F_i)}{E_i} If$
Factor de forma	I _t	=	0.93	m/m	
Asentamiento	Sı	=	0.001	m	\overline{L}
Asentamiento	S_{i}	=	0.10	cm	$I_f = \frac{\sqrt{B}}{\beta_z}$
Presión por carga	Queen	=	0.81	Kg/cm ²	
Presión de carga asumida por asentamiento	Q adm	=	0.81	Kg/cm ²	
	Sı	=	0.10	cm	OK!
	Sı	=	0.10	cm	OK!

LABORATORIO DE SUILOS Y PAVIMENTOS
GRUPO GEOSUP
TEC JILI TONACOS CAUQUIHLIANCA FLORES
ESPE JAMOS CAUGUIHLIANCA FLORES

CAPACIDAD DE CARGA - Cimentación Superficial C - 5

Cota de Superficie (m) :

0.00

A.- DATOS GENERALES

Ángulo de Fricción Interna (Φ) Cohesión (c) Tipo de falla por corte Ángulo de Fricción Interna corregido (φ_c) Cohesión corregida (c)_c Peso Unitario de Sobre Carga (V1) Peso Unitario del Suelo de Cimentación (y2) Relación Ancho / Largo (B/L) Ancho (diámetro) Inicial de la Cimentación Incremento de base (Δb) Cota de Terreno bajo piso terminado Profundidad de Desplante (Df) Incremento de profundidad (ΔDf) Posición del Nivel Freático (N.F.) Inclinación de la carga Factor de Seguridad (F.S.asume 3.0)

Clasificación SUCS del suelo de cimentación

27.5	grados
0.10	kg/cm ²
Local	
19.1	grados
0.07	kg/cm ²
1.82	gr/cm ³
1.88	gr/cm ³
1.00	(1.0 si es circular o cuadrada)
1.50	m
0.00	m
0.00	m
1.50	m (0.0 si es indeterminado)
0.10	m
50.0	m (50m si no presenta)
0.0	grados
3	- C.
SW	
Zanala Cuadrada	

Zapata Cuadrada

B.- FACTORES DE CAPACIDAD DE CARGA

No = 14,041
No = 5,869
Ny = 2,532

$$N_c = (N_v - 1)\cot\phi$$

 $N_v = ig^2(45 + \frac{\phi}{2})e^{-i\psi\phi}$
 $N_v = 2(N_v + 1)ig\phi$

Cimentación sugerida

D.- FACTORES DE INCLINACIÓN

$i_e = 1.000$ $i_q = 1.000$	$i_e = i_q = (1 - \frac{\beta}{90})^2$
$i_q = 1.000$ $i_q = 1.000$	$i_r = (1 + \frac{\beta}{4})^{\dagger}$

C.- FACTORES DE FORMA

$$\begin{array}{lll} \text{Sc} & = & 1.418 \\ \text{Sq} & = & 1.347 \\ \text{Sy} & = & 0.600 \end{array} & \begin{array}{lll} S_{c} = 1 + \frac{B}{L} \frac{N_{g}}{N_{c}} \\ S_{g} = 1 + \frac{B}{L} t g \phi \end{array} \\ & \begin{array}{lll} S_{g} = 1 + 0.4 \frac{B}{L} \end{array} \end{array}$$

E.- COEFICIENTES DE PRESION LATERAL

Ka = 0.506 Kp = 1.974 Ko = 0.672

NOTA: Coeficientes de empuje encontrados según Rankine.

F.- CAPACIDAD ADMISIBLE

Cimentación sugerida Zapata Cuadrada

		Official Control of Co							
COTA	DESPLANTE	ANCHO	FACTORE	S POR N.F.	Q _d	Q _{adm}	Detalle		
RELATIVA	Df (m)	B (m)	W	W'	(kg/cm²)	(kg/cm ²)	Detaile		
-1.50	1.50	1.5	1.00	1.00	2.50	0.83			
-1.50	1.50	1.5	1.00	1.00	2.50	0.83			
-1.50	1.50	1.5	1.00	1.00	2.50	0.83			
-1.50	1.50	1.5	1.00	1.00	2.50	0.83			
-1.50	1.50	1.5	1.00	1.00	2.50	0.83			
-1.50	1.50	1.5	1.00	1.00	2.50	0.83			
-1.60	1.60	1.5	1.00	1.00	2.65	0.88			
-1.60	1.60	1.5	1.00	1.00	2.65	0.88			
-1.60	1.60	1.5	1.00	1.00	2.65	0.88			

LABORATORIO DE SUEUOS Y PAVIMENTOS

ORDRO GEOSUP

TEC. JIAN CARLOS CHI COURLUANCA FLORES
ESPECIALISTA DE SVELOS Y PAVIMENTOS

-1.60	1.60	1.5	1.00	1.00	2.65	0.88	
-1.60	1.60	1.5	1.00	1.00	2.65	0.88	
-1.60	1.60	1.5	1.00	1.00	2.65	0.88	
1.70	1.70	1.5	1.00	1.00	2.79	0.93	.00
1.70	1.70	1.5	1.00	1.00	2.79	0.93	Zapata Cuadrada
1.70	1.70	1.5	1.00	1.00	2.79	0.93	en en
1.70	1.70	1.5	1.00	1.00	2.79	0.93	2 8
1.70	1.70	1.5	1.00	1.00	2.79	0.93	Ted.
1.70	1.70	1.5	1.00	1.00	2.79	0.93	29
1.80	1.80	1.5	1.00	1.00	2.94	0.98	
1.80	1.80	1.5	1.00	1.00	2.94	0.98	
1.80	1.80	1.5	1.00	1.00	2.94	0.98	
1.80	1.80	1.5	1.00	1.00	2.94	0.98	
1.80	1.80	1.5	1.00	1.00	2.94	0.98	
1.80	1.80	1.5	1.00	1.00	2.94	0.98	
1.90	1.90	1.5	1.00	1.00	3.08	1.03	
1.90	1.90	1.5	1.00	1.00	3.08	1.03	
1.90	1.90	1.5	1.00	1.00	3.08	1.03	
1.90	1.90	1.5	1.00	1.00	3.08	1.03	
1.90	1.90	1.5	1.00	1.00	3.08	1.03	
1.90	1.90	1.5	1.00	1.00	3.08	1.03	
2.00	2.00	1.5	1.00	0.50	3.12	1.04	

G.- ASENTAMIENTO (S_i)

Presión por carga admisible	Q _{adro}	-	0.83	Kg/cm ²	
Relación de Poisson	m	=	0.28	187.S.	
Módulo de Elasticidad	E,	=	3,000	Kg/cm ²	
Asentamiento permisible	S _{1 (max)}	=	2.54	cm	$S_t = \frac{q B (1 - \mu^2)}{r} If$
Ancho de la cimentación	В	=	1.50	m	$S_i = \frac{1}{E_i} If$
Factor de forma	I ₁	=	0.93	m/m	
Asentamiento	Si	_	0.000	m	\overline{L}
Asentamiento	S	-	0.04		$I_f = \frac{\sqrt{B}}{a}$
Asentamiento	91	-	0.04	cm	$I_f = \frac{1}{\beta_s}$
Presión por carga	q _{adm}	=	0.83	Kg/cm ²	
Presión de carga asumida por asentamiento	q _{odm}	=	0.83	Kg/cm ²	
	Si	=	0.04	cm	OK!
	Si	=	0.04	cm	OK!

LABORATORIO DE SUELOS Y DE MENTOS
GRUPO GEORGE

ALLINIA ENGEL GONZALES PEREZ
LUPCALOS M DE SUELOS Y PRIMIENTOS
MENTOS MENTOS MENTOS

LASORATORIO DE SUELOS Y PAVIMENTOS
GRUPO GERBUP
TIC. JIP-ICARI (S. CHI, ELUBRIANCA FLORES
ESPEZIALISI (A DE SUR JOS Y PAVIMENTOS

Anexo 6: Resultado de los er	nsayos estándar realizado en suelos del Grupo GEOSU	n el laboratorio de pavimentos y P.

GRUPO GEOSUP Laboratorio de Suelos y Pavimentos

LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP

MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO

OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD
MODELO DE CONTROL DE CALIDAD

JR LOS ANGELES Nº 244 INDECOPI : 00142611 RUC: 20605217029 Chachapoyas - Amazonas

METODO DE ENSAYO DE ANALISIS GRANUL OMETRICO DE SUELOS POR TAMIZADO
STANDARD TEST METHOD FOR PARTICLE SIZE ANALYSIS OF SOILS - A.S.T.M. D 6918
DATOS DEL PROVECTO
LATORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PANIMENTOS

ON DEL PROVECTO
LATORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PANIMENTOS

ON DEL PROVECTO
PANIMENTOS DEL PORTO DE DEL PRES DE CONCRETOS SE LA CARROLINA ELECTRADA.

PERSONAL TICADO

SECRIÈNE: LABORATORIO DE MECANICA DE SUELOS, COMORTOS D'AMENTOROS DA MUNICADE.

PROVEDO: PROVINCIO: PUBLICIÓN DEL RESCO ASCONDO ALA VILLESABLIDAD RICA POR ILLIO DE DETRIOS ENEL AREA DE RELIENCIA DE LA CUERRIDA ELICIMANI.

MANCAMO: MARCAMO: PUBLICADO DE LAS MARCA DE MARCA D

		SMIGH OF LA SE	JOSEP DESCRIPTION OF					COURSE ADMINISTRATE SOF	TO ANNU PRINCIPLE	
ALICATA : HOFUNDIDAD :	C - 1 0.25m-2.50m	COO. WARSTRA:	966-6	P-MC-602	MUESTRA:	M-3		SIFICACION DEL TUELO I NORMA A.S.T.M. D.1987	SUCS	św
	1	TAME	PRET	PART	PORCE	SATH	PORCENTALE	M	RESTRA TOTAL RUPEDA	
	MF	ABORTUFA(mm)	PARCIAL	ACUMULADO	RET. ADU	MULADO	QUE PAGA,	PESO 1	OTAL MLESTRA HUNEOV	100
	3*	75.00	0.00	0,00	0.0	0	100.00		1000	
	210	63.00	9.00	90.9	0.0	0	100.00		ALKSTRA TOTAL SECA	
10	2"	50.80	119,00	119,90	1.6	8	98.34	TEMPERATURA	HOPINO	TIME .
	110	37.50	27.10	147.00	2.0	4	97.06	DE SECADO	nores	110°C s
MICHAE	1*	25.40	397,76	484,70	6.7	1	93,29	F177.750	RL MUESTRA SEGA > M	400
2	3/4"	19.00	351.80	80 848.50	13.	11.76		The same		
	1/2*	12.60	764,00	1602.68	22.	19	77.81		2995.70	
	3/0*	9.50	455,48	2058.00	28.50		71,50	600.00	PESO TOTAL MEESTRA SECA < M°4 (pr)	1164
	1/4*	6.35	559,30	2629.20	36.	29	63.61	T PERFORM	AL MEDITIN GOUR 4: N	+01
	HA.	4.75	277,56	2905.70	40.0	23	59.77		4317,30	
	W 10	2.90	552,20	3009.29	55.57 63.62 74.10 78.73		44.63	2000	PESO TOTAL MUESTRA SECA (ME	
	H+40 H+20	0.85	301,10	398,18 4509,45 376,00 5952,10 569,00 5696,79			36.18	PESO TOTAL MURSTRA SEDA (M) 1223.8		WO.
		5.10	875.00				26,00			15.
Ē			159,00				21.27	ANI	ANNUAL PRACTION GRAFESA	
8000	M 140	0.106	291,80	6264.68	86.	73	18.27	10FAL	W6 =	2905.70
Ē	Nº 288	0.08 64.30	64.30	6452.22	85.	13	10,62	A	BLISS FRACCION FINA	2
	CAZOLETA	**	65.70	4517.92	90	24		CORRESCION CUARTED:	SWS	1.98
	TOTAL.		- 60	317.9				PESO PONCION SECA REPRESENTATIVA < Nº4 :	5-	2111.3

DESCRIPACIONES:

1. MESTRA PROVISTA E DEVIRIOSE POR EL SOLICITARIOS

OBSERVACIONES:

2. GUIDA PROVISTA E DEVIRIOSE DON FUNDAL O TOTAL (NOCCON), EXPECTICO RESERVADOS POR SON CONSTRUYENDO CON CALDAD ERE, (SINUPO DECEUP).

CLASIRCACION GENERAL

LARGEST STOP DE SUPERS Y PRIMERTOS
GRUPO GEOGRA

SULLILIAN
HID. WAIKOL ENGEL GONZALES PEREZ
ESPASALISTA DE SUEJOS Y PRIMERTOS
REG. CP 201316

LABORATORIO DE SUELOS Y PAVIMENTOS
ORUPO GEODUP
TEC JIAN CAR CS SPRIJUNUANCA PLORES
ESPECIALISTA DE SUSCOS Y PARIMENTOS

JR LOS ANGELES Nº 244	INDECOPI : 00142611 RUC: 20605217029	Chachapoyas - Amazonas	
LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP	MECÂNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO	OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD	MODELO DE CONTROL DE CALIDAD

611	29	zenez	
ECOPI: 00142	JC: 206052170	hapoyas - Атта	
N	R	Chac	
		П	

			DAYOS DEL PROYECTO	DATOS DEL PROYECTO					
ECCIÓN:		LABORATOR	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS	NCRETOS Y PAVIMENT	TOS		CÓDIGO DE IDENT:	060-23-MS-MC-001	S-MC-001
BOYECTO -	PYALUACIÓN DEL RIESGO ASOC	SO ASOCIADO A LA VULNE	JADO A LA VULNERABUDAD FISICA POR FLUJO DE DETINTOS EN EL AREA DE INFLUENCIA DE LA QUEBRADA GLICHAMAL,	NTOS BY EL AREA DE NA	LUENCIA DE LA QUEB	SRADA GUICHWAL,	4	PERSONAL TÉCNICO	
	AMAZONAS						ING, RESPONSABLE:	MAIKOL ENGEL SONZALES PERSZ	ZALES PERE
BICACIÓN :	MAGDALENA - CHACHAPOYAS -	POYAS - AMAZONAS					TEC. DE LAB RESP.	JIAN CARLOS CHUDUBHUANCA F.	UHLANCAF
OLICITANTE:	DAYANA MILAGROS SALON VASQUEZ	ZENDSWA NOT					TÉC. DE LAB AUX:	JUAN YELSON BURGA RUBIO	A RUBIO
		DATOS DE LA M	DATOS DE LA MUESTRA ANALIZADA			,	CLASPICACIÓN DEL SUELO PARA CIMENTACIÓN	O PARA CIMENTACIÓN	
LICATA:	1.0	con terrent.	and the say and the		* **	CLASIFICAL	CLASSIFICACIÓN DEL SUELO	20100	
ROFUNDIDAD:	0.20m-2.50m	COU. MUCOINA.	100-24-CO-MC-2000	Witcolline	IN-3	SEGÜN NOPP	SEGÚN NORMA A.S.T.M. D 2487	2002	20

ENSAYO:	-	rs.	
Peso (recipiente+ M.Hümeda) gr	300.00	36.00	300.00
Pese (recipiente + M Seca) gr	278.45	275.80	278.80
Peso agua (pr)	21.55	24.20	21.20
Peso recipente (gr)	78.00	78.00	00.01
Peso Muestra Secta (pr)	208.45	205.80	208.80
Contenida de Humedad (W(%))	10.34%	11,78%	10.15%
Controlido de Humedad (W (%)) Promodio :		10.75%	

ЕКТРА РЕОИВТА Е IDENTIFICAR POR EL SOLICITANTE. ЕЗА РЕОИВБО LA REPROUDCIÓN PARCIAL O TOTAL (ИФЕССРЯ). DERECHOS RESERVADOS POR SON CONSTRUCTORES CONSTRUPENDO CON CALIDAD ERL (GRID^{A)}Ó

JR LOS ANGELES N° 244	INDECOPI : 00142511 RUC: 20605217029	Chachapoyas - Amezonas	
LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP	MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO	OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD	MODELO DE CONTROL DE CALIDAD
GRUPO			Laboratorio de Suelos y Pavimentos

				DATOS DEL PROYECTO	ECTO				
SECCIÓN:		LABORATOR	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y P	CONCRETOS Y PAVIN	AVIMENTOS		CODIGO DE IDENT:	060-GP-MC-002	200-2K
- 0	PAYLLACIÓN DEL RESGO ASOCIADO.	ALAN	LINEFABILIDAD FISICA POR FLLLID DE DETRITOS EN EL AREA DE INFLLENCIA DE LA GLIERADA SLICHIMA.	RITOS EN EL AREA DE INFL	LIENCIA DE LA OLEBRADA	BUCHINAL		PERSONAL TÉCNICO	
	AMAZONAS-						IMS, RES. :	MAIKOL BYGGL GONZALES PEREZ	ZER PEREZ
BICACIÓN:	MAGDALENA - CHACHAPO	APOYAS - AMAZONAS					TÉC. DE LAB RESP.	JAN CARLOS CHUQUHUANDA.F.	UAMON.F.
OLICITARTE:	DAYYANA MILAGROS SALL	ALON VASDUEZ					TÉC. DE LAB AUX :	JUAN YELSON BURGA RUBIO	11810
		DATOS DE LA N	DATOS DE LA MUESTRA ANALIZADA				CLASIFICACION DEL MATERIAL PARA CANTERA	THAL PARA CANTERA	
ALICATA:	6.1	MUESTRA:	N-1	*******		CLASSE	CLASSFICACIÓN DEL SUELO	enine	m.e
ROFURDIDAD:	0.20m - 2.50m	COD. MUESTRA:	DDD-BP-MD-002	WALL .	ABDE OF CASE	SEGÚN M	SEBÚN NORMA A.S.T.M. D 2487	*****	

CALICATA:		1.0	
ALESTRA:		N-1	
MSAYE:		82	n
M Clindro + M Naharal (gr)	350.40	350.26	318.48
W Clindro (gr)	180.26	181.29	148.48
W. M. Natural (gr)	170,20	168,97	169.92
dalmen (cm²)	102.50	102.98	102.98
Densitas Natural (gricorii)	188	1.54	1,65
Describal Natural Promedie (gc/cm²)		1,65	

CLAS FICACION GENERAL

OBSERVACIONES:

1. MALESTRA PROVISTA E IDENTIFICAR POR EL SOLICITANTE. 2- GUEDA PROHEIDO LA REPRODUCIDIÓN PARCIAL O TOTAL (INDECIDIO), DERECHOS RESERVACIOS POR SON CONSTRUCTORES CONSTRUYENDO CON CALIDAD BRL (GRUPO GEOSUP).

MECÂNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO

OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD MODELO DE CONTROL DE CALIDAD

JR LOS ANGELES Nº 244 INDECOPI: 00142511 RUC: 20605217029 Chachapoyas - Amazonas

METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO. LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS STANDARD TEST METHOD FOR LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS - A.S.T.M. D 4318 ENTER DEPROYECTO LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PRIVINCENTOS [CÓDIGO DE IDENT: 600-SP-MC-002 SECCIÓN: CÓDIGO DE IDENT: "ENGLIBICIÓN DEL RICGOO ASOCIADO A LA VILIXERARILIDAD REICA POR RULUD DE DETRITOS EN EL AREA DE INFLUENCIA DE LA CLIERRADA GUCHMAL, MANJENAS" PROVECTO : MARCIL ENGEL GORDALES PEREZ DEL RES. : THE DE LIE RESP. JANUARI DE CHIQUE THE DE LIE AIX: JANUARI DE CHIQUE CLASFICACIÓN DEL HIATERIAL PRES CARTERA MAGENLENA - CHACHAPOVAS - ANAZENAS EAPSAN MUNICIPES SALON VAGILLEZ JAN CARLOS CHUQUIFUARCAT. JUAN YELSON BURGA RUBIO SELECTIVATE: DATES DE LA MUESTRA ANALONDA CLASIFICACIÓN DEL SUCLO ENDERTA: PREPUNDIDAD: MUESTRA : H-1 GSD, MUESTRA: 050-07-NC-062 PESHA AB11. - 2022 BUCS tw SEGÚN SORMA A.S.T.M. D 2467 MP de Excipients (Tara) 3 Preo (recipionte + M.Númente) gr Pasa (recipierte + M Secal-o 0.00 0.00 Proc squa (pr) 0.00 Pregnerate (pr 0.00 Peac Mosella Saca doc 0.00 0.00 0.00% Contantito de Hurredad (W(%)) 0.00% 0.00% NUMERO DE GOLPES LIMITE PLASTICS MF de Recipionis (Sales) PROMEDIO Peso (socialarte + M.Hürmoda) or Peso (recipierte + M Socia) gr Pero agas (pr) 0.00 0:00 Pesa Muestra Saca (gr) Contrarido de Hämeded (W(%)) 2.00% 0.00% 0.00% LIMITE LIQUIDO THEFT UNITED (S) w 40% -ENGRAPHE ž m PERMIT 110°C + 5 COL ARTHUSANIESTS OF EALINE 44% 0.065 ACCEPTAGE $B^{T}(map) \sim B^{T}(nomb)$ MANAGE STORAGE CARTA DE PLASTICIDAD Limit L. Print Sell. 4.80 Linea 8 : LL =50 Thes F. Mr. 0.13, 67 500 CH & OH CLAOL MHACH MLOCK CL - ML DAMESTICATED IN F 1.- MLESTRA PROVISTA E DERTIFICAR FOR B. SOLICITANTE CLASFICACION GENERAL - QUEDA PROMINDO LA REPRODUCCIÓN PARCIAL O TOTAL, INCECOPI), DERECHOS RESERVADOS POR SON CONSTRUCTORES CONSTRUMENDO CON CALIDAD DESCRIVACIONES:

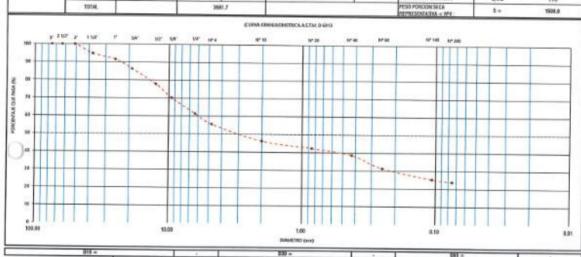
LABORATORIO DE SUSCOS PRAMIENTOS
GRUPO REDEMP

JULIULIU

AG MAIROL EMBEL CONZALES PEREZ
ESPECIALISTADE SUELOS Y PRAMIENTOS
NEO CIP 20/215

LABORATORIO DE SUETOS Y PAVIMENTOS ARLOS CYLIQUINUANCA FLORES
MISTAGE SUBJOS Y PROMIENTOS

DHI Nº 72548452



MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO

OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD MÓDELO DE CONTROL DE CALIDAD METODO DE ENSAYO DE ANALISIS GRANULOMETRICO DE SUELOS POR TAMIZADO JR LOS ANGELES Nº 244 INDECOPI : 00142611 RUC: 20605217029 Chachapoyas - Amazonas

	STANDARD TEST METHOD FOR PARTICLE SIZE ANALYSIS OF SOILS - A.S.T.M. DATOS BIL PROFECTO	D 6913	
SECCION:	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAMINENTOS	CÓDIGO DE IDENT:	957-23-MS-MC-601
ROVECTO:	"EVALUAÇÃO DEL RESGO ASOCIADO A LA VILIBERABLIDAD ESICA FOR RUIDO DE DETRIDOS EN EL ARCA DE INFLUENCIA DE LA CLEBRADA CUICHMAL.	The second second	PERSONAL TECHNOO
NEACIÓN:	MACING*	PHG. RESPONSABLE:	WARCLEVEEL DON/ALTS PEREZ
	MARDRIENA - CHACHAPOVAS - AMAZONAS	TÉCNICO DE LAB RESP:	JAM CARLOS CHUCLIHAMOA F.
OLICIDARTE :	DAYMAN NULAGROS SALDH WASGLEZ	TÉCRICO DE LAB AUX :	JUNN YELSON BURGA RUBD

ALICATA :	10.00	ONTEO DE LOS	NATIO THE PROPERTION	n				CLASSFICACIÓN DEL SUC	LO PARA CIMENTACIÓN	
NOT LINGUIDAD:	0 - 02 8.25m - 2.58m	GOO. MEESTINA:	000-6	P-940-002	MUESTRA:	M-1		FICACION DEL BUELO HORMA A.S.T.M. D 2487	8005	2M
		TAME	PRET	PJET	PORCE	WAE	PORCENTIALE	NI NI	ESTRA TOTAL HUMETA	
	N°	ASSESTURA(TOT)	PARCIAL	ACUMULADO	BET. ACU	HULADO	QUEPAGA	PESO 10	DTAL HUESTRA HUMEQU	100
	P	75.00	6.00	0.00	6.9	0	100.00		3000	
-	2 %*	53.00	6.50	0.00	0,0	0	100,00	1	ULISTRA TIPSAL SEGA	
9	2"	50,60	6,60	0.00	0.0	0	100,00	TERPERATURA		1000000
CHI CRUEZA	1 197	37.50	250.00	250.00	5.2	1	94.79	DE SECADO	HORSE	110°C± 5
90		25.40	154.00	404.99	8.40	2	91.58			
2	3/4"	19.00	348.00	652.00	13,5	a .	66.42	PESC TOTAL MUSS TRASECA > Nº 4 (p.)		
	.4/5-	12.50	415.00	1067.00	22.2	9	77.77		2130.00	
7	381	9,59	169.00	1436.00	29,92 39,58		70:09	PESO TOTAL VILLETRA SECA < Nº 4 (pt)		
.)	1/4"	6.35	415.00	1851.00			61.44			4 (91)
	874	475	284.00	2135.00	64.4		55.52	2005.09		
	M* 10 M* 20 M* 40 M* 60	0.85	60,163	291,09 2590,54 105,09 2707,49 102,59 2549,00 102,00 2296,00	53.77 57.86 61.45 68.67		45.23	PESO TOTAL MUESTRA SECA (M)		
			105.00				42.34			10
3			-				38,55			
5							31.30	ANNI	IS IN FRACCION GRUCES	
**************************************	Mº 145	0.100	163.00	2003.00	74,79	0	25.30	10fAL	WG-	2135.00
2	Nº 231	0.00	40.00	3056.72	76.1	8	29.82	AN	ALISIS FRACCIONI FINA	21000
	GAZOLETA .		25.00	5661.72	76.76	0		CORRECCION CURA TEO;	B/WC	1.78
	TOTAL		38	81,7				PESO PORCIONI SECA PEPRESENTATORA < Nº4	t.	1508.0

GESERVACIONES:

O1 - CLASPICACION GENERAL

1. MLESTRA PROMISIA E DEVITICAN POR EL SOLUTIANS

CLASPICACION GENERAL

2. CLEDA PROHIBIDO LA REPRODUCCIÓN PARCIAL O TOTAL (INCECON), EDRIGNOS RISETRANDOS POR SON CONSTITUCIONES CONSTITUCIONOS CON CALIDAD EVIR. (SPUPO STOSLIP).

CLASPICACION GENERAL

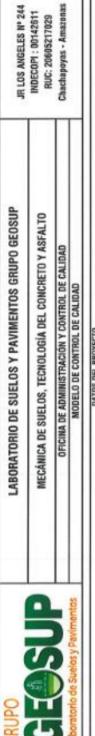
ABORATORIO DE SVELOS PAMMENTOS
GRUPOCIERSOS
MAIROL ENGEL CONTALES PEREZ
ESPECIALISTA SOELOS Y PRIMERIOS
REG CIP SUSOS Y PRIMERIOS

LABORATORIO DE SUNLOS Y PAVIMENTOS

RELIPO DE OSUP

1EC JAMEARS OS CAUGUMILIANCA FLORES
ESPECIALITA DE SURLOS Y PAVIMENTOS

OS IN Y 7544545


LAE	M	
GRUPO		Laboratorio de Suelos y Pavimentos

LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP	JR LOS ANGELES Nº 244
MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO	INDECOPI: 00142511 RUC: 20605217029
OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD	Chachapoyas - Amazonas
MADELLA DE AGUNDAL DE DALIDAD	

			MADELEST METRODS FOR EMBORATOR I DETERMINACION OF WATER (MOISTONE) CONTENT OF SUIL AND MUCH - A.S.L.M. D. AZTO DATOS DEL PROYECTO	DATOS DEL PROYECTO	ISTORE) CORTE	AL OF SOIL AME	moon - A.S. L.M. D.	0177	
SECCIÓN:		LABORATORIC	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS	ICRETOS Y PAVIMENT	.00		CÓDIGO DE IDENT:	060-23-MS-MC-001	-MC-001
- DUNECTO -	*EVALUACIÓN DEL RIESE	SO ASOCIADO A LA VULNERA	RIESGO ASOCIADO A LA VILINERABILIDAD FISICA POR FLUIO DE DETRITOS EN EL AREA DE INFLUENCIA DE LA QUESPADA GUICHMAL	ITOS EN EL AREA DE INFL	LUBNOIA DE LA QUE	SPADA GLICHMAL,	ď	PERSONAL TÉCNICO	
- COLOGIA	AMAZONAS					- 100 CO	ING. RESPONSABLE:	MAKOL BYGEL GONZALES PEREZ	23H34 S31
JBICACIÓN:	MAGDALENA - CHACHAR	ACHAPOYAS - AMAZONAS		15			TÉC. DE LAS RESP.	JIAN DAPLOS CHUQUIHUANCA F.	HUMNCA F.
SOLICITANTE:	DAYANA MILAGROS SAL	IS SALON VASQUEZ					TÉC. DE LAB AUX:	JUAN YELSON BURGA RUBIO	RUBIO
		DATOS DE LA MU	DATOS DE LA MUESTRA ANALIZADA				CLASIFICACION DEL SUELO PARA CIMENTACION	O PARA CIMENTACION	
SALICATA:	0.02	Con tellerent.	Age no are our age	***************************************		CLASIFICAL	CLASIFICACIÓN DEL SUELO	9,000	ano.
ROPUNDIDAD:	0.20m - 2.50m	COO. MUESTINA.	100-001-001-000	MUCO INV.	- 100	SEGÚN NORM	SEGÚN NORMA A.S.T.M. D 2487	enne	

ENSAND:	1	2	м
Peso (recipiente+ M.Hümeda) gr	312.12	315,48	315,40
Peco (recipiente + M Seta) gr	284.15	285.79	285.98
Paso agua (gr)	27.97	29,69	25,44
Peso resipiente (gr)	72.60	72,50	72.50
Peso Muestra Seca (gr)	21.15	213.19	213.36
Contenido de Hurnedad (M(%))	13.22%	13.59%	13.80%
Cantenido de Hamedad (W (%)) Promedio :		12.65%	

BESTAL PROVISTA E DENTIFICAR POR BL SOLLICITANTE QUEDA PROVISTO LA REPRODUCCIÓN PARCIAL O TOTA (INDECIDIT), DERECHOS RESERVADOS POR SON CANSTRUCTORES CONSTRUYBLOS CON CALIDAD ERE, (GRUPO GEDEUP).

SECCIÓN:		LABORATO	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS	, CONCRETOS Y PAVIM	ENTOS		CODIGO DE IDENT:	060-GP-MC-002	C-062
PROVECTO	EVALUACIÓN DEL RE	ESGO ASOCIADO A LA VALNERA	SOCIADO A LA VALNERABILDAD PISICA POR FLUID DE DETRITOS EN EL AREA DE INFLUENCIA DE LA CLEBRACIA GUCHANA.	RITOS EN EL AREA DE INFL	LENCIA DE LA QUEBRADA	A SUCHMAL.		PERSONAL TÉCNICO	
	AMAZONAS						IMS. RES. :	ZEHER BONZALES PEREZ	SS PEREZ
UBICACIÓN:	MAGDALENA - CHACHAPI	HAPOYAS - AMAZONAS					TÉC. DE LAS RESP.	JAN CARLOS DRUQUINUANDA	AMCA.F.
SOUGHANTE:	DAYAWA MILAGROS S	SALON YASQUEZ					TÉC. DE LAB AUX :	TÉC. DE LAB AUX: JUAN YELSON BURGA RUBIO	080
		DATOS DE LA M	ATOS DE LA MUESTRA ANALIZADA				CLASIFICACIÓN DEL MATERIAL PARA CANTERA	ERIAL PARA CANTERA	
CALICATA:	0.00	MUESTRA:	M-1	CEPUTA	AAAA ARAAA	CLASSFICACE	LASSFICACION DEL SUELO	91100	a.m.a
PROFUNDIDAD:	0.20m-2.50m	COD, MUESTRA:	060-69-480-102	TOTAL	Material - Cited	SEGUN NORMA	EGÜN HORMA A.S.T.M. D.2487	9000	it o

METODO DE ENSAYO PARA DETERMINAR LA DENSIDAD APARENTE (PESO VOLUMETRICO DE UN SUELO) A.S.T.M. D 2937

ALESTRA:		M-1	
ENSAVE:		2	6
W Clindro + M Natural (gr)	420.16	423.10	480.69
W Clindro (gr)	234.10	241.16	292.80
W M. Natural (30)	186.05	187.64	187.80
Volumen (ortr.)	162.98	102.98	102.98
Densited Natural (pytom ²)	1781	2871	1.02
Descidad Natural Premedio (gr/cm²)		58.1	

CLASPICACION GENERAL 1.- MUESTRA PROVISTA E IDENTIFICAR POR EL SOUCITAMTE. 2.- GUEDA PROVIBIDO LA REPRODUCICIÓN PARCIAL O TOTAL, (INDECIDA), DERECHOS RESERVADOS FOR SON CONSTRUCTORES CONSTRUYENDO CON CALIDAD EIRL (BRIJPO GEOSLIP., OBSERVACIONES:

MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO

OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD
MODELO DE CONTROL DE CALIDAD

JR LOS ANGELES Nº 244 INDECOPI : 80142611 RUC: 20685217029 Chachapoyas - Amazonas

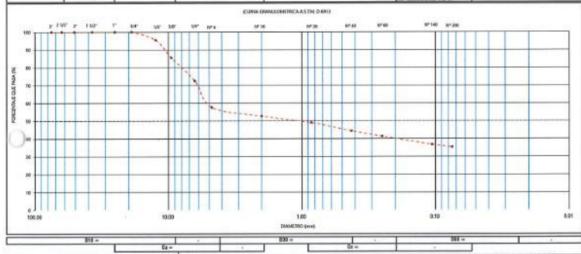
METODO DE ENBAYO PARA DETERMINAR EL LIMITE LÍQUIDO, LÍMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS STANDARD TEST METHOD FOR LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SQLS - A.S.T.M. D 4318

ENTOS BEL PROYECTO LABORATORIO DE MECARICA DE SUELOS, CONCRETOS Y PAVIMENTOS 050-GP-WC-162 SECCIÓN CÓDICO DE IDENT: "EVALUACIÓN DEL RESED ASOCIADO A LA VILNERABRIDAD PISICA POR FULUD DE DETRIDOS EN DLARGA DE RIFLLENCIA DE LA PREVECTO -MANON PROFIL GONDALES PERFO 90 Mt. ADDALEM - CHACHAPONAS - AMAZONAS SOLICITARITE TEC. OF LAB RESP. MIN CARLOS CHANGERIDAÇA F NAME WITH SOURCE STREET JUNEYELSON BURGARIURO TEC. DE LAB AUX : DATOS DE LA HUESTRA ANALIZADA CLASFICACION DEL MATERIAL PARA CANTERA CALICATA: PROFUNDIDAD CLASSFICACION DEL SUELO SEGÚM REFINA A.S.T.M. D 2467 W-1 060-GP-RC-002 AGOSTO 2023 COO. MUESTRA SUCE tw EIMITE LIQUIDO Nº de flacipients (Tara) Peso deciplede+ M.Hómedo p Peso (teclplerte + M Seca) gr Peso agua (gr) 0.00 0.00 0.00 Pieco recipiente (gr) Pess Muestra Seco (gr) 0.00 0.00 0.00% 0.00% NUMERO DE GOLPES LIMITE PLASTICO MF de Becipiorio (Tara) PROMEDIO Poso (recipierte+ M.Húrnedi) gr Peso (recipiante + M Seco) gr Proc sgus (pr) Paso recipiente (pri Pear Maretra Seca (pr) 0.00 0.00 Contentio de Hürredad (199(%)) FIMILE FIGURE CHARLE 0.015 U8/00/(N) PLASTICO (N) BIDICE DE 197 FOTABLE HF0=1 R* General T 0.965 R*(present) > R*(possition) ACCUPANCE. CARTA DE PLASTICIDAD Unes V. Proderid. O. St. Linea B : LL = 50 Loca & Plad The RL-200 CH & OH CLACE MH 6 OH ML 6 CL CL - MI (Mattilgued (IL) - MUESTRA PACAISTA E IDENTIFICAR POR EL SOLICITANTE CLASIFICACION GENERAL 2. QUEDA PROFISION LA PEPRODUCCIÓN PARCIAL O 101AL (RICHGOPI), EEPECHOS RESERVADOS POR SON CONSTRUCTORES CONSTRUENCO CON CALICAD BRIL MONEYO EFECUEP. OBSERVACIONES: LABORATORIO DE SUETOS Y PAVIMENTOS LABORATORIO DE SYMOS Y PAVIMENTOS GRUPO GROSUP IG MANOL ENGEL GONZALES PEREZ ESPECIALISTA DE SUELOS Y PANIMENTOS REG CP 2072/5 TEC JAN CALOS CALQUINUANCA FLORES ESPECIAL STADE SUELOS Y PAVAMENTOS DNI Nº 72548453

GRUPO GEOSUP Laboratorio de Suelos y Pavimentos

LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP

MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO


JR LOS ANGELES Nº 244 INDECOPI : 00142611 RUC: 20605217029 Chachapeyas - Amazonas

OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD

MODELO DE CONTROL DE CALIDAD	Ξ
METODO DE ENSAYO DE ANALISIS GRANULOMETRICO DE SUELOS POR TAMIZADO	
STANDARD TEST METHOD FOR PARTICLE SIZE ANALYSIS OF SOILS - A.S.T.M. D 691	13

	BATOS DEL PROYECTO	30000	
SECCIÓN:	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS	CÓDIDO DE IDENT:	057-23-M3-M2-001
	*PANELINCIÓN DEL REISCO ASOCIADO A LA VILLIGIABALDAD FISICA POR RILLIO DE DE WRIDS EVIR, AREA DE INFLUENCIA DE LA GUERRADA QUICHRAIL.		PERSONAL TÉCNICO
PROYECTO:	AWAZEMAS*	ING. DESPONSABLE:	AMERICAL ENGEL GORDALES PEREZ
UBICACIÓN :	WASSINERA - CHICHEPONS - MINJOWS	TÉCHICO DE LAB RESP.	JAN CARLOS CHUQUIHUNICA F.
SOLICITANTE:	DAYAMA BILAGRIOS SALDM WASOLES	TÉCNICO DE LAB AUX :	JUAN YELSON BURGA NUSIO
	ENTOS DE LA VIJESTRA ANNIJIZADA	CLASHICACIÓN DEL	SLELS PARA CIMENTACIÓN

PROFUNDIDAD:	C-03 0.20m-2.00m	COD. WURSTNA:	960-6	PAC-402	HUESTRA:	M-1		IFICACION DEL SUELO NORMA A.S.T.M. D 2487	3063	SW
	-	TRMZ	PRET	F.98.1	7010	INTALE	MIKEWAE	WO	ESTRA TOTAL HUMERA	
	Nº.	ABERTURA(mm)	PARCIN.	ACUMULADO	RES. ACI	UMULADO	DUE MISA	PESO 10	TAL MUESTINA HUMEDA	(91)
	3"	75.00	0.00	0.00	0.	.00	100.00		1009	
	21/7	63.00	0.00	0.00	0.	00	100.00		LIESTRA TOTAL SECA	
15	2	50.80	0.00	0.00	- 0.	.00	100.00	TEMPERATURA	HOUND	110°C±1
8	150	37.60	0.00	0.00	0.	.00	100.00	DE SECADO	Homo	IN CE
8	11	25.40	8.00	0.00	0.	.00	100.00	acco rore	AL MAJESTRA STCA > M	Arms
Ē	3/0"	19.00	8.00	0.00	0.	00	100.00	7440740	a. marrier state > 0	100
	1/2"	12.50	125.00	125,00	4.	46	96.54		1185,00	
	30"	9.58	291.01	495,00	14	.46	65.54	acco tor	M. MUESTRA SECA < M	A Co.S.
	1/4"	5.35	385.83	770,00	27	.50	72.50	10001011	A. PERSONAL PROPERTY OF THE	100
	Mrs.	4.25	415.83	1185.00	42	. 22	57.86		1015,00	
	Mº 10	2,00	154.00	1223.17	47	.26	52.74	pcs0	TUTAL MARSTER SECAL	rei
	Nº 20	0.65	115.00	1429.35	.10	154	49.06		our recent court	
	8° 40	0.43	145.00	1006.45	35	189	44.41		2800.0	
2	M-60	0.25	95,00	1641.60	- 08	1.63	61.37	ANN	JINS FRACCION GRUCE/	K
8	Nº 146	0.106	142.00	1789.09	63	1.16	38.85	TOTAL.	WG=	1185,00
2	Nº 200	0.08	45,00	1609.47	64	1.65	35.38	AN	ALIGIS FRACCION FINA	
	CARDLETA	40	35,60	1844.47	- 65	.87		CONTRECCION CURRÃEO:	SWS	0.80
	10174		11	146.5				PESO PORCION SECA REPRESENTATION < MF4 :	t-	1800.0

CONTRA PROVISTA A FEMIFICAR POR EL SOLICITAMIE

CONTRA PROVISTA PROVISTA E FEMIFICAR POR EL SOLICITAMIE

CONTRA PROVISTA PROVISTA POR EL SOLICITAMIE

CONTRA PROVISTA PROVISTA POR EL SOLICITAMIE

CONTRA PROVISTA PROVISTA POR EL SOLICITAMIE

CONTRA PORTE POR EL SOLICITAMIE

CONTRA PORTE PORTE PORTE PORTE PORTE

CLASIFICACION GENERAL

JABORATORIO DE SIELES I PRIMINENTOS
GRUPO FOSTO
JULIANO LE GONZALES PEREZ
ESPICIALISTA E SULLOS Y PAVIMENTOS
REG CP 30/3/3

LABORATORIO DE SUELOS Y PAVIMENTOS

GRUPO SEOSUP

TEC. DAN ANO OS CHUDINHUMICA FLORES
ESPLICIPITADE SELOS Y PRIMENTOS

ONI Nº 1264 RS3.

JR LOS ANGELES N° 244	INDECOP1: 00142511 RUC: 20505217029	Chachapoyas - Amazonas	X CALL DATE OF THE PARTY OF THE
LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP	MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO	OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD	MODELO DE CONTROL DE CALIDAD
RUPO			porationo de suelos y Pavimentos

	STANDARD	ICO METHODO LON	DIAMBAND LEST METRODS FOR LABORRIUM DETERMINACION OF WATER (MOISTURE) GOVIENT OF SUIL AND HOCK - A.S.T.M. D 2218 Datos del Proyecto	DATOS DEL PROYECTO	STURE) CONTE	NT OF SOIL AND	ROCK - A.S.T.M. D.	216	
SECCION:		LABORATORS	LABORATORIO DE MECANICA DE SUELDS, CONCRETOS Y PAVIMENTOS	NCRETOS Y PAVIMENT	03		CODIGO DE IDENT:	060-23-MS-MC-001	S-MC-001
PROVECTO -	"EVALUACIÓN DEL RIESO	O ASOCIADO A LA VULNER	RIESGO ASCCIADO A LA VILNERABILIDAD FISICA POP FLUIO DE DETRITTOS EN EL AREA DE INFLUENCIA DE LA QUERRADA GLICHMAN.	NTOS EN EL AREA DE INFL	LIENCIA DE LA QUEB	IRADA GUICHIMAL.	ă.	PERSONAL TÉCNICO	
	AMAZONAS*						ING. RESPONSABLE: MAKKOL BYGEL GONZALES PEREZ	MAKOL BYSEL GOVZ	ALES PEREZ
UBICACIÓN:	MAGDALENA - CHACHAPOYAS - AMAZONAS	OYAS - AMAZONAS					TÉC. DE LAB RESP.	JAN CARLOS CHUZUHUANCA F.	HUANCA E.
SOLICITANTE:	DAYANA MILAGROS SALL	S SALON VASQUEZ					TÉC. DE LAB AUX :	JUAN YELSON BURGA RUBIO	RUBIO
-		DATOS DE LA MI	DATOS DE LA MUESTRA ANALIZADA	100		3	CLASHICACIÓN DEL SUELO PAPA CIMENTACIÓN	D PARA CIMENTACION	
CALICATA:	C-03	COD SHIPPTOS.	760 95 11C 387 ACH	MICOTON .		CLASIFICAL	CLASIFICACIÓN DEL SUELO	onio	mo
PROFUNDIDAD:	0.20m - 2.00m	con. mutalina.	I DOLON-ON-ON-ON-ON-	HUCO IVA	i	SEGÜN NORM	SEGÚN NORMA A.S.T.M. D 2487	900	A.o

Priso (incipients + M-klimed) gr 316.44 316.78 317.78 Priso (incipients + M-klimed) gr 289.78 289.78 317.78 Priso (incipients + M-bical) gr 286.78 289.74 289.74 Priso (incipients (gr)) 72.66 30.00 28.04 Priso (incipients (gr)) 72.66 72.80 72.00 Priso (incipients (gr)) 217.18 217.14 277.14 Contentiol of Humstad (WIS) 12.28% 13.51% 12.01% Contentiol of Humstad (WIS) 13.20% 13.50% 12.01%	PROFUNDIDAD:	0.20m - 2.00m				SEGUN NORMA A.S.T.M. D 2487		
289.78 289.78 289.78 289.78 30.00 72.60 72	ui.	SISAYO:		-	63		69	
286.78 289.78 30.00 72.8	Peso (recipie	ma+ M.Hümeda) gr		316.44	319.78		317.78	
25.00 72.60 72.60 217.18 13.81% 13.81%	Peso (recipi	iente + M Seca) gr		289.78	289.78		209.74	
72.40 217.18 217.18 12.28% 13.81% 13.00%		o agua (gr)		25.66	30.00		28.52	
12.28% 13.81%. 13.81%. 13.00%	Peso	recipients (pr)		72.50	72.80		72.80	
T2.28% 13.81% 13.81% 13.00%	Peso M	uestra Seca (gr)		217,18	217.18		217.14	
T. Paumieuros	Contenido de	e Humedad (W[Sj.)		12.28%	13.81%		12.91%	
	Controlled de Hum	September (19) Water Survey Su	OF TRANSPINOS		13.00%			

TROUGH TO THE PARTICLE SOLOTIVITY. (NORDOW), DEVELOOR RESERVADOS POR SON CONSTRUCTORES CONSTRUMENDO CON CALDAD ERA, (SRUPO SECSAP).

160

JR LOS ANGELES Nº 244 INDECOPI : 00142611 LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD MODELO DE CONTROL DE CALIDAD

20605217029	poyas - Amazonas
RUC	Chacha

2000000000		400000000000000000000000000000000000000	CONTRACTOR CONTRACTOR CONTRACTOR	DATOS DEL PROYECTO	0.		100000		
SECCIÓN:		LABORATOR	LABORATORIO DE MECANICA DE SÚELOS, CONCRETOS Y PAVIMENTOS	CONCRETOS Y PAVIN	MENTOS		CÓDIGO DE IDENT:	060-6P-MC-002	C-002
PROYECTO	EVALLINCIÓN DEL RIE	ISSO ASOCIADO A LA VILNERIA	D ASCOLADO A LA VALACEMABILDIAD FISICA POR FILLID DE DETRATOS EN EL AREA DE INFLUENCIA DE LA GLEBIACIA GLICHANA.	NTOS EN EL AREA DE INF	LIENCIA DE LA CLEBIACA	GUCHMAL,		PERSONAL TÉCNICO	
	AMAZDNAS-						ING. RES. :	MAKOL ENGEL GONDALES PEREZ	S PEREZ
UBICACIÓN:	MAGDALENA - CHACH	WPDYMS - AWAZDMAS					TÉC. DE LAS RESP.	JAN CARLOS CHUQUIRUANCA F.	WCA F.
SOLICITABITE:	DAYANA MILAGROS S	SALON YASSUEZ					TÉC. DE LAS AUX :	JUAN YELSON BURGA RUBIO	019
		DATOS DE LA M	DATOS DE LA MUESTRA ANALIZADA				CLASIFICACIÓN DEL MATERIAL PARA CANTERA	ERIAL PARA CANTERA	
CALICATA:	0.03	MUESTRA:	M+1	enem.	******************	CLASIFICAC	CLASIFICACIÓN DEL SUELO	*****	-
PROFUNDIDAD:	020n-200n	COD, MUESTRA:	060-97-140-002	recen	Made 10 - 2023	SEGÚN NORM	SEBÍN NORMA A.S.T.M. D 2487	3003	Me.

METODO DE ENSAYO PARA DETERMINAR LA DENSIDAD APARENTE (PESO VOLUMETRICO DE UN SUELO) A.S.T.M. D 2937

Caciforta		9 6	
MUESTRA:		M-1	
ENSAYE:		2	6
W Clindro + M.Natural (gr)	418.40	415.48	478.48
W Calestro (gr.)	233.15	231.15	202.85
W. M. Natural (gr)	185.25	184.13	186.63
Volumen (pm²)	102.08	102.50	102.98
Densited Natural (gritom ²)	1,80	1,79	1.00
Desidad Natural Presentic (gr/cm ²)		130	

LABORATORIO DE SUELOS Y PRIVINENTOS BRUPO GEJESUP

CLASIFICACION GENERAL

OBSERVACIONES:

1 - MUESTNA PHOVISTA E IDENTIFICAR POR EL SOLICITANTE 2 - GUEDA PROHIBIDO LA REPRODUCCIÓN PARCIAL O TOTAL (INDECOPI), DERECHOS RESERVADOS POR SON CONSTRUCTORES CONSTRUYENDO CON CALIDAD ERL (GRUPO GEOSLIP.

MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO

OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD
MODELO DE CONTROL DE CALIDAD

JR LOS ANGELES Nº 244 INDECOPI : 00142611 RUC: 20605217029 Chachapoyas - Amazonas

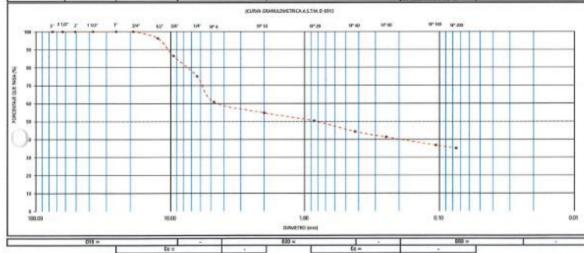
METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS STANDARD TEST METHOD FOR LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS - A.S.T.M. D 4318 BATGS BEL PROPECTO LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS SECCIÓN : 051-GP-MC-602 *CWILINCIÓN DEL RERGO ASSOCIADO A LA VILIMERASEIDAS FISICA POR FULLO DE DETRITOS EN EL ANICA DE INFLUENCIA, DE LA CLEBRADA CUCHANIL, ANACOMO? PERSONAL TÉCNICO PROYECTS: MARCH, ENGEL GONDALES PERGZ SOLICITANTE: ACCALENA - CHACHIA-ONS - AWAZONS ANN EVELOG CHUQUHUUNCA F. TEC. DE LAS SESP. DAYANA MILAGROS SALON VASOLEZ unicación-THE OF LAB ADX : JUNEYELSON BURGA RUBO EATOS DE LA MUESTRA ANALIZADA CLASSFORM ON HAVE AN PARA CANTES CLASS CACION DEL SURID CALICANA MUESTRA: COO. WHISTRA: FECRE sucs 060-07-MC-062 SECON ECOMA A.S.T.M. D 2467 LIMITE LIGHTON Nº de Recipiente (Taxo) Peso (excluterte+ M.Húmede) gr Peso (teclplante + M Secs) gr Pieco agua (gr) 0.00 Paso recipiente (pr) Ress Montes Sara for 0.00 0.00 Contenido de Humedad (W(%)) 8.06% 0.00% 0.90% NUMERO DE GOLPES LIMITE PLASTICO MF de Recipiente (Tana) PROMEDIO Peso (leciplerie+ lit.Húmete) gr Pose (recipiente + M Secu) gr Passo agus (pr) 0.00 0.00 Peso recipiento (gr) Pesa Maestra Seca (60) 0.00 Control do de Harrented (W(%)) 0.00% DIMITE LIQUIDO THEN PLASTICO (N) HOGE SI PLASTICOAD (N) MP ADIA USADA CONTRACT R²(mose) # fresh > # forms ACSPIRAGE CARTA DE PLASTICIDAD Lines U. Pinogral. O. S. Linea B : LL =50 Undo N. Plug 73 VILL 201 CH & OH CLOCK MH à OH ML 6 CL DATE ROUDO (U.) I - MUESTRA PROMSTA E EVISTINGAR POR EL SOLICITANTE CLASIFICACION GENERAL - DUCINA PROMISSIO LA REPRODUCCIÓN PAPCALL O TOTAL (MOSCOPI), DEPECHOS RESERVADOS POR SON CONSTRUCTORES CONSTRUMENDO CON CALIDAD ERIL GRA POTERISERA LABORATORIO DE SHIP OF Y PAVAIENTOS LABORATORIO DE SUFLO: Y PANMENTOS

GRUPO GEOSUP Laboratorio de Suelos y Pavimentos

LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP

MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO

JR LOS ANGELES Nº 244 INDECOPI : 00142611 RUC: 20605217029 Chachapoyas - Amazonas


OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD

MODELO DE CONTROL DE CALIDAD

MEYODO DE ENSAYO DE ANALISIS GRANULOMETRICO DE SUELOS POR TAMIZADO
STANDARD TEST METHOD FOR PARTICLE SIZE ANALYSIS OF SOILS - A.S.T.M. D 8913

100000	OATOS DEL PROYECTO	Marine and a second	A Venezio de la Company de la
SECCIÓN:	LEBORITORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS	CODIGO DE IDENT:	657-23-MS-MC-801
NAME OF TAXABLE PARTY.	"EVALUAÇÃN DE JRESGO ADOCIADO A LA VILAGRANIL DAD FIDICA POR TULIDO DE DETRITOS DA DILAMEA DE INTLUENCIA DE LA QUEBRADA QUIDINAL.		PERDORAL TECHICO
PROYECTO:	AMAZONIS*	HO. RESPONSABLE:	MAURIL ENGEL GONDALES PEREZ
URICACIÓN:	MACRALIAE - CHACHAPONES - ANACOMES	TRENDCO DE LAN HESP:	JAN CARLOS CHUBUHANICA F.
SOLICITARITE :	DANNIA MLADRIS SALON VISIDIST	TÉCNICO DE LAB AUX :	JUNI YELSON BLEGA RUBIO
	DATOS DE LA MUESTRA ARRUDADA	CLASHICACIÓN DEL	EURO PWIA CHEMIACIÓN

ASSESSMENT OF THE PARTY OF THE		DATES OF THE	REGING WARRINGS					PERSONAL PROPERTY AND	OUR PRINT SUBSEMBLE OF	
CALICATA: PREFERENCESAD:	C - 04 0.20m - 2.50m	COO. NUESTRA:	860-0	P-860-0002	MUESTRA:	M-1		FICACION EST. SUELO NORMA A.S.Y.M. D 2447	1001	SW
	1	TANU	PART	PRET	PORCE	MALE	PORCENTIALE	HI.	PESTRA TIFTAL HUMEDA	
	Nr.	ASEKTURA(WY)	PANCAL.	ACUMULADO	RET. ACI.	JAULA00	QUE PASA	PESO TI	OTAL MLESTRA HUNCO	(21)
	3"	75.90	6.66	0.00	6/	00	100,00		4100	
	2.70	83,90	0.00	0.00	0.	00	100.00	1	RUSSTRA TOTAL SECA	
TI GITTER	2	\$0,80	6.60	0.00	0.	00	100.00	TEMPERATURA	H3990	190°G ± 5
5	195	37.50	0.00	0.00	0.	00	100,00	DE SECADO	HUMBO	180" G ± 5
- 8	1*	25.40	0.00	0.00		66	100,06	man 101	W. WLESTPASEGA > W	2 ml
2	34*	19,00	0.00	0.00	0.	00	100.00	7620.101	NE ACCOUNTS IN	101
1001	1/2*	12.90	128.00	128.00	8.	66.	06.34		1871.00	
0	30" 0.00 346.00 474.00		13	.54	66.46	9000.707	W. MJESTRA SECA < N	400		
	1/4*	6.35	165.00	869.00	24	.83	75.17	700000	AC MUCA HANGOUR 4: N	*101
	. 84	4.75	102.00	1371.00	33	37	60.63		2129.00	
	Nº 10	2.00	248.60	1982.20	45	.21	64.79	1000	TOTAL MUSSIFIA SICA	to d
	Nº 20	0.85	185.00	1739.74	49	71	60.29	reso	TO OF HISTORY SEEK	84
20	Nº 40	0.43	245.00	1918.00	55	87	44.33		3516.8	
	19" 60	0.25	125.60	2954,43	58	71	41.20	.884	LISIS FRACCION GRUES	A .
PRODES FIN	M*143	0.106	167.00	2214.08	63	28	16.74	101M.	WG-	1371.00
₽.	8º 208	0.00	69.00	2272.84	64	94	35.06		WASIS FRACCION FINA	8
	CAZGLETA	54	45.00	2917.84	ds	.22		CORRECCION CLIARTED:	S/WG	0.95
	101AL		2	117.6				PESO PORCION SECA REPRESENTATIVA < 8/4:	3-	2100.0

DBSERVACIONES:

1. MUISTINA PROVIDER E ISENTIFICACE POR EL SOLÓDIANTE

2. OFFICIA PRICHADO DA REPRODUÇÃO PANCIAL, O TOTAL INDECOPA, DERECHOS PESERVACIOS POR SON CONSTRUCTORES CONSTRUMDED SON GALIDADE ERE. (CRUPO GEOSUP).

LABORATORIO DE SULLOS Y PAVIMENTOS GRUPO DE OSUP

CLASIFICACION GENERAL

JIAN PARLOS CHIQUINUANCA FLOR PECIALISTA DE SUELOS Y PAVAMENTOS TANI Nº 72848153

LABORATORIO DE SUEVOS VANVIMENTOS
GRUPO GEOSTO
ANG. MAKOL SINGEL GONZALES PEREZ
ESPECIALISTATE SURLOS TRAMBERTOS
REO OP 20175

JR LOS ANGELES N° 244	INDECOP1: 00142611 RUC: 20605217029	Chachapoyas - Amazonas	
LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP	MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO	OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD	MODELO DE CONTROL DE CALIDAD
RUPO			aboratorio de suetos y Pavimentos

ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DEL SUELO

and a second second		CALL COLORS AND AND ADDRESS OF THE PERSON NAMED IN COLUMN TO ADDRESS OF THE PE	DA	DATOS DEL PROYECTO					
SECCIÓN :		LABORATO	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS	NCRETOS Y PAVIMENT	38	00	TOTO DE IDENT:	CÓDIGO DE IDENT: 060-23-MS-MC-001	-MC-001
90YECT0:	PEVALLIACIÓN DEL PIESGO		ASOCIADO A LA VALNERABILIDAD PISICA POR FILLIO DE DETRITOS EN EL AREA DE INFLUENCIA DE LA DLEBRADA GUIDHMAL.	RITOS EN EL AREA DE INFL	UENCIA DE LA QUEBRADA G	UICHMAL,	E.	PERSONAL TECNICO	
	AMAZONAS*					ING.	NG. RESPONSABLE:	MAIKOL BYSEL GONZALES PEREZ	ALES PEREZ
BICACIÓN:	MASDALENA - CHACHAP	OYAS - AMAZONAS				TÉC.	TÉC. DE LAB RESP:	JIAN CARLOS CHUQUIHUANCA F.	HUANCA F.
OLICITANTE:	DAYANA MLAGROS SALC	ON VASQUEZ				TÉC.	TÉC. DE LAB AUX :	JUAN YELSON BURGA RUBIO	RUBIO
		DATOS DE LA	DATOS DE LA MUESTRA ANALIZADA			CLASH	FICACION DEL SUELI	SLASIFICACION DEL SUELO PARA CIMENTACION	
ALICATA:	to-04	PAR SHICKTON.	THE WAS GAR OF COM	- wanterna	,	CLASIFICACIÓN DEL SUELO	DEL SUELO	44400	200
ROFUNDIDAD :	0.20m - 2.50m	AND MARSHAY	IOD-DW-SHI-P2-DOD	MUESINA:		SEGÚN NORMA A S.T.M. D 2487	S.T.M. D 2487	2000	MS.

PROFUNDIDAD: 0.20m - 2.50m		988	SEGUN MORINA A.S.T.M. D 2487		
ENSAND:	-	64		en	
Peso (recipiente + M.Húmeda) gr	319.48	325,48		326.79	
Peac (recipients + M Seca) gr	295.84	293.64		299.90	
Peso agua (gr)	23.64	25.84		8992	
Preso resipiente (31)	72.68	72.89		72.60	
Peso Muestra Seca (gr)	223.24	10,722		227.30	
Contesido de Humebal (W(%))	X-95, 01	11.38%	_	11.83%	
Contention de Haptecatad (W PS) Printidade	WENTOS	21275			

TO MARGINATION OF THE MODERAL PROPERTY OF THE CONDITION OF THE CONTRIBUTION OF THE SON CONSTITUTIONS CONSTITUTIONS ON CALLDAD BIFL (PAUPO GEOSUP). OBSERVACIONES:

164

SECCIÓN

OYECTO: BICACIÓN: PROFUNDIDAD:

OLICITANTE

Chachapoyas - Amazonas JR LOS ANGELES Nº 244 INDECOPI: 00142611 RUC: 20605217029

			DATOS DEL PROYECTO	0				
	LABORATO	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y P	CONCRETOS Y PAVIM	ENTOS		CODIGO DE IDENT:	060-GP-MC-002	C-002
PVALUACIÓN DEL RIE	390 ASOCIADO A LA VULNERA	O A LA VILNERABLIDAD FISICA POR FLUJO DE DETRITOS EN EL AREA DE INFLUENCIA DE LA GUEBRADA GJICHMAL	ITOS EN EL AREA DE INFL	UENCIA DE LA QUEBRAD	A GUICHMAL.		PERSONAL TÉCNICO	
AMAZONAS*						ING. RES. :	MAKKOL, ENGEL, GONZALES PEREZ	33 PEREZ
MAGDALENA - CHUCH	APDYAS - AMAZDKAS					TÉC. DE LAB RESP:	JAN CARLOS CHUQUINUANCA F.	ANCA F.
DAYANA MILABROS S.	ALON VASQUEZ					TÉC. DE LAB AUX:	JUAN YELSON BURGA RUBIO	CIBC
	DATOS DE LA M	MUESTRA AMALIZADA				CLASSIFICACION DEL MAT	ERIAL PARA CANTERA	
0.04	MUESTRA:	M-1	The same of the sa		CLASIFICACI	CLASSIFICACION DEL SUELD	-	100
0.20m-2.50m	COD, MUESTRA:	060-GP-MC-002	recha	ASUSTO - 2023	SEBÚN NORMA	SEGÚN NORMA A.S.T.M. D 2487	2002	2W

METUDO DE ENSAYO P	METODO DE ENSATO PARA DETERMINAR LA DENSIDAD APARENTE (PESO VOLUMETRICO DE UN SUELO) A.S.T.M. D 2937	NENTE (PESO VOLUMETRICO DE	OH SOUTHOU
CALICATA:		PG-3	
MUESTRA ;		R-1	
ENSAYE :	-	2	m
W Clindro + M.Natural (gr)	420.16	418.50	458.90
W Cilindra (gr)	230.58	229.84	278.90
W M. Natural (gr)	189.58	189.06	190.00
Volumen (cm²)	102.98	102.98	102.98
Densidad Natural (gotom?)	187	1.84	18.
Densidad Natural Promedio (go'cm²)		1.84	

MAENTOS

ABDRATORIO DE SUELOS Y PAVALENTOS GRUPO GEOSUP

CLASIFICACION GENERAL

1. MLESTRA PROVISTA E IDENTIFICAR POR EL SOLICITANTE 2.º QUEDA PROHIBIDO LA REPRODUCCIÓN PARCIAL O TOTAL (INDECOPI), DERECHOS RESERVADOS POR SÓN CONSTRUCTORES CONSTRUYENDO CON CALIDAD ERL (GRUPO GEOSUP).

OBSERVACIONES:

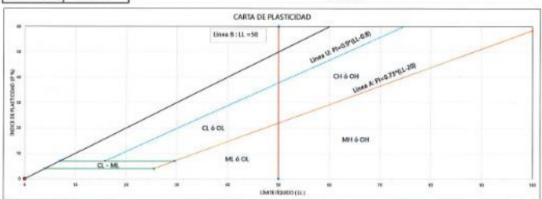
165

MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO

OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD MODELO DE CONTROL DE CALIDAD JR LOS ANGELES Nº 244 INDECOPI : 00142611 RUC: 20606217029 Chachapoyas - Amazonas

1000000		STANDARD TEST METE	TOU FOR LIQUID CINETY,	DATOS DEL PR		GIT INDEX C	F SOILS - A.S.T.M. D 43	118	
SECCIÓN :		LABORATORIO DE M	RECARICA DE SUELOS, CO				CÓDIGO DE IDENT:	660-GP	MC-662
PROYECTO:	-EVALUACIÓN DEL RIE	SEO ASECIADO A LA VULNER	RABILIDAD RISIGA POR FLUID	DE DETRITOS EN E	LAPEADE INTLUE	AJ 10 AIDE		PERSONAL TÉCNICO	
montano.	GLEBRADA GUCINNAL, MAZOMO:						ING. RES. ;	WANTEL ENGEL CONDAC	IS PEREZ
COLICITABITE:	BLISTIANTS: IMPOSALENA - CHICHAPOVAS - ANAGENAS							JAN CARLOS CHUCLIBRANCA.F.	
encycle:	DAYMA MLAGROS S	ALON VASQUEZ					TÉG. DE LABAUX :	JAMN YELSOM BURGA RUSIO	
		DATES OF LA MUESTRA	ANALIZADA				CLASSFICACION DEL W	ATTRIBL PARK CONTERA	
CALICATA :	C - 04 0 90m 7 50m	COS MUSSTON	M - 1 000 GP-MC-002	FECHA	A60610		PREACHER DEL DURED	suos	sw

		CIWITE LIGUIDO	
Nº do Floriphette (Tasa)	8	4	5
Peca (recipionio + M.Hümeds) gr			
Pezo (necipionio + M Secu) gr	15 4/45		- 1000
Poso agua (gr)	0.00	6.00	0.00
Pesa recipieste (pr)			
Fess Marotra Seca (pr)	0.00	0.00	0.00
Contentio de Humedad (W(%))	0.00%	0.00 %	0.00%
NUMERO DE GOLPES			


		LIMITE PLASTICO	
II" de Recipierte (Tere)	1	2	PROMEDIO
Peza (periplento » M.Húmeda) yr			3333000
Peno (molplante + M Secu) gr			
Peso agua (pr)	0.00	6.00	
Pesa recipierie (gr)			
Fone Mussira Soca (gr)	0.00	8.60	
Contonido de Húmedad (W/S))	0.00%	0.07%	0.00%

CONTANTES FISICIAS	DE LA MUESTRA
TONOS DA	0.86%
PLASTICIONI	NT
PLASTICION (N)	100

SERVERATURA.	ASSE EDADA
DE SECADO	SISTILATA
mec+1	POWRE
10023	OTRA

ATTOUMATING	31 CALID45
R ² (wwap)	0.000
Il ² (Borns)	0.945
\mathbb{R}^2 (areays) > \mathbb{R}^2 (soma)	ACCPUBLE

	SIMITE LIQUIDO	
mt.		
en.		
41		
44		
40		
40		
441		
49		
**		
400		
44		
84		
	MARCON MATERIAL STATES	*

L. MUESTRA PROVISTA E IDENTIFICAR POR SL SELICITANTE	CLASIFICACION GENERAL
 QUEDA PROMINDO LA REPRODUCIÓN PARCIAL O TOTAL (INDECRP), DERECHOS RESERVADOS POR SON CONSTRUCTORES CONSTRUMENDO CON CALIDAD EIRL IGRI PRO FERBURY. 	
A STATE OF THE STA	

LABORATORIO DE SUM SO PANAMENTOS
CRIPO UN SOP

AS MAROLEN 7 SO ZALES PEREZ
ESPECIALISTALE DE TOTO PANAMENTOS
REG CIP 201370

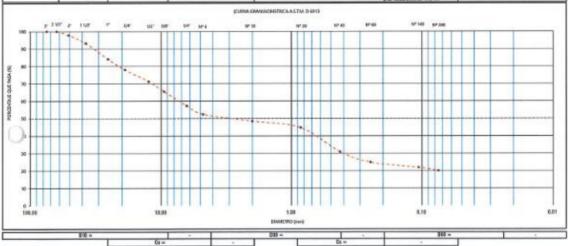
LABORATORDO DE SUELOS Y PAVIMENTOS
GRUPO DEOSUP

1600 C

1600

GRUPO

LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP


MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO

JR LOS ANGELES Nº 244 INDECOPI: 00142611 RUC: 20605217029 Chachapoyas - Amazonas

OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD MODELO DE CONTROL DE CALIDAD METODO DE ENSAYO DE ANALISIS GRANULOMETRICO DE SUELOS POR TAMIZADO STANDARO TEST METHOD FOR PARTICLE SIZE ANALYSIS OF SOILS - A.S.T.M. D 8913

\$150000S	BATOS DEL PROYECTO		Section of the sectio
SECCIÓN :	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVAMENTOS	CÓDIDO DE IDENT:	960-23-MS-MC-001
	POWELWICKS DEL BIESED ASSOCIADO A LA VILLIERABILIDAD PISICA POR FLUID DE DETRITOS EN EL AREA DE MELLEMEIA DE LA OLIGIBRADA GUICHAMA.		PERSONAL TÉCNICO
ROYDETO:	AMAZOMAS?	ING. PESPENBAGLE:	MARCH, ENGEL GENZALES PEREZ
BICACIÓN:	MAGSALEMA - CHRISHAPOWS - AMAZOMS	TÉCRICO DE LAN NESP:	JAVA CARLOS CHUCUHLANCA F.
OLICITAMTE :	DAYANA HILACROS EALDH VASQUEZ	TÉCRICO DE LAN AUX	JUAN YELSON BUNGA KURIO

		DATES DE LA N	NUESTEA ANNI EZADA	A				CLASIFICACIÓN DEL SUE	LO PARA CIMENTACIÓN	
CALICATA: FROFUNDIDAD:	C - 05 0.25m - 1.50m	COO, MUESTRA:	060-0	P-MC 000	MUESTRA :	M-1		OFICECION DEL SEELO MONWA A.S.T.M. D 2487	sics	IW
-	1	TRIAZ	P.RET	PART	PORCE	ENTAJE	PORCENTALE	M	RETURN SOTAL HEHREA	
	W	ADERTURA(min)	PARCUL	ACUMULADO	RET. AC	UHULADO	QUE PAGA	PESO 11	OTAL MUESTRA HUMEDI	L (pr)
	v	75.00	1.00	0.00	8.	00	100.00		8088	
	219	63.00	8.00	0.00	0,	00	100.00		ALKESTIA SOTAL BECA	
1	- 1	50.80	67.00	67.00	2.	29	97.80	TEMPERATURA	1000	110°C = 5
	139	27.50	140,00	207.00	6.	79	90.21	DE SECADO	HUNG	110-0 2 2
8	1*	25.40	274,00	465.00	15	42	84.09	personal	AL MUEDTRA SEGA > N	Also.
2	5/4"	19.00	184,00	506.00	21	.96	79.04	7(3010)	PE MUSEUITAN MELAN > 00	4 (91)
	1,01	12.50	217.00	876,00	28	176	71.25		1450,00	
0	3/6*	9,50	176,00	1092,00	34	168	65.47	SCOO TOT	AL MUESTRA SECA < N	14 feet
	t/A*	6.36	250,00	1302.00	42	73	\$7.27	7600101	NE BREGISSO SEAS SE	4.001
	84	4,76	148,00	1450.00	47	.60	52.41		1597.00	
	AP 10	2,00	395.00	1599,78	51	52	48,48	9550	TOTAL MATERIAL SECO.	
	Nº 20	0.85	341,00	1692.02	16	20	44.83	7	NAME AND ADDRESS OF THE PARTY O	MI.
	85.43	0.63	1204.00	2195.49	69	190	30.00		3047.8	
2	Nº 60	0.26	551.00	2288.10	75	.09	24.91	AMA	LISIS FRACCION GIVIES	A:
9000	Nº 140	0.106	274.00	2379.07	. 28	160	21.92	101AL	W6=	1450.00
Ē	Nr. 510	0.08	169,00	5434.38	79	189	20,11	At At	MACHIN FRACCION FINA	
	CAJOLETA	4,4	25.60	2459.38	80	71		CONVECCION CUMPTED:	5/49	0.33
	TOTAL		2	69.4				PESO PORCION SECA REPRESENTATIVA < Nº4 :	5+	401.3

L. MAESTRA PROVISTA E DEMTRICAR POR EL SOLICITANTO CLASFICACION GENERAL 2 - QUEDA PROHBIDO LA REPRODUCCIÓN PARCIAL O TOTAL (INDICOM), INDICOMO RESENVADOS POR SON CONSTRUCTORES CONSTRUMENDO CON CALIDAD ERE, (GRUPO SESSEP).

MARTIE EVOET ODNIŽALES PEREZ
LIPECIAL ANGLE OPERIOS
ANG COP 20216

LABORATORIO DE SUELON Y PAVIMENTOS

JR LOS ANGELES Nº 244	INDECOPI: 80142611 RUC: 20605217029	Chachapoyas - Amazonas	
LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP	MECÂNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO	OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD	MODELO DE CONTROL DE CALIDAD

511	53	comas
JPI: 00142	206052170	oyas - Ama
MDEC	RUC	Chachap

	STANDARD	TEST METHODS FOR	STANDARD TEST METHOUS FOR LABORATORY DETERMINACION OF WATER (MOISTURE) CONTENT OF SOIL AND ROCK - A.S.T.M. D 2216 DATOS DEL PROYECTO	ACION OF WATER (MOI DATOS DEL PROYECTO	STURE) CONTE	NT OF SOIL AND	ROCK - A.S.T.M. D.	2216	
SECCION:		LABORATOR	LABORATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS	NCRETOS Y PAYIMENT	90		CÓDIGO DE IDENT:	057-23-MS-MC-001	S-MC-001
- GLUSSCHO	"EYALUACIÓN DEL RESG	30 ASOCIADO A LA VULNER	ESGO ASOCIADO A LA VULNERABILDAD FISICA POR R.LIJO DE DETRITOS EN EL AREA DE INFLUENCIA DE LA QUEBRADA GUICHAAL	NTOS EN EL AREA DE INFL	LIENCIA DE LA QUEI	BADA GUCHAAL,	4	PERSONAL TÉCNICO	
- Constant	AMAZONAS						ING. RESPONSABLE: MANKOL ENGEL GONZALES PEREZ	MAKKOL ENGEL GONZ.	ZALES PEREZ
JBICACIÓN:	MAGDALENA - CHACHAF	HAPOYAS - AMAZONAS					TÉC. DE LAB RESP:	JAN CAPLOS CHUGUIHUMICA F.	JHUMMCA F.
SOLICITANTE:	DAYANA MILAGROS SAL	SALON VASQUEZ					TÉC. DE LAB AUX :	JUAN YELSON BURGA RUBIO	A RUBIO
		DATOS DE LA M	DATOS DE LA MUESTRA ANALIZADA	28		3	CLASHICACIÓN DEL SUELO PARA CIMENTACIÓN	O PARA CIMENTACION	
SALICATA:	C-05		and dee and and	- 101101		CLASIFICAL	CLASIFICACIÓN DEL SUELO	-	***
ROFUNDIDAD:	0.20m -3.00m	COD. MUEDINA.	170-419-69-62-160	MUESINA	- W	SEGÚN NORM	SEGÚN NORMA A.S.T.M. D 2487	300	910

ENSAYO	3 3 3 300,000 300,000 289,78
300,005	
288.89	
Peso agua (gr) 13.20	10.22
Pleas residente (pr) 66.10	72.50 62.50
Pesso Musers Seca (gr) 220,70	217.18
Contenido de Humadad (W(%)) 5.08%	471% 5.40%
Centenido de Humeiad (W (%)) Premedio :	120%

NES: 2 GLEDA PROHESCO LA REPRODUCCIÓN PARCAL O TOTAL (NOCICUM)	LIBERATORIO DE SUELAST PRIMIENTAS	CONTRACTOR OF THE PROPERTY OF	Junus .	AND MAKOR ENGEL GONZAL PS SEREN	SEG OP 20135
BSERVACIONES:	,		1		1

DERECHOS RESERVACOS POR SON CONSTRUCTORES CONSTRUMBNOS CON CALIDAD ERL. (SPLPO GEOSLIP).

JR LOS ANGELES IN	INDECOPI : 001426 RUC: 2060521702	Chachapoyas - Amazo	
LABORATORIO DE SUELOS Y PAVIMENTOS GRUPO GEOSUP	MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO	OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD	MODEL OF CONTROL OF CALIDAD

ON LOS ANDELLO III 24	INDECOPI: 0014261	RUC: 20605217029	Chachapoyas - Amazor	

JR LOS ANGELES Nº 244	INDECOP1 : 00142611 RUC: 20605217029	Chachapoyas - Amazonas	
ACCIDITION OF COLLOS II AVIIII AND CALOS	MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO	OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD	MODELO DE CONTROL DE CALIDAD

SECCIÓN:		LABORATO	ABDRATORIO DE MECANICA DE SUELOS, CONCRETOS Y PAVIMENTOS	I, CONCRETOS Y PAVIN	MENTOS		CODIGO DE IDENT:	060-0P-MC-002	10-002
- BEDARCED	PVALUACIÓN DEL NE	SOO ASDCIADO A LA VULNERA	NETABLICIAO PISICA POR TILLIO DE DETHITOS EN EL APEA DE INFLUENCIA DE LA GLESPADA BJOCHIMA.	RITOS EN EL AREA DE INFI	LUENCIA DE LA QUESPADA	A BJICHIMAL		PERSONAL TÉCNICO	
	AMAZONAS						ING, RES. :	MAKOL ENGEL GONZALES PEREZ	23 PEREZ
UNICACIÓN:	MASDALBW - CHACK	UPDYAS - AMAZONAS					TÉC. DE LAB RESP.	JAN CARLOS DILIGUHUMCA F.	JANCA F.
SOLICITAINTE:	DAYMANA MILAGROS S	ALON VASSUEZ					TÉC. DE LAB AUX:	JUAN YELSON BURGA PUBIO	080
		DATOS DE LA N	DATOS DE LA MUESTRA AMALIZADA				CLASIFICACION DEL NA	INTERNAL PANA CANTERA	
CALICATA:	0.09	MUESTRA:	M+3	-	********	CLASSFICA	CLASHICACIÓN DEL SUELO	2000	****
PROFUNDIDAD:	0.20m - 3.00m	COD, MUESTRA:	060-8P-MC-002	retown	ADD310 - 6353	SEGÚN NOMA	SEGÚN NOMMA A.S.T.M. D 2487	2002	No.

		UN SUELO)	
		METRICO DE	
		ESO VOLUI	
		ARENTE (P	-
		NSIDAD AP	TM D 2037
		INAR LA DE	0.4
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A DETERM	
		ISAYO PAR	
	A	49 30 OGO.	
		ME	
- 1			

CAUCATA :		99-3	
MUESTRA:		H-1	
ENSAVE:	-	ou.	
W Clindro + M.Natural (gr)	425.90	420.90	422.16
W Clindro (pr)	231.20	235.80	228.11
W M. Hanzal (3r)	194.70	153.10	193.25
Volumen (pm²)	102.98	102.98	102.98
Denaided Natural (polom?)	1.89	1.88	1.88
Densithed Natural Promedio (gr/cm²)		1,88	

LABORATORIO DE SUÉ GRUPO GI

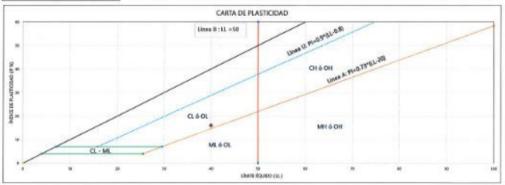
1- INJUSTAR PROVISTA E IDENTIFICIAR POR EL SOLICITANTE 2- OLIGIA PROHEIDO LA REPRODUCIÓN PARGAL O TOTAL (INDEDOP), DERECHOS RESERVADOS POR SON CONSTRUCTORES CONSTRUMENDO CON CALIDAD DIAL (SRUPA-ABO) GEOSUPI.

DRSERVACIONES:

MECÁNICA DE SUELOS, TECNOLOGÍA DEL CONCRETO Y ASFALTO

OFICINA DE ADMINISTRACIÓN Y CONTROL DE CALIDAD

MODELO DE CONTROL DE CALIDAD


JA LOS ANGELES Nº 244 INDECOPI : 00142611 RUC: 20605217029 Chechopoyas - Amazosas

METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS STANDARD TEST METHOD FOR LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS - A.S.T.M. D 4918 DATOS DEL PROFECTO LABORATORIO DE HECANICA DE SUELOS, CONCRETOS Y PANIMENTOS GÓDICO DE IBENT: SECCIÓN THE-GP-MC-602 PERSONAL TÉCNICO "EVALUACIÓN DEL RESIGO ASOCIADO A LA VILIVERARIFLIDAD PISASA POR RILLID DE DETRICOS EN EL AREA DE INFLUENCIA DE LA CLIENTADA GLICHANAL, AMADENAS? PRENECTO MARKET, ENGEL GENEVALES PEREZ MO. RES.: MACCAL ENA - CHACHANOVAS - AUAZOLAS DBICACIÓN TÉG. OZ LAG SZEP JANICARLOS CHUGUHUNICAS DAYANA MLAGROS SALON VAGGLEZ DATES DE LA MUESTRA ANALIZADA TÉC. DE LAB ATE : JUAN YELİSƏN BUNGA RUBBƏ SELECTRON CLASSFICACION DEL MATERIAL PARA CANTIRA. CLASSFICACION DEL SUELD CALICATA MCESTRA: M-1 COD. MUESTRA: 000-GF-RIC-082 ACCISTO-202 FEGRA 8008 SW SEGÚN NORMA A S.T.M. D 2487

		DWILE DISTOO	
Mº de Recipiente (Tara)	1	2	3
Peco (leciplanta + MHGreeki) gr	85,44	81,11	88.52
Peso (recipiente + M Secui) gr	69,10	84.88	67,20
Peso agua (gr)	16,54	16.31	21,30
Pero recipiente (pr)	23.40	23.00	23.60
Penn Muestra Seco (gr)	46.96	41.60	44,20
Contraids de Humedad (W(%))	53.53 %	39.62 %	48.24 %
NUMERO DE GOUPES	11	24	11.

		LIMITE PLASTICO	
Nº do Recipiente (Tara)	1	2	PROVEDED
Pesa (racipiente + M.Húmeda) gr	71.16	78,56	3500000
Pesa (recipiente + M Secu) gr	62.10	67.50	
Peso agua (gr)	9.05	11,00	
Peso-recipiente (pt)	23.00	22.26	
Pego Marcino Soca (gr)	36.10	44.99	
Controlds-de Hürnedad (W(%))	28.17%	24.60%	23.04%

Continue de Hun	second (MUN()	23.17%	24.50%	23,94%
DOCUMENT FINAN	DI LA ROSSTRA		LIMITE LIQUIDO	
DINA DISCOLUE	48.08%	40.		
PLASTICO (NJ.	19.M%	40		
PLASTOONS (N)	1658%	1."		y = 1.300 (reg) - 0.8270
SHERWINA	AGEN ESAGA	3 4N		F-1
0E 0E1400	BESTEALA			
	FOURT	\$ 40K		
11P C + 5	OTRA	E +10		/
ASCOURAGEOUS	DE CHECKS	48		1
R ^T (mage)	9.000	m		
R Ploma	0.006	m		1
R [†] (mesps) > R [†] (name)	ACCEPANCE		WWW.DOCKSOWN	49

1.- MLESTRA PROVISTA E DEMPRISA POR EL SOLUTIANTE
2.- OLEM PROVISCO LA REPRODUCCIÓN PARCAL O TOTAL (RIDECOPI), DERICHOS RESENVADOS POR SON CONSTRUCTORES CONSTRUMENDO CON CALIDAD ERL

CLASFICACIÓN SENERAL

CLASFICACIÓN SE

LABORATORIO DE L'ALOS Y PAMIMENTOS
GRUPA SEDBUP

GRUPA SEDBUP

G. MARKE ENGEL GONZALES PEREZ

L'AROMA SERIOS Y PAMIMENTOS

LABORATORIO DE SUELOS Y PAVIMENTOS
GRUPO GLOSUP

TEC. JUAN CARCOS CALGUHHUMICA FLORES
ESPECIASTA OS SUELOS Y PAMIMENTOS
DININ TERRISTO

Anexo 7: Panel fotográfico

Fotografía 1: Encuesta llevada a cabo con el formulario diseñado para recopilar información sobre las viviendas.

Fotografía 2: Levantamiento fotogramétrico del área de influencia de la quebrada Guichmal.

Fotografía 3: Imagen fotogramétrica del área de influencia de la quebrada Guichmal

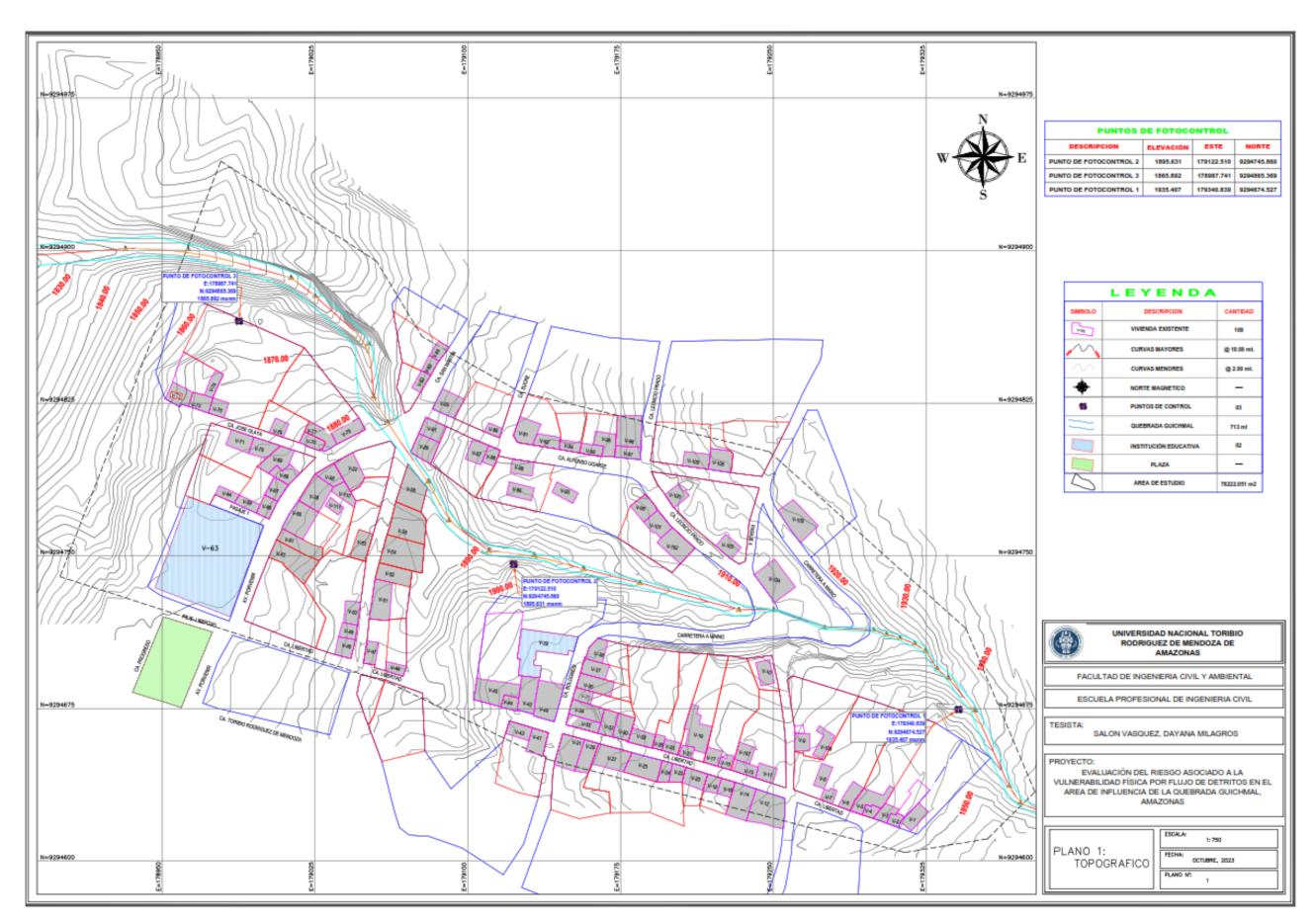
Fotografía 4: Excavación de la calicata 1 y extracción de la muestra.

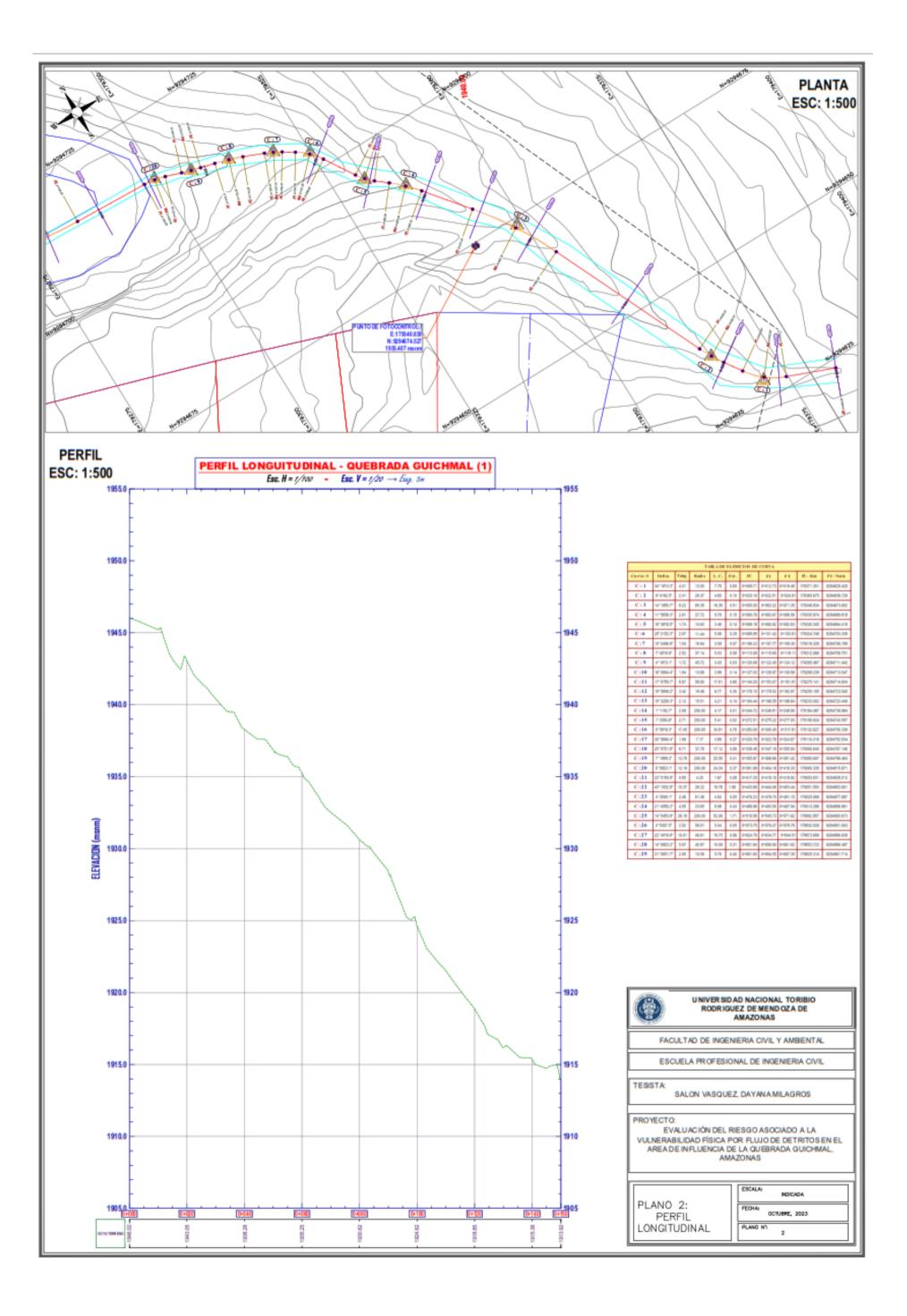
Fotografía 5: Excavación de la calicata 2 y extracción de la muestra.

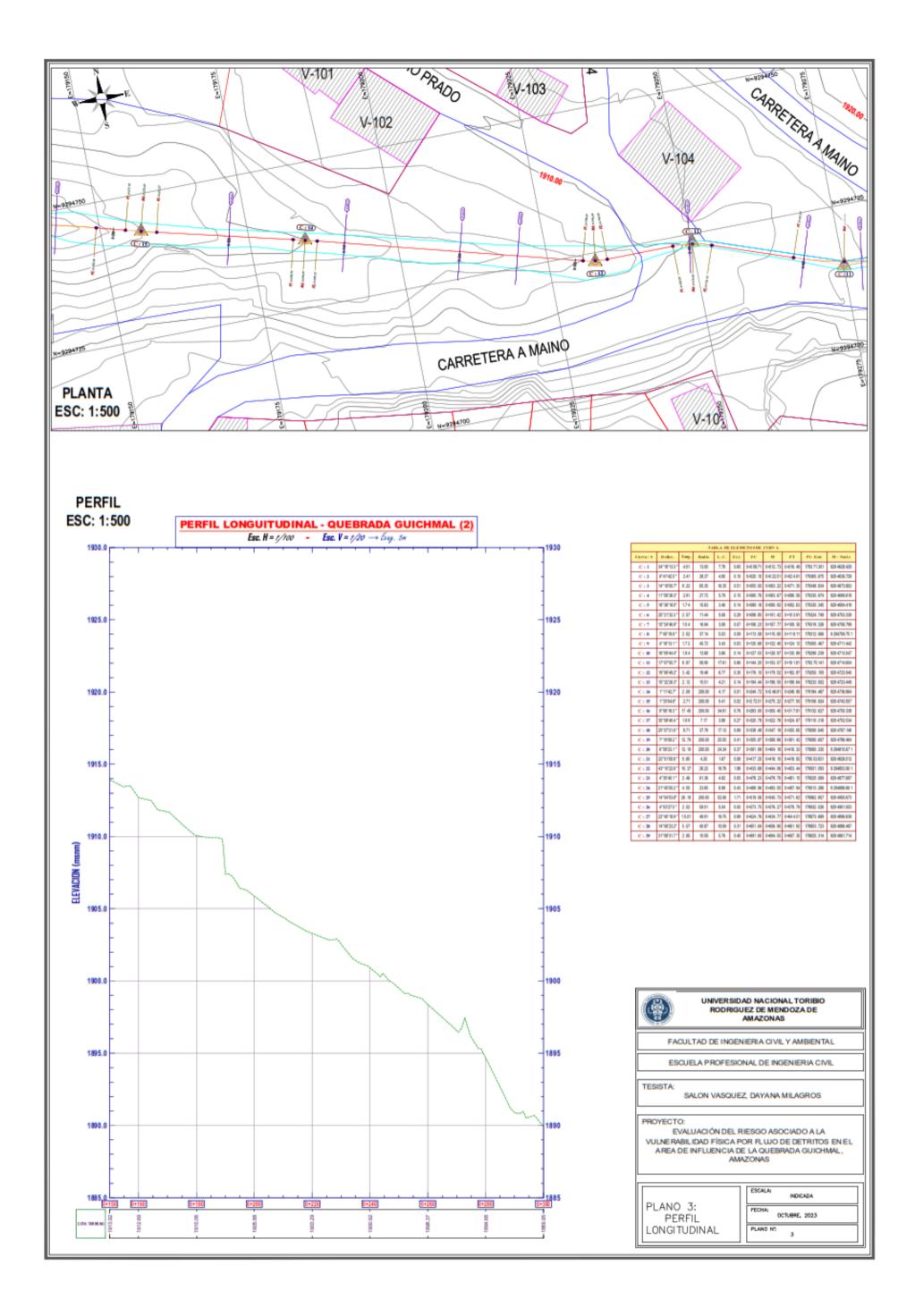
Fotografía 6: Excavación de la calicata 3 y extracción de la muestra.

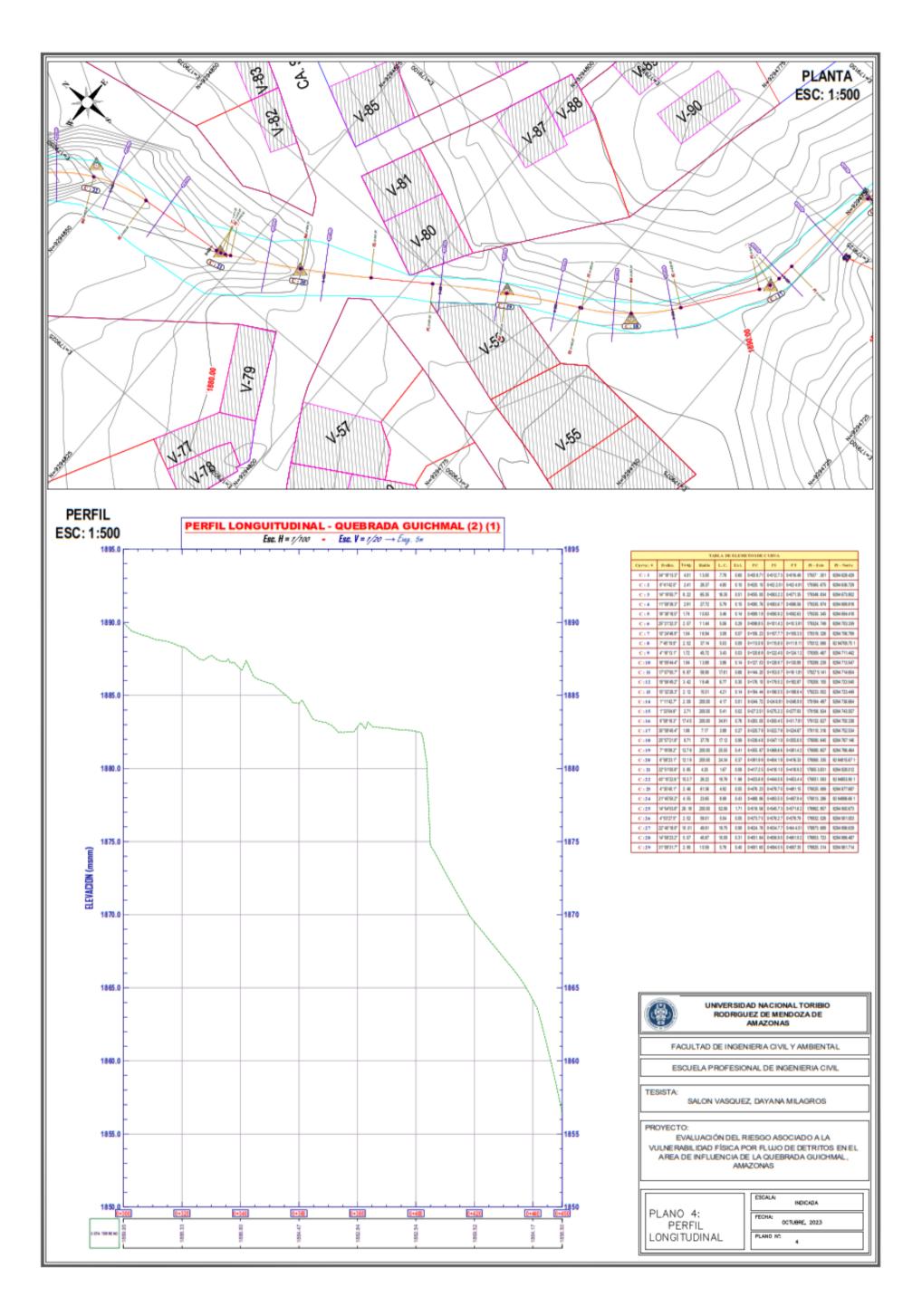
Fotografía 7: Excavación de la calicata 4 y extracción de la muestra.

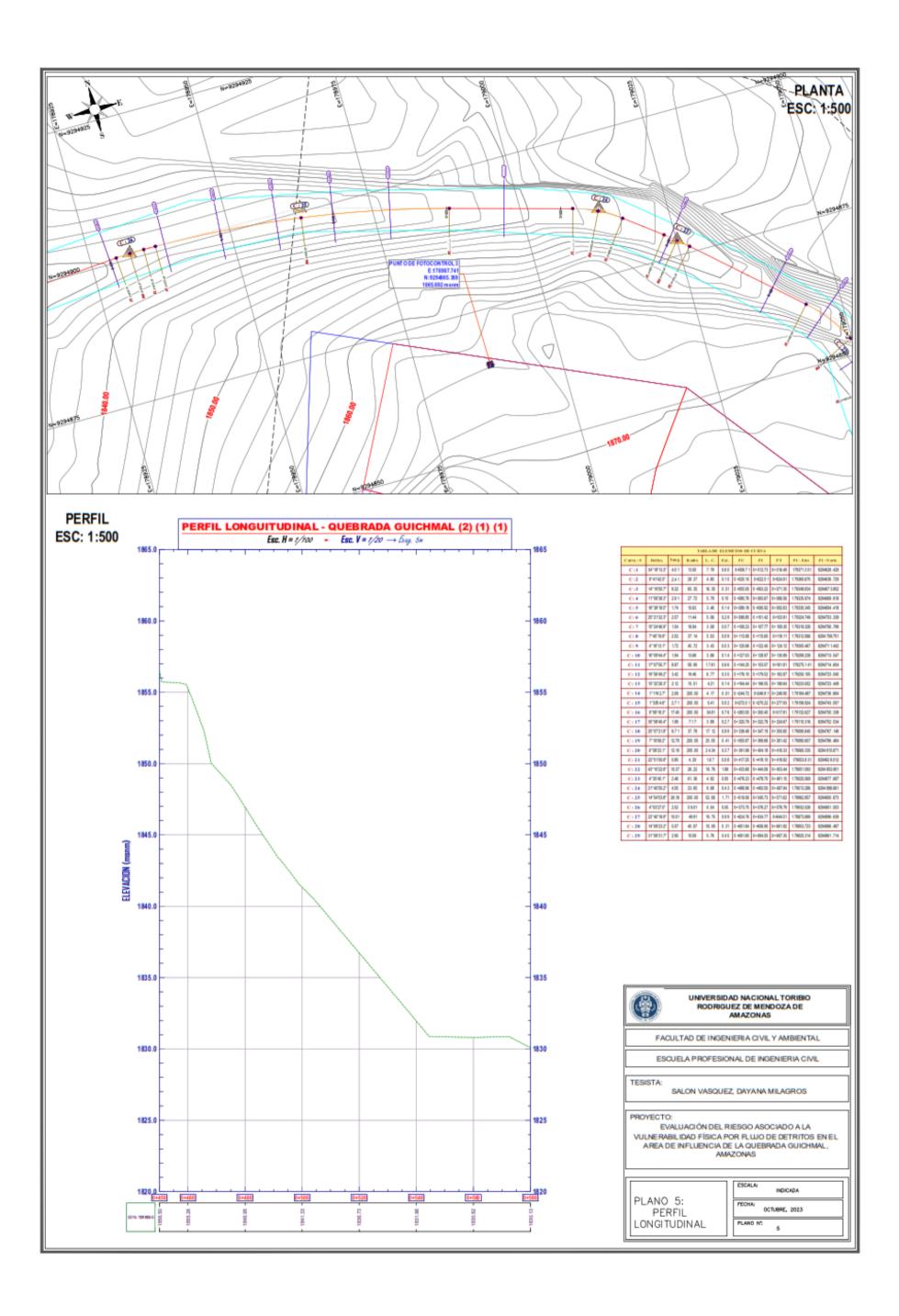
Fotografía 8: Excavación de la calicata 5 y extracción de la muestra.

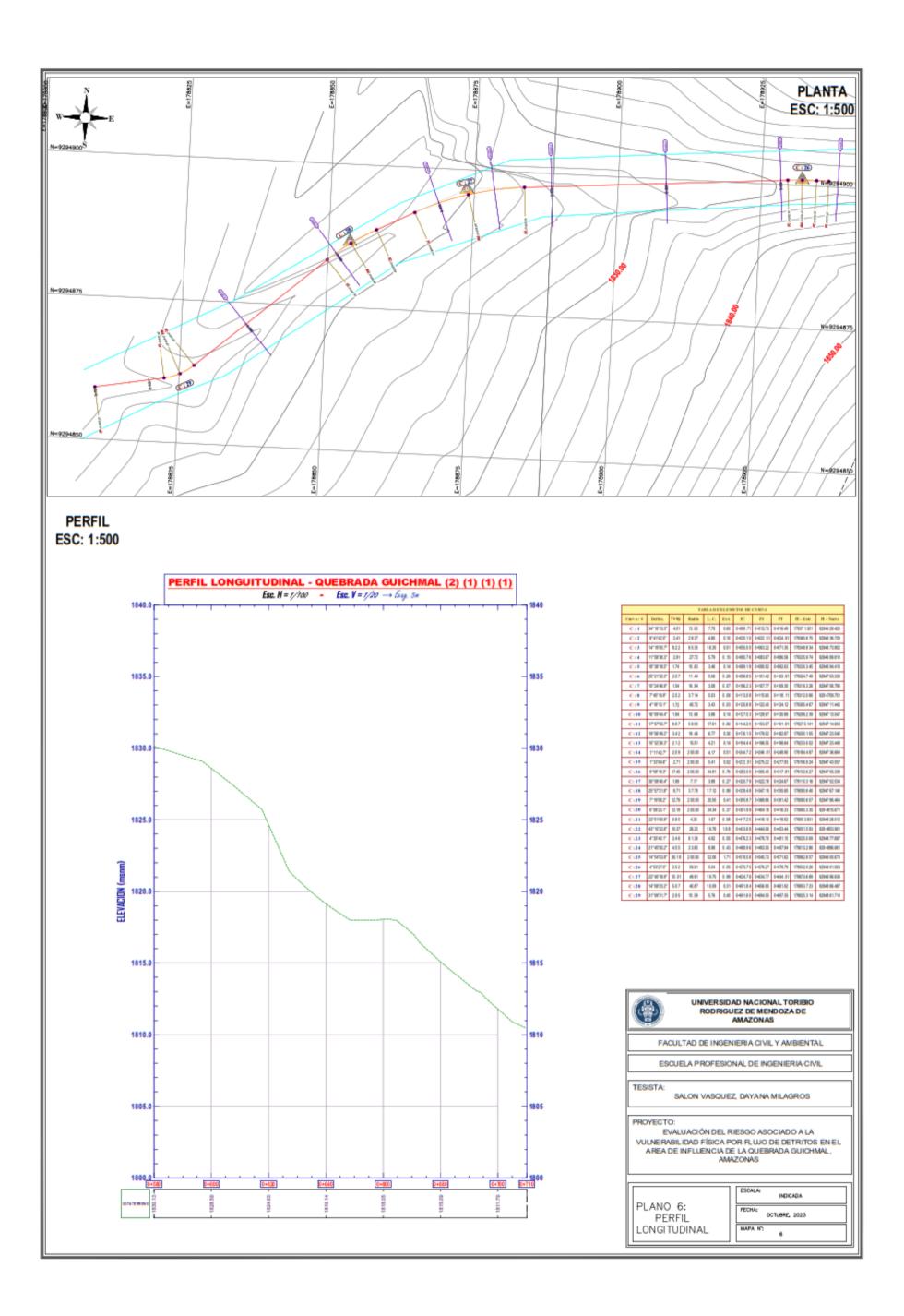

Fotografía 9: Análisis granulométrico de las muestras

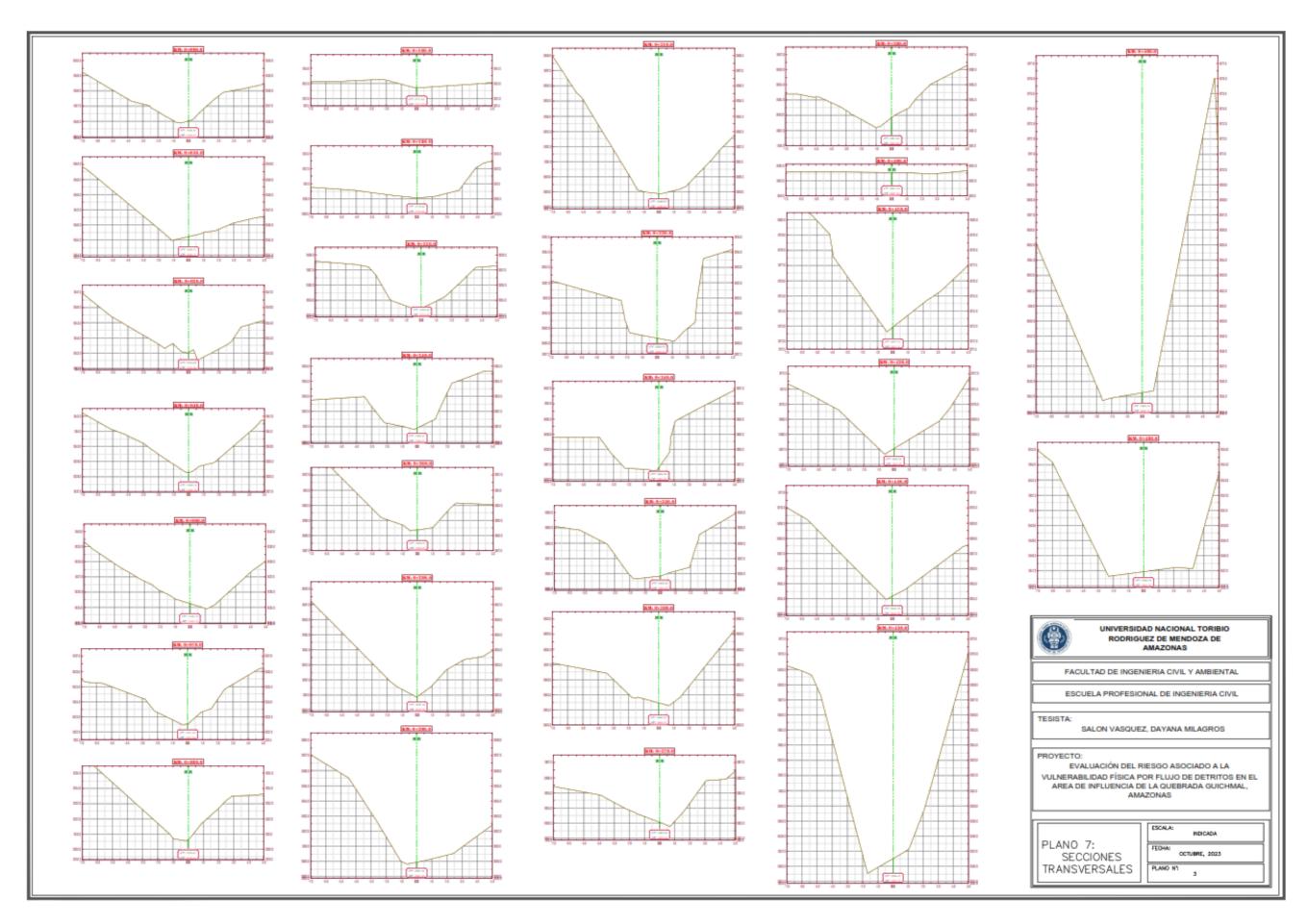


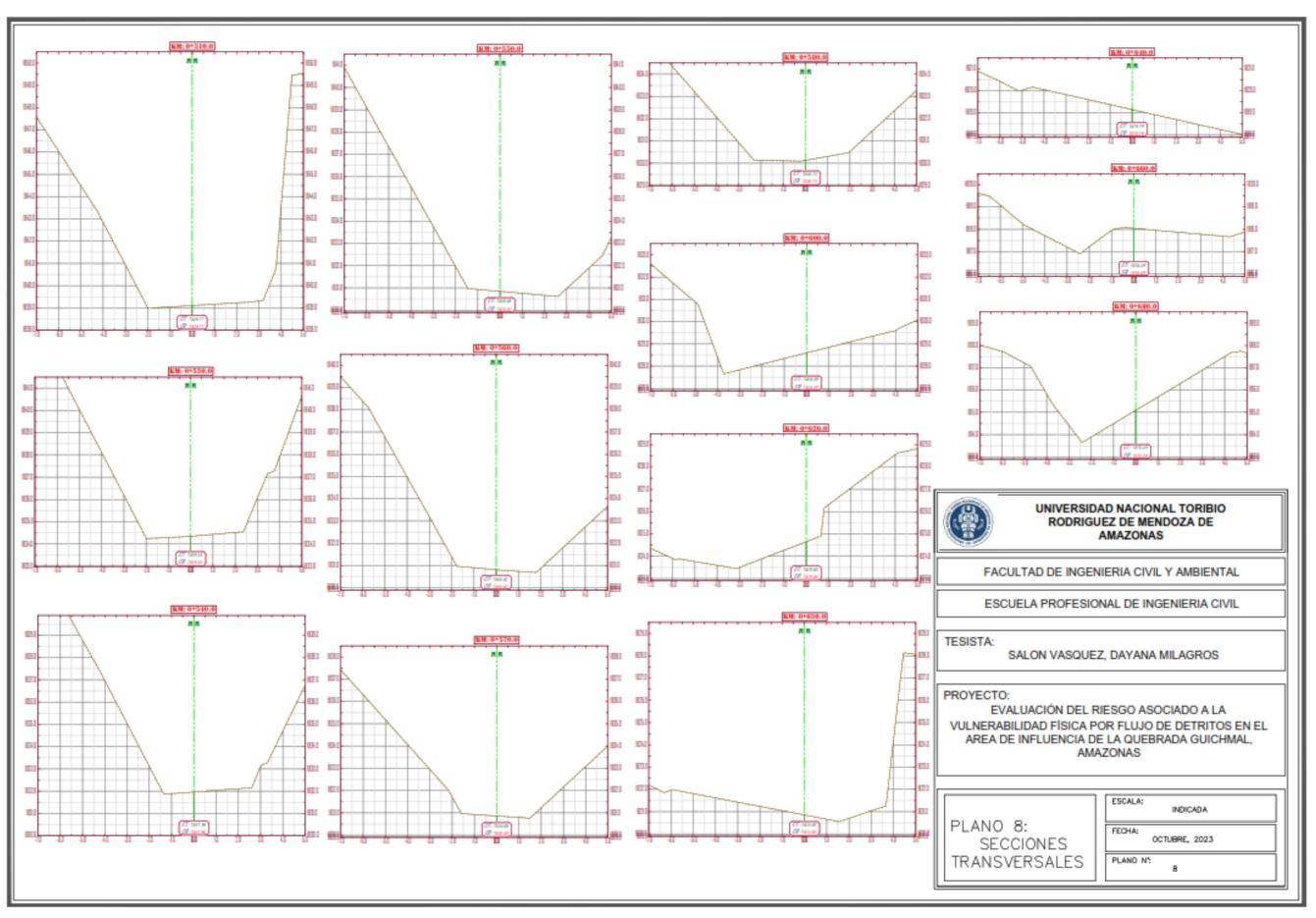

Fotografía 10: Ensayo de Limites de Atterberg – Limite Liquido

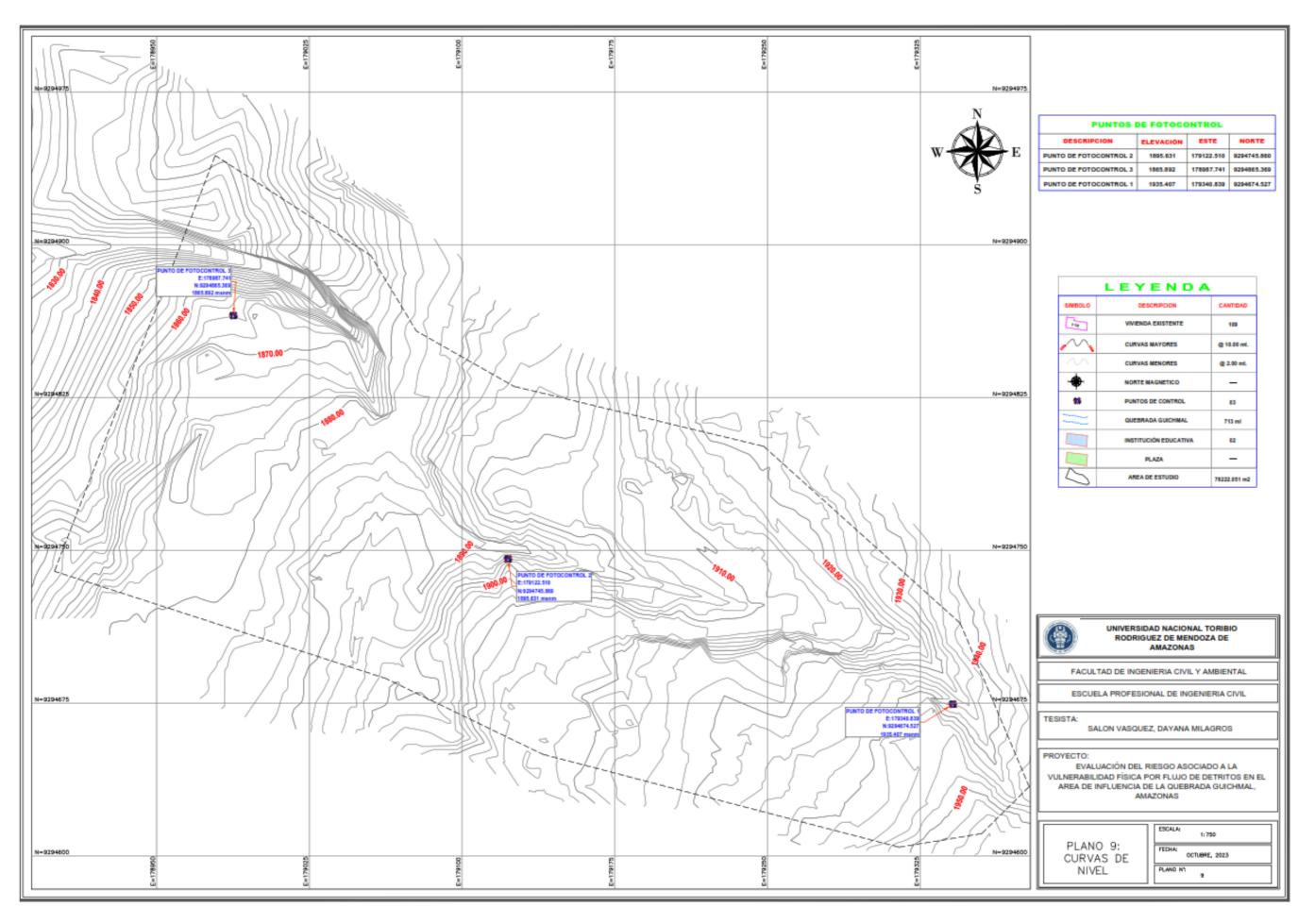


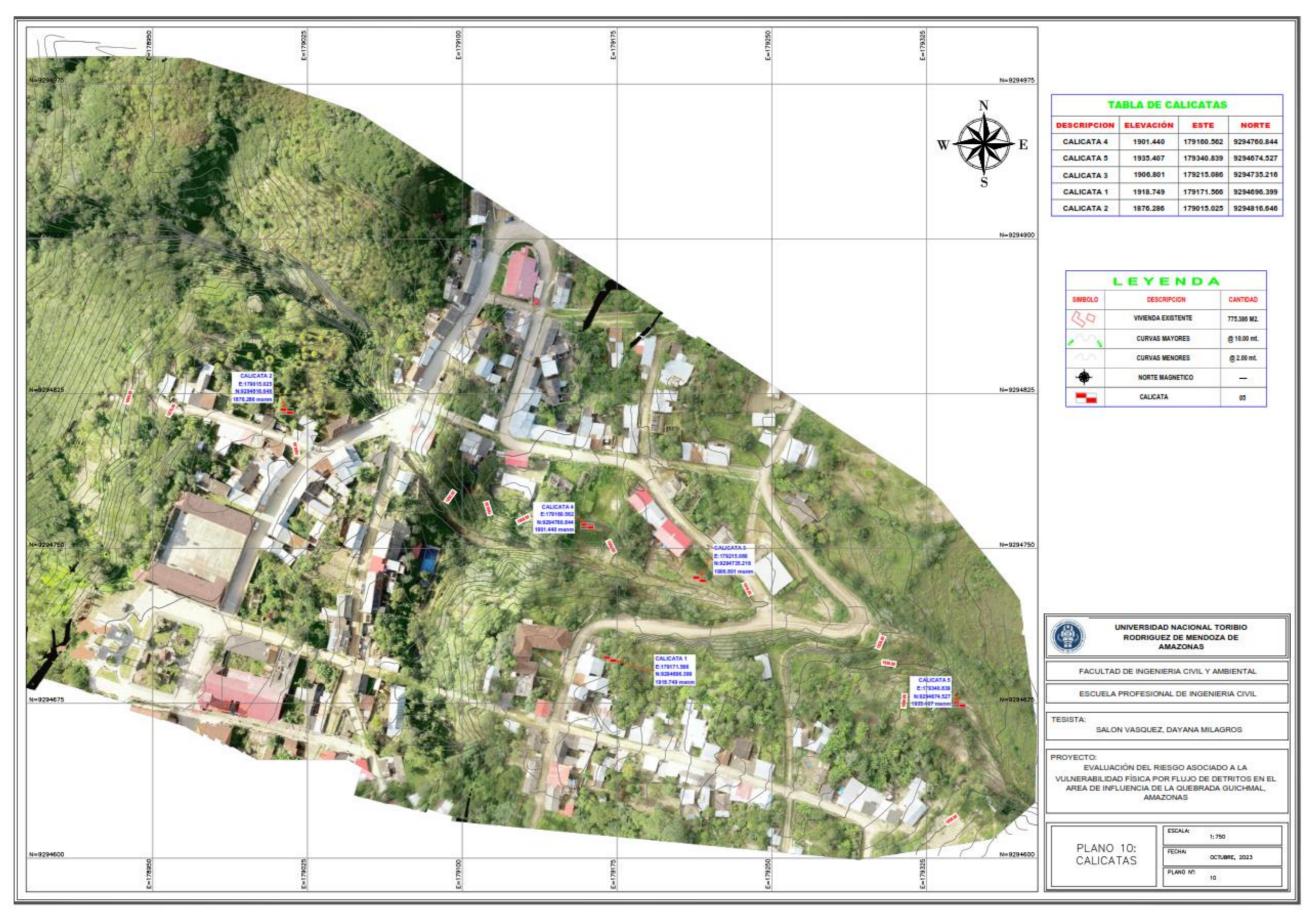

Anexo 8: Planos

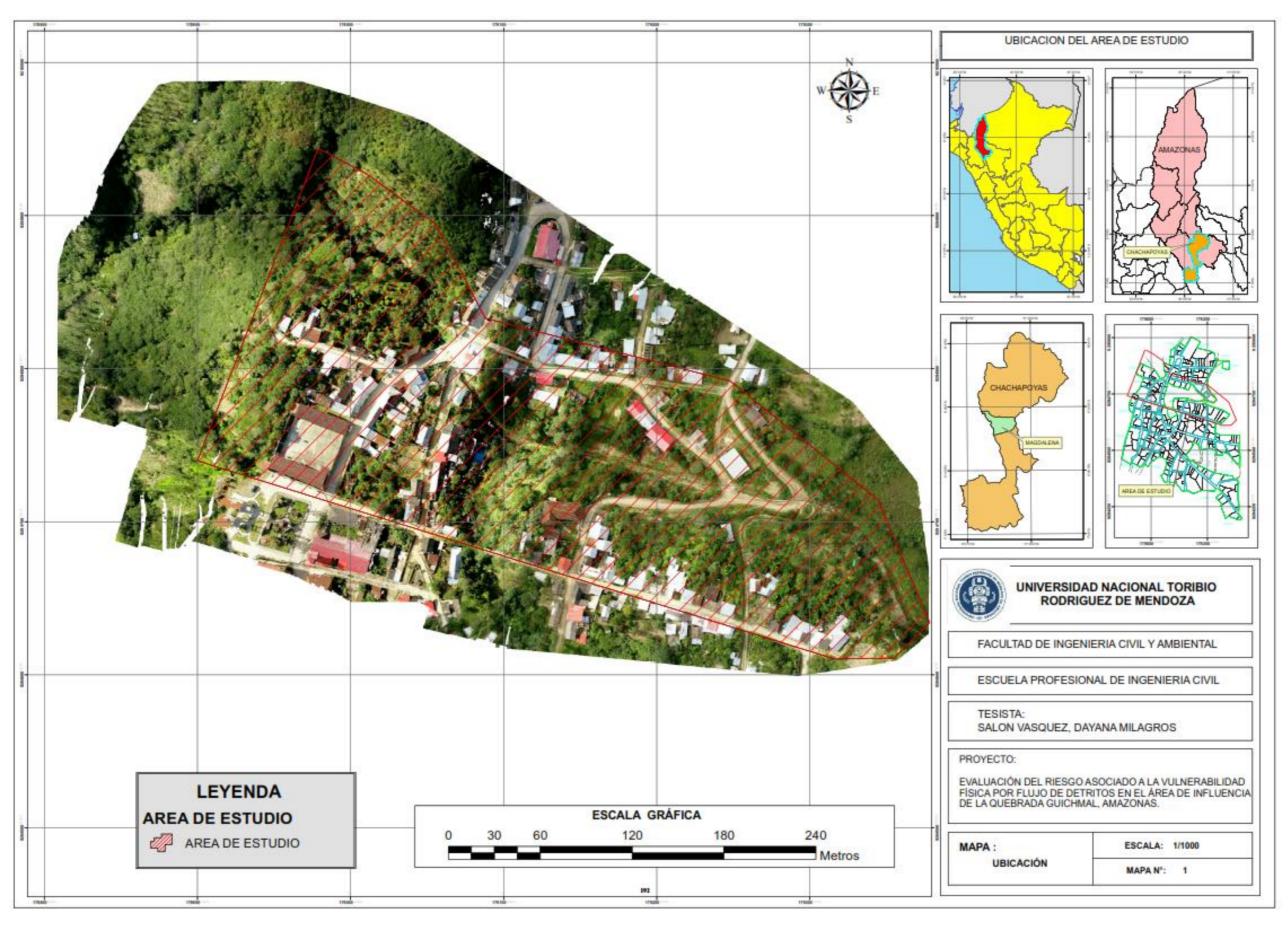


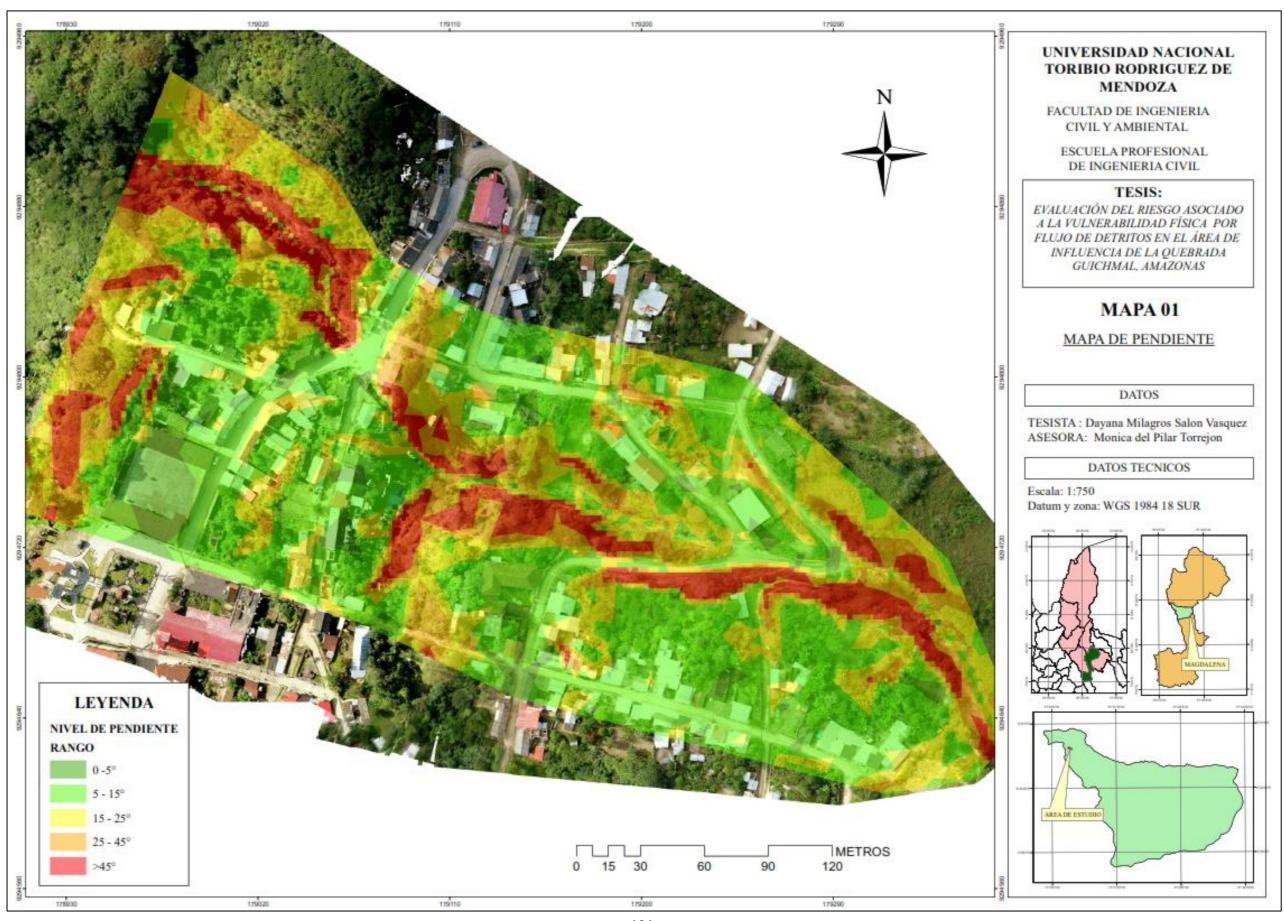


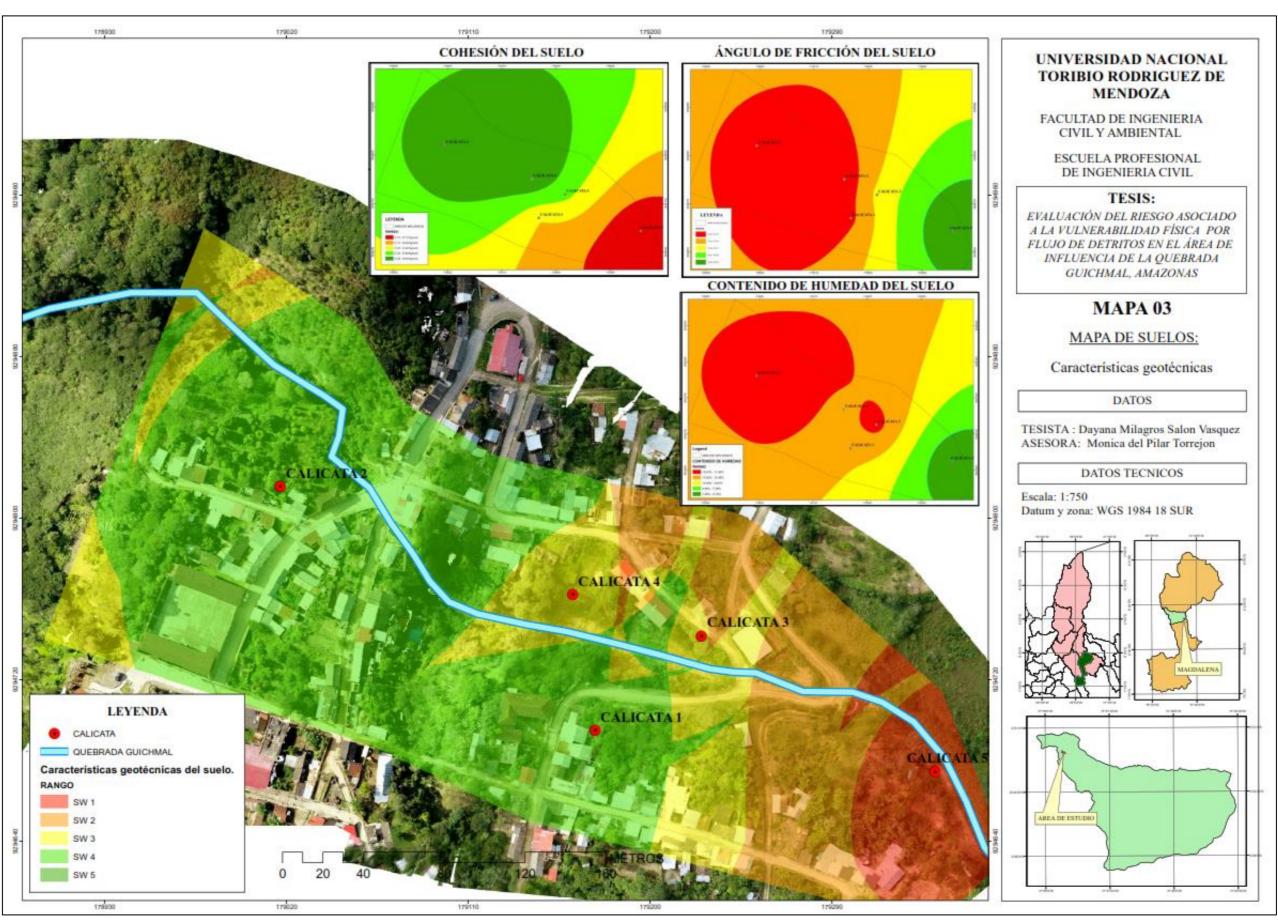


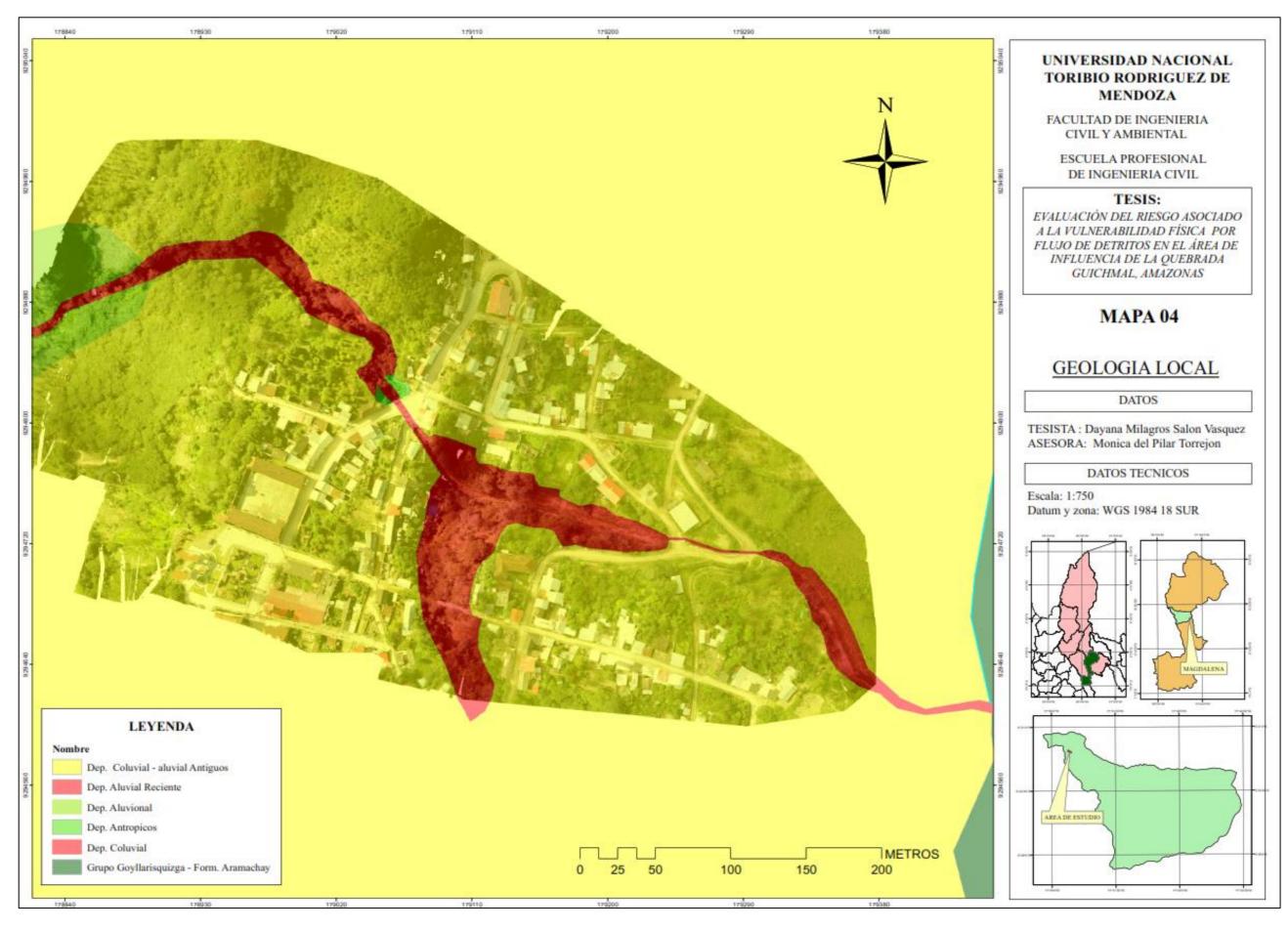











Anexo 9: Mapas temáticos

