UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE INGENIERÍA Y CIENCIAS AGRARIAS ESCUELA PROFESIONAL DE INGENIERÍA AGROINDUSTRIAL

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO AGROINDUSTRIAL

EVALUACIÓN FISICOQUÍMICA, SENSORIAL, ANTIOXIDANTES Y FENOLES TOTALES EN AGUA DE MESA CON ADICIÓN DE EXTRACTOS ESENCIALES

Autor: Bach. James Roger Medina Acuña

Asesor: M.Sc. Segundo Victor Olivares Muñoz

Registro: (.....)

CHACHAPOYAS – PERÚ 2024

DEDICATORIA

A Dios

Por haberme dado la vida, la salud y la familia, por acompañarme a lo largo de mi carrera, por ser mi luz en mi camino y por darme la sabiduría y fortaleza para poder alcanzar mis objetivos.

A mis padres

Julio Medina Lozada y Maximila Acuña Rojas les dedico con profunda gratitud y mucho amor, por inculcarme principios éticos y morales, por su apoyo incondicional ya que en todo momento estuvieron pendientes de mi persona siendo los autores principales y más importantes de mi vida y por ese apoyo más grande del mundo que todo hijo desea tener.

A mis hermanos

Luis, Julio, Melissa y todas aquellas personas que de alguna u otra manera contribuyeron durante mi carrera profesional permitiendo de esta manera terminar satisfactoriamente con mis estudios.

AGRADECIMIENTO

Agradezco infinitamente a Dios por todo lo que me dio y me sigue dando en la vida por guiarme y acompañarme en todo momento, por darme la fortaleza para seguir adelante en los momentos más difíciles y por la oportunidad de conocer esta fase de mi vida y poder seguir adelante con mis proyectos.

Mi más sincero y profundo agradecimiento a mis padres por desear y anhelar que todo me vaya bien y por darme la vida ya que son lo mejor que tengo, A mis hermanos por ese apoyo mutuo e incondicional. A mis familiares por todos sus consejos de aliento para triunfar en la vida y a mis amigos que desinteresadamente estuvieron presentes en todo momento y con los cuales compartimos tantos gratos momentos y todas aquellas personas que en todo momento me apoyaron.

A la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM-A) por brindarme sus ambientes y laboratorios, a los docentes en especial a los de la Facultad de Ingeniería y Ciencias Agrarias (FICA) y a la Escuela Profesional de Ingeniería Agroindustrial y a todas las personas que contribuyeron en el presente trabajo de investigación.

A mi asesor por compartir sus conocimientos, consejos y recomendaciones y guiarme en la elaboración, corrección y ejecución del presente trabajo de investigación.

AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

Ph. D. Jorge Luis Maicelo Quintana **Rector**

Dr. Oscar Andrés Gamarra Torres

Vicerrector Académico

Dra. María Nelly Lujan Espinoza **Vicerrectora de Investigación**

Dr. Erick Aldo Auquiñivin Silva

Decano de la Facultad de Ingeniería y Ciencias Agrarias

VISTO BUENO DEL ASESOR DE LA TESIS

ANEXO 3-L

VISTO BUENO DEL ASESOR DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL

El que suscribe el presente, doc	ente de la UNTRM (X)/Prof	esional externo (), hace constar
que ha asesorado la realiza	oción do la Tesis titulada	Evelucio	in Escapionica
que na asesorado la realiza	t 1 1. ttl		le meses
Sen seriol, antiexiden	les y finells letales	an agua e	U Mari
Con adicin de extrac			
del egresado			
de la Facultad de	niena y Ciencias	Agranas	
Escuela Profesional de <u><i>In</i></u>	genieria Agraina	Lustrial	
de esta Casa Superior de Estud			
131		150	
El suscrito da el Visto Bueno a	I- T-sis mansianada, dándol	e nace nara due	sea sometida a la
revisión por el Jurado Evalu-			
observaciones que formulen en	Acta en conjunto, y estar pi	resente en la sust	entación.
181		15"	
/ 6/	Chachapoyas, <u>08</u> de	Harza	de _2024_
10		N/	
			• *
	A)	
	(Parinix-	7	
Fii	ma y nombre completo del	Asesor	

JURADO EVALUADOR DE LA TESIS

Wash.

Dr. Meregildo Silva Ramírez

Presidente

Ms. Robert Javier Cruzalegui Fernandez

Secretario

D. Sc. Elena Victoria Torres Mamani

Vocal

CONSTANCIA DE ORIGINALIDAD DE LA TESIS

REGLAMENTO GENERAL PARA EL OTORGAMIENTO DEL GRADO ACADÉMICO DE

ANEXO 3-Q

	tales en agua de mesa con advoir de extractes exerciales
	entada por el estudiante ()/egresado (X)
	a Escuela Profesional de <u>Ingenieria Agraindustrial</u>
	correo electrónico institucional 031020 3112 6 untra edu.
	pués de revisar con el software Turnitin el contenido de la citada Tesis, acordam
a	a) La citada Tesis tiene 18 % de similitud, según el reporte del software Tu
	se adjunta a la presente, el que es menor () / igual () al 25% de similitud
	máximo permitido en la UNTRM.
t	b) La citada Tesis tiene % de similitud, según el reporte del software Tu
	se adjunta a la presente, el que es mayor al 25% de similitud que es e
	permitido en la UNTRM, por lo que el aspirante debe revisar su Tesis para
	redacción de acuerdo al Informe Turnitin que se adjunta a la presente. Debe
	al Presidente del Jurado Evaluador su Tesis corregida para nueva revisi
	software Turnitin.
Char	chapoyas, 8 de Honzo del 2024
Спас	chapoyas, de
	Sport 191/ Has
-	SECRETARIO PRESIDENTI
	Jecret And
	Bland
	VOCAL

REPORTE TURNITIN

Tesis: EVALUACIÓN FISICOQUÍMICA, SENSORIAL, ANTIOXIDANTES Y FENOLES TOTALES EN AGUA DE MESA CON ADICIÓN DE EXTRACTOS ESENCIALES.

INFOR	ME DE ORIGINALIDAD	-
INDI	8% 18% 4% CE DE SIMILITUD FUENTES DE INTERNET PUBLICACIONES TRABAJOS ESTUDIANTI	
FUENT	TES PRIMARIAS	
1	repositorio.untrm.edu.pe Fuente de Internet	12%
2	hdl.handle.net Fuente de Internet	2%
3	www.coursehero.com Fuente de Internet	1%
4	Submitted to Royal Holloway and Bedford New College Trabajo del estudiante	1%
5	www.alasdeleyre.com Fuente de Internet	<1%
6	Submitted to Universidad Nacional Intercultural Fabiola Salazar Leguía de Bagua Trabajo del estudiante	<1%
7	www.scielo.org.ve Fuente de Internet	<1%
	Dr. Meregildo Silva Rumirer	

ACTA DE SUSTENTACIÓN DE LA TESIS

ANEXO 3-S

ACTA DE SUSTENTACIÓN DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL
En la ciudad de Chachapoyas, el día 15 de abril del año 2024 siendo las [6:00horas, el
aspirante: James Rogar Medina Acuña asesorado por
Ing.M.Sc., Sagundo Victor Olivarus Moñoz defiende en sesión pública
presencial (X) / a distancia () la Tesis titulada: Evaluación Fisicoquimica
Sansorial, Antioxidantes y Fanolas Totales an Agua de Mesa
con Adición de Extractos Esenciales. para obtener el Título
Profesional de Inganiaro Agroindustrial a ser otorgado por la Universidad
Nacional Toribio Rodríguez de Mendoza de Amazonas; ante el Jurado Evaluador, constituido por:
Presidente: Dr. Maragildo Silva Ramiraz
Secretario: Mg. Robert Javier Cruzalego: Farnan das
Vocal: D. Sc. Elana Victoria Torres Mamani
Procedió el aspirante a hacer la exposición de la Introducción, Material y métodos, Resultados, Discusión y Conclusiones, haciendo especial mención de sus aportaciones originales. Terminada la defensa de la Tesis presentada, los miembros del Jurado Evaluador pasaron a exponer su opinión sobre la misma, formulando cuantas cuestiones y objeciones consideraron oportunas, las cuales fueron contestadas por el aspirante. Tras la intervención de los miembros del Jurado Evaluador y las oportunas respuestas del aspirante, el Presidente abre un turno de intervenciones para los presentes en el acto de sustentación, para que formulen las cuestiones u objeciones que consideren pertinentes.
Seguidamente, a puerta cerrada, el Jurado Evaluador determinó la calificación global concedida a la sustentación de la Tesis para obtener el Título Profesional, en términos de: Aprobado (X) por Unanimidad (X)/Mayoría () Otorgada la calificación, el Secretario del Jurado Evaluador lee la presente Acta en esta misma sesión pública. A continuación se levanta la sesión. Siendo las 13:00 horas del mismo día y fecha, el Jurado Evaluador concluye el acto de sustentación de la Tesis para obtenen el Título Profesional.
OBSERVACIONES:

ÍNDICE GENERAL

DEDIC	CATORIA	ii
AGRA	DECIMIENTO	iii
	RIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRÍGU ENDOZA DE AMAZONAS	
VISTO	BUENO DEL ASESOR DE LA TESIS	v
	DO EVALUADOR DE LA TESIS	
CONS'	TANCIA DE ORIGINALIDAD DE LA TESIS	vii
REPO	RTE TURNITIN	viii
ACTA	DE SUSTENTACIÓN DE LA TESIS	ix
ÍNDIC	E GENERAL	X
	E DE TABLAS	
INDIC	E DE FIGURAS	xiv
RESU	MEN	XV
ABSTI	RACT	xvi
I.	INTRODUCCIÓN	17
II.	MATERIAL Y MÉTODOS	21
2.1.	Localización del estudio	21
2.2.	Material de estudio	21
2.3.	Tipo de investigación.	21
2.4.	Diseño experimental	21
2.5.	Procedimiento de elaboración del agua de mesa y la adición de extractos	
	naturales	22
2.6.	Análisis fisicoquímico y sensorial	
2.7.	Análisis de datos.	
III.	RESULTADOS	
	1. Características sensoriales	
	2. Características fisicoquímicas	
IV.	DISCUSIÓN	40

V.	CONCLUSIONES	43
VI.	RECOMENDACIONES	46
VII.	REFERENCIAS BIBLIOGRÁFICAS	47

ÍNDICE DE TABLAS

Tabla 1.	Distribución de tratamientos para el proceso experimental	22
Tabla 2.	Resultados de la calificación del sabor del producto obtenido en cada	
	tratamiento.	51
Tabla 3	Resultados de la calificación del color del producto obtenido en cada	
	tratamiento.	52
Tabla 4.	Resultados de la calificación del sabor del producto obtenido en cada	
	tratamiento.	53
Tabla 5.	Datos para medir la aceptabilidad de cada tratamiento.	54
Tabla 6.	Valores de la acidez iónica en el producto obtenido en cada tratamiento	55
Tabla 7.	Valores de la densidad en el producto obtenido en cada tratamiento	56
Tabla 8.	Valores de la viscosidad (Cp)en el producto obtenido en cada tratamiento	57
Tabla 9.	Valores de la cantidad de grasas y aceites en el producto obtenido en cada	
	tratamiento	58
Tabla 10.	Valores de absorvancia del ácido gálico	59
Tabla 11.	Valores de la cantidad de fenoles en el producto obtenido en cada	
	tratamiento	50
Tabla 12.	Valores de absorvancia del ácido gálico	51
Tabla 13.	Valores de la cantidad de antioxidantes en el producto obtenido en cada	
	tratamiento	52
Tabla 14.	Valores de la cantidad de carbohidratos en el producto obtenido en cada	
	tratamiento	53
Tabla 15.	Valores de la cantidad de energía en el producto obtenido en cada	
	tratamiento	53
Tabla 16.	Valores de la cantidad de calcio (ppm) en el producto obtenido en cada	
	tratamiento	54
Tabla 17.	Valores de la cantidad de hierro ppm) en el producto obtenido en cada	
	tratamiento	54
Tabla 18.	Valores de la cantidad de magnesio (ppm) en el producto obtenido en cada	
	tratamiento	55
Tabla 19.	Valores de la cantidad de potasio (ppm) en el producto obtenido en cada	
	tratamientos	55

Tabla 20.	Valores de la cantidad de sodio (ppm) en el producto obtenido en cada	
	tratamiento	66
Tabla 21.	Valores de la cantidad de zinc (ppm) en el producto obtenido en cada	
	tratamiento	66

ÍNDICE DE FIGURAS

Figura 1.	Flujograma para elaboración de agua mineral con adición de extracto	s de
	especias naturales (Adaptado de Lopez, 2011)	24
Figura 2.	Calificación sensorial del olor, color y sabor del producto obtenido en	cada
	tratamiento.	28
Figura 3.	Nivel de aceptabilidad del producto obtenido en cada tratamiento	30
Figura 4.	Densidad registrada en cada tratamiento	31
Figura 5.	Viscosidad (Cp) registrada en cada tratamiento	31
Figura 6.	pH registrada en cada tratamiento	32
Figura 7.	Grasa registrada en cada tratamiento	32
Figura 8.	Actividad antioxidante registrada en cada tratamiento	33
Figura 9.	Fenoles totales registrados en cada tratamiento	33
Figura 10.	Energía total registrada en cada tratamiento	34
Figura 11.	Concentración de hierro registrada en cada tratamiento	34
Figura 12.	Concentración de Zinc registrada en cada tratamiento	35
Figura 13.	Concentración de calcio registrada en cada tratamiento	35
Figura 14.	Concentración de magnesio registrado en cada tratamiento	36
Figura 15.	Concentración de potasio registrada en cada tratamiento	36
Figura 16.	Concentración de sodio registrada en cada tratamiento	37
Figura 17.	Comportaniemto de la Absorvancia del ácido gálico	59
Figura 18.	Comportaniemto de la Absorvancia del ácido gálico	61

RESUMEN

El objetivo fue evaluar las características fisicoquímicas, sensoriales, actividad antioxidante y fenoles totales de agua de mesa con adición de extractos esenciales de especias naturales como sauco, clavo de olor, hojas de limón, hojas de eucalipto, salvia y menta; se procedió en base a un DCA, donde los tratamientos fueron la adición de seis extractos, en dos niveles de adición al producto. Las especias fueron seleccionadas en la ciudad de Chachapoyas - Perú; mediante proceso tecnológico adaptado se realizó la elaboración; se realizó la caracterización sensorial y fisicoquímica mediante métodos estandarizados, los datos obtenidos se sometieron a la prueba no paramétrica de Friedman, análisis de varianza (ANVA) y comparaciones múltiples de Tuckey (5% de significancia). En los resultados se determinó que existe diferentes productos; en las características sensoriales, existe diferencia significativa entre tratamientos en cuando al sabor (Sig. 3,4953E-19), color (sig. 8,6585E-15) y aroma (Sig. 9,2294E-25), pero todos los tratamientos tienen aceptación; en las características fisicoquímicas, la densidad (pvalue 9.55E-06) varía entre 0.993g/mL y 0.9527 g/mL; viscosidad (*p-value* 7.03E-43) entre 14.55 Cp a 20.63 Cp; el pH (*p-value* 3.33E-12) entre 5.99 a 6.46; la concentración de grasa o aceites (p-value 1.03E-40) varía entre 1000 ppm a 74000 ppm, fenoles (p-value 1.03E-27) entre 15.816 mg/L y 2.943 mg/L, la actividad antioxidante (*p-value* 5.71E-17) entre 29.56% a 88.75%; hierro (p-value 1.28E-40) entre 0.02 a 0.56 ppm, zinc (p-value 5.40E-13) en el rango de 0.01 ppm a 0.038 ppm, calcio (*p-value* 4.34E-43) entre 11.3 y 148.8 ppm; magnesio (*p-value* 1.62E-52) entre 8.45 y 23.12 ppm, potasio (*p-value* 3.75E-52) entre 35.65 ppm y 117.81 ppm, sodio (*p-value* 3.87E-43) entre 15.13 y 39.1 ppm.

Palabras clave: agua, extractos vegetales, antioxidantes, característica fisicoquímica, sensorial.

ABSTRACT

The objective was to evaluate the physicochemical and sensory characteristics, antioxidant activity and total phenols of table water with the addition of essential extracts of natural spices such as elderberry, clove, lemon leaves, eucalyptus leaves, sage and mint; we proceeded on the basis of a DCA, where the treatments were the addition of six extracts, in two levels of addition to the product. The spices were selected in the city of Chachapoyas - Peru; by means of an adapted technological process the elaboration was carried out; the sensory and physicochemical characterisation was carried out by means of standardised methods, the data obtained were subjected to Friedman's non-parametric test, analysis of variance (ANVA) and Tuckey's multiple comparisons (5% of significance). . In the results it was determined that there are different products; in the sensory characteristics, there is a significant difference between treatments in terms of taste (Sig. 3.4953E-19), colour (sig. 8.6585E-15) and aroma (Sig. 9.2294E-25), but all treatments have acceptance; in physicochemical characteristics, density (p-value 9.55E-06) varies between 0.993g/mL and 0.9527 g/mL; viscosity (p-value 7.03E-43) between 14.55 Cp to 20.63 Cp; pH (p-value 3.33E-12) between 5.99 to 6. 46; the concentration of fat or oils (p-value 1.03E-40) varies between 1000 ppm to 74000 ppm, phenols (p-value 1.03E-27) between 15.816 mg/L and 2.943 mg/L, antioxidant activity (p-value 5.71E-17) between 29.56% to 88.75%; iron (p-value 1.28E-40) between 0.02 to 0.56 ppm, zinc (pvalue 5.40E-13) in the range of 0.01 ppm to 0.038 ppm, calcium (p-value 4.34E-43) between 11.3 and 148.8 ppm; magnesium (p-value 1. 62E-52) between 8.45 and 23.12 ppm, potassium (p-value 3.75E-52) between 35.65 ppm and 117.81 ppm, sodium (p-value 3.87E-43) between 15.13 and 39.1 ppm.

Key words: water, plant extracts, antioxidants, physicochemical and sensory characteristics.

I. INTRODUCCIÓN

Las tendencia en la alimentación en el mundo indican que existe una transformación en todo el planeta hacia sistemas alimentarios sostenibles, como actividad fundamental para coadyuvar en la lucha contra el cambio climático, donde se evidencia un camino al consumo de dietas más sostenibles o de origen vegetal (Alae-Carew et al., 2022). Para el año 2024, la Comisión Europea examinará un nuevo marco de etiquetado sostenible. Aquí describimos el desarrollo de un nuevo sistema de etiquetado de productos alimenticios, denominado Índice Mediterráneo (Med Index), que se caracteriza por la posibilidad de integrar 27 criterios que abordan el tema de procesos sustentables de producción de alimentos en el marco de tres pilares: sustentabilidad nutricional, ambiental y social. (Clodoveo et al., 2022). En Italia existe preocupación por lograr la satisfacción de las personas por ejemplo de la Generación Z con los alimentos saludables, dentro de un contexto donde las barreras alimentarias saludables se relacionan positivamente con la satisfacción, percibiéndose la intención de cambio en los comportamientos bajo proceso reflexivos (Savelli & Murmura, 2023). En Estados Unidos, la FDA determinó que el patrón de alimentación saludable incluye frutas, verduras, granos integrales y productos lácteos bajos en grasa, con límites para el azúcar agregado, el sodio y las grasas saturadas y con requisitos muy estrictos, tanto así que muchos productos considerados saludables por el USDA y los consumidores no pasaron los requisitos de la FDA (Siu & Drewnowski, 2023), lo cual evidencia fehacientemente la preocupación en el mundo por la calidad en la alimentación de las personas.

Uno de los aspectos de la industria alimentaria en el marco de la tendencia mundial de consumo saludable es el procesamiento o uso de especies vegetales como materia prima natural para la extracción de componentes o insumos para elaborar productos de alto valor para la alimentación saludable; por ejemplo demostraron que el uso de extractos vegetales tuvo efectos inhibitorios sobre sustancias peligrosas como las aminas aromáticas heterocíclicas y productos finales de glicación avanzada en caballa asada (Zhang *et al.*, 2023); se sometieron a extracción de componentes a 37 vegetales crudos, mediante cuatro sistemas de solventes 70% acetona, 70% etanol, 70% metanol y agua destilada, determinándose que la acetona a 70% es el solvente más eficiente para extraer antioxidantes poli fenólicos, en general se demostró que todas las especias estudiadas

presentan cantidades interesantes en contenido fenólico total, contenido de flavonoides y las actividades antioxidantes de los extractos.(Sulaiman *et al.*, 2011)

Se ha desarrollado una inclinación entre los investigadores hacia el uso de sustancias activas de origen vegetal para el desarrollo de productos alimenticios y envases de alimentos. Los materiales de origen vegetal se han utilizado ampliamente como antioxidantes o antimicrobianos en formulaciones de películas/revestimientos. Dichos materiales incluyen extractos de plantas, aceites esenciales, oleorresinas y exudados de plantas. Los compuestos presentes en estos materiales realizan principalmente funciones antibacterianas, antivirales, antifúngicas, antioxidantes y antipardeamiento. (Manzoor et al., 2023)

Las plantas son fuentes abundantes de compuestos bioactivos, que ayudan a mejorar y potenciar la calidad y seguridad de diferentes tipos de productos alimenticios. Valiosos compuestos de plantas se han utilizado en forma de extracto en la industria alimentaria. Los extractos de plantas se obtienen de partes de plantas como hojas, flores, frutos, semillas, cáscaras, cortezas y raíces. Los compuestos activos se distribuyen en los tejidos y células vegetales, y su concentración y propiedades dependen de la especie vegetal, parte utilizada, estado de madurez, métodos de extracción, etc. Los extractos obtenidos de diferentes fuentes y partes de la planta realizan diversas funciones en los alimentos. Industria tales como antioxidantes, agentes antimicrobianos, agentes saborizantes, agentes colorantes, enzimas, nutrientes potenciadores y aditivos de envasado. (Mir *et al.*, 2022)

Varios estudios han demostrado que la incorporación de extractos de origen vegetal en recubrimientos comestibles fue eficaz para extender la vida postcosecha de varias frutas. Los recubrimientos comestibles enriquecidos con extractos de plantas están ganando popularidad como resultado de sus propiedades antioxidantes, siendo seguros, más baratos y fácilmente disponibles. Los avances recientes en la tecnología postcosecha dan una idea de cómo se pueden incorporar estos extractos de plantas en la matriz de recubrimiento comestible. Los extractos de plantas contienen varios compuestos activos que pueden usarse como material candidato para extender la vida postcosecha de los cultivos frutales.(Bajaj *et al.*, 2023)

Evaluaron el potencial de los extractos de hojas de remolacha (BLE) para el enriquecimiento y/o conservación de batidos de frutas y verduras. BLE presentó un contenido fenólico total (TPC: $132,43\pm1,51$ g kg $^{-1}$ base peso seco (PS)) y una capacidad antioxidante ($219,2\pm23,4$ mmol kg $^{-1}$ PS para FRAP y $28,9\pm0,5$ mmol kg $^{-1}$ PS para DPPH). La incorporación de la BLE en un batido de frutas y verduras (F&V) que contiene jugo de naranja (59 %), manzanas (15 %), zanahorias (15 %), BL (6 %) y tallos de remolacha (5%), aumentó significativamente (50 %) TPC del producto así como su capacidad antioxidante.(Fernandez *et al.*, 2020)

Realizaron la extracción de polifenoles de los residuos de espinaca y naranja mediante tres técnicas de extracción: extracción asistida por ultrasonido (UAE), extracción asistida por microondas (MAE) y extracción con líquido presurizado (PLE). Los factores probados incluyen el porcentaje de disolvente orgánico (etanol 0–80 %), acidez (0–0,5 % HCl), tiempo de extracción (0–30 min) y temperatura (25–120 °C). El rendimiento del proceso de extracción se ha evaluado de forma preliminar a partir del contenido polifenólico global proporcionado por cromatografía líquida de alta resolución.(HPLC) e índice de Folin-Ciocalteu. Además, también se ha determinado el poder reductor y la capacidad antirradicalaria de extractos vegetales y frutales.(Montenegro-Landívar *et al.*, 2021)

Los vegetales de hoja verde (LGV) son ricos en compuestos fenólicos que tienen una amplia gama de funciones biológicas, incluidas actividades antioxidantes y antimicrobianas. Nuestro primer objetivo fue evaluar las actividades antioxidantes y antimicrobianas de extractos etanólicos al 70% de diez LGV comúnmente consumidos en el este de Asia. Para determinar la actividad antioxidante, medimos el contenido fenólico total (TPC), la actividad de eliminación de radicales 2,2-difenil-1-picrilhidrazilo (DPPH), la actividad de decoloración catiónica del ácido 2,2-azinobis-3 etilbenxotiazolina-6-sulfónico (ABTS) y poder reductor. (Kim *et al.*, 2013).

Se utilizaron cinco extractos vegetales ricos en polifenoles como *Polygonum cuspidatum*, extracto de orégano, extracto de romero, extracto de uva blanca y extracto de té verde, se evaluó el efecto antioxidante de los extractos durante la cocción de carne de cerdo, exhibiéndose mayor efecto antioxidante en comparación con los controles, sin embargo

lamentablemente una cantidad significativa de polifenoles se perdió o destruyó durante la fase de cocción del proceso.(Barbieri *et al.*, 2018)

La investigación que se desarrollará se enmarca dentro de ese contexto mundial donde las tendencias es consumir productos saludables, principalmente por responsabilidad social y ambiental; en consecuencia existe diversas investigaciones realizadas con fines de obtener producto basados en el uso de los extractos de especies vegetal, en esa línea se busca evaluar el efecto de la adición de extractos de vegetales en las características, fisicoquímicas, sensoriales y capacidad antioxidante en la presentación de agua de mesa.

Por lo expuesto, la finalidad de la investigación es proponer una tecnología para la producción de un producto saludable y conforme a las tendencias de consumo en el mundo, por ello el objetivo de la investigación fue evaluar las características fisicoquímicas, sensoriales, actividad antioxidante y fenoles totales de agua de mesa con adición de extractos esenciales de especias naturales como sauco, clavo de olor, hojas de limón, hojas de eucalipto, salvia y menta.

II. MATERIAL Y MÉTODOS

2.1. Localización del estudio

El proyecto de investigación se ha realizado en las instalaciones del laboratorio de Tecnología de alimentos de la Escuela Profesional de Ingeniería agroindustrial, de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas.

Los análisis fisicoquímicos se realizaron en laboratorios de la Universidad Nacional Toribio Rodríguez de Mendoza y según fue necesario otros laboratorios acreditados de otras universidades o institutos del país.

2.2. Material de estudio

Especias vegetales: las especias que se utilizaron en la investigación fueron el sauco, clavo de olor, hojas de limón, hojas de eucalipto, salvia y menta, que fueron recolectadas de la producción o comercialización en mercados de la ciudad de Chachapoyas, teniendo en cuenta el cumplimiento de características de inocuidad para su selección y conservación antes de la extracción.

Agua de mesa: Se utilizó agua producida, envasada, purificada y ozonizada, de un yacimiento o estrato acuífero sin gas, para ello se trabajó con una empresa local, para asegurar por la tenencia de registro sanitario. La empresa fue Agroindustrias Satell E.I.R.L., ubicada en el Jirón Z, barrio Higos Urco, provincia de Chachapoyas, región Amazonas – Perú.

2.3. Tipo de investigación

La investigación tuvo enfoque cuantitativo, tipo aplicado y nivel experimental.

2.4. Diseño experimental

Para tales efectos se ejecutó un diseño completamente al azar. Siendo las muestras a evaluar la adición de seis tipos de extractos de especias vegétales en dos concentraciones por cada especia al agua de mesa, estableciéndose 12 tratamientos y 3 réplicas que hacen total de 36 unidades experimentales. Conforme se detalla a continuación, en la tabla:

Tabla 1.Distribución de tratamientos para el proceso experimental

	Tratamientos											
Repeticiones	A		В		C		D		E		F	
1								•			•	
2	•	•	•	•		•	•	•	•	•	•	•
3	•	•		•								

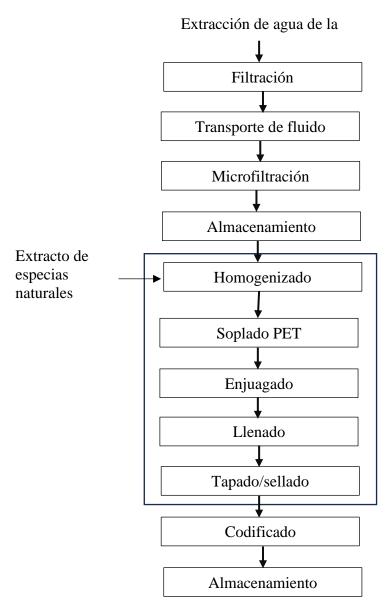
Fuente: Elaboración propia

2.5. Procedimiento de elaboración del agua de mesa y la adición de extractos naturales.

• Proceso para la obtención del producto.

El procedimiento propuesto fue una adaptación del procesamiento para la producción y envasado de agua mineral. (López, 2011)

- a) Extracción de agua de la fuente: consistió únicamente en la captación del agua, se trabajó con la empresa Agroindustrias Satell E.I.R.L., ubicada en el Jirón Z, barrio Higos Urco, provincia de Chachapoyas, región Amazonas – Perú
- **b) Filtración:** se realizó un primer filtrado mediante un filtro ciclónico, con la finalidad de eliminar algunos agentes extraños.
- c) Transporte de fluido: el agua fue transportada a través de una cañería de acero inoxidable para asegurar su inocuidad.
- d) **Microfiltración:** se realizó con la finalidad de lograr una pureza extrema del agua.
- e) **Almacenamiento:** El agua filtrada se almacena en un Tanque Vitivinícola Eternit de 350 litros con tapa.
- f) **Homogenizado:** en esta etapa se realizó la adición del extracto de especias vegetales, según cada tratamiento, y se procedió a un batido aproximadamente a 60 rpm por 5 min.


g) Envasado:

El proceso comprendió:

- Lavado de los envases: se realizó mediante la inmersión en agua con jabón líquido industrial hasta el momento de uso.
- Enjuagado: Las botellas mediante el accionamiento de una máquina fueron enjuagadas y escurridas. Se realizó con agua ozonizada, por aspersión, y posterior volcado o desaloje rápido, a una concentración de 0.5 ppm.
- Llenado: se realizó en envases de 400 mL, mediante accionamiento mecánico y en condiciones de asepsia.
- Tapado o sellado: se ejecutó mediante el cierre manual de la tapa tipo rosca de cada botella.
- h) Etiquetado o codificado: se realizó con la finalidad de identificar cada tratamiento para su posterior evaluación fisicoquímica, sensorial y actividad antioxidante.

Figura 1.

Flujograma para elaboración de agua de mesa con adición de extractos de especias naturales (Adaptado de Lopez, 2011)

Fuente: Elaboración propia

• Obtención de los extractos

Para cada tipo de muestra o materia prima vegetal se aplicó la técnica de maceración, además se priorizo que sea una extracción ecológica, es decir libre de químicos, donde se utilizó agua destilada con la finalidad de evitar influencia del sustancias extrañas o trazas tóxicas en el producto.

2.6. Análisis fisicoquímico y sensorial

Se procedió con la evaluación de todos los tratamientos, a continuación, se describe lo que se realizó en laboratorios de la UNTRM-A:

- **Densidad:** se efectuó mediante el uso de un densímetro (AOAC, 1998).
- Viscosidad. Se efectuó mediante el uso de un viscosímetro rotacional Brookfield LVDVE, a una velocidad de 100 rpm y empleando el *spindle* (SS) Nº 00. Éste es el tipo de *spindle* que se recomienda utilizar para líquidos poco viscosos. (Grández, 2008)
- pH. La determinación pH, se realizó utilizando el pH-metro digital, basado en la metodología de la AOAC 981.12, bajo el principio de la diferencia de potencial el cual fue medido entre un electrodo de vidrio y un electrodo de referencia (Hernandez, 2012).
- Grasas y aceites: Se determinó mediante el método gravimétrico, el cual consiste en la cuantificación de grasas y aceites presentes en una muestra liquida. La cantidad de grasas y aceites fue expresada en partes por millón (ppm) calculado mediante la ecuación siguiente:

Grasas y aceites =
$$\frac{p_1-p_2}{V}$$
 *1000000

Donde:

P1 = es el peso del vaso con residuos de grasas y aceites de la muestra. P2 = peso del vaso vacío.

V = es el volumen de la muestra empleada. El valor de grasas y aceites obtenidos corresponde a los gramos de grasas y aceites presentes en un litro de muestra.

- **Actividad antioxidante:** La medición se realizó con el método DPPH, en una placa de 96 pozos se añadió 22 μl de extracto (expresados como 100 μm equivalentes de trolox), y 200 μl de solución de DPPH a 150 μm, preparada en metanol al 80%(Duangjai et al., 2016). El extracto y los estándares se prepararon por triplicado, usando un rango de concentración de 0-500 μl.se registrarán las lecturas cada 10 minutos de 0 a 90 minutos a 517 nm en un

espectrofotómetro. La placa se mantuvo cubierta para protegerla de la luz y a temperatura ambiente entre las diversas lecturas (Duangjai et al., 2016).

Fenoles totales: El método Folin-Ciocalteau se empleó para evaluar los grupos fenólicos presentes (expresados en mg de ácido gálico/g de muestra)(Mesa-Vanegas *et al.*, 2010)

- **Carbohidratos**: mediante diferencia MS-INN (Collazos, 1993)
- **Energía total:** Por calculo MS-INN (Collazos, 1993)

 Energia total = 9Lipidos + 4Proteinas + 4Carbohidratos
- Hierro y Zinc: se tomó como referencia los siguientes métodos:

 AOAC Official Method 970.12. Iron in Destilled Liquors (Atomic Absorption Spectrophotometric Method), Standard Methods for the Examination of Water and Wastewater. Metals by Flame Atomic; Absorption Spectrometry (3111 B). Direct Air-Acetylene Flame Method y Thermo Scientific Method Iron, Copper and Zinc Determination in Wine using Flame Atomic Absorption Spectroscopy.

- Calcio

Se determinó por el método AOAC (1980) por digestión de la muestra con HNO₃ y H₃PO₄, evaporando y luego adicionando HCl 50%, filtrando y enrazando para su análisis. La extracción de fósforo se obtuvo por el método COVENIN (1983: 1178) a partir de las cenizas de la muestra.

- Magnesio

Se realizó mediante el método oficial del Official Methods of Analysis International (AOAC) 985,35, el cual utiliza la técnica de espectrometría de absorción atómica.

- **Potasio:** AOAC 2015.06 / ISO 21424 | IDF 243, espectrometría de masas con plasma de acoplamiento inductivo

- **Sodio:** AOAC 2015.06 / ISO 21424 | IDF 243, espectrometría de masas con plasma de acoplamiento inductivo

- Análisis sensorial

El test de aceptabilidad en cuanto al sabor, color y aroma; se realizó también con 30 jueces no entrenados igualmente que el análisis sensorial para evaluar los atributos; empleándose una escala hedónica con 5 puntos, como se detalla a continuación: (Ramírez-Navas, 2012)

Descripción	Calificación
Me disgusta mucho	1
Me disgusta	2
Ni me gusta ni me disgusta	3
Me gusta	4
Me gusta muchísimo	5

2.7. Análisis de datos.

Para el análisis de datos de las características fisicoquímicas se empleó el análisis de varianza al 5% del nivel de significancia, 95% de nivel de confianza y al 5% de margen de error. Asimismo se realizará la evaluación de las diferencias entre los tratamientos, se utilizará la prueba de comparaciones múltiples (Tukey) con un nivel de significancia $P \le 0.05$ (Hernández-Sampieri *et al.*, 2018)

Modelo aditivo lineal

Yijk =
$$\mu$$
+ti + ϵ ik

Dónde: i = 1, 2, 3, 4, 5, 6 (Tipos y concentración de extracto vegetal)

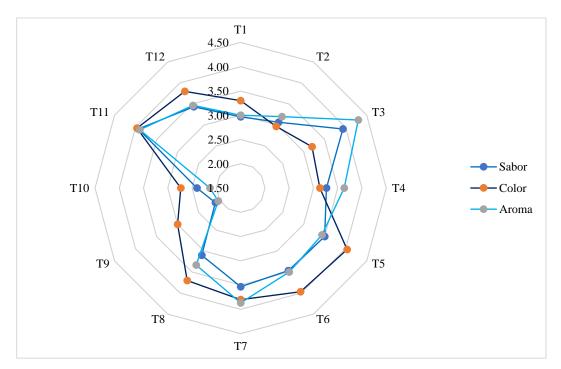
k = 1, 2, 3 repeticiones

Yijk: Característica fisicoquímica en la *i-ésimo* tratamiento i; observado en la *k-ésima* repetición.

μ : Efecto de la media poblacional

ti: Efecto del i-ésimo tipo y concentración de extracto.

Eijk: efecto del error experimental en el i-ésimo tratamiento en la k-ésima repetición


Evaluación sensorial

Se realizo mediante el análisis de varianza y la prueba de Friedman.

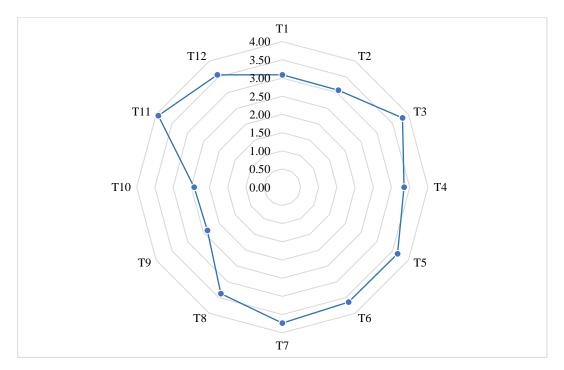
III. RESULTADOS

3.1. Características sensoriales

Figura 2.Calificación sensorial del olor, color y sabor del producto obtenido en cada tratamiento.

Nota. Los tratamientos (T) significan la adición de seis tipos de extractos naturales en dos niveles o concentraciones; T1 (Sauco 2.5%), T2 (Sauco 5%), T3 (Clavo de olor 2.5%), T4 (Clavo de olor 5%), T5 (Limón 2.5%), T6 (Limón 5%), T7 (Eucalipto 2.5%), T8 (Eucalipto 5%), T9 (Salvia 2.5%), T10 (Salvia 5%), T11(Menta 2.5%) y T12(Menta 5%).

La figura 2 muestra la calificación sensorial del olor, color y sabor del producto resultado de cada tratamiento, en base a la prueba de hipótesis mediante el análisis de varianza de dos vías por rangos de Friedman al 95% de confianza, existe diferencia significativa entre los tratamientos en cuando al sabor (Sig. 3,4953E-19), del mismo modo existe diferencia significativa para el color (sig. 8,6585E-15) y aroma (Sig. 9,2294E-25).

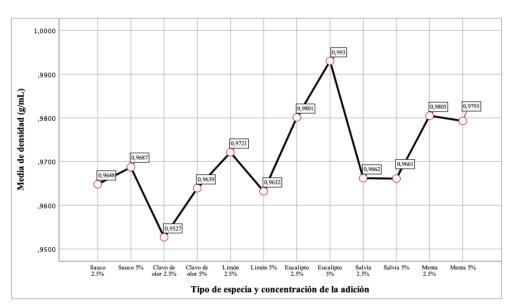

Después de realizar las comparaciones múltiples entre todos los tratamientos para las evaluaciones del sabor, color y aroma (Anexo 3), se encuentra que:

En cuanto al sabor existe diferencia entre el tratamiento T9 y los tratamientos T2 (Sig. 0.028), T8 (Sig. 0.008), T4 (Sig. 0.002), T5, T6, T12, T7,T3, T11 (Sig. 0.000); entre el tratamiento T10 y los tratamientos T5(Sig. 0.008), T6(Sig. 0.005), T12(Sig. 0.004), T7(Sig. 0.001), T3, T11(Sig. 0.000); entre el tratamiento T1 y los tratamientos T3 (Sig. 0.034), T11(Sig. 0.006); entre los tratamientos T2 y T11 (Sig. 0.015) y entre T8 y T11 (Sig. 0.047).

En cuanto al color existe diferencia entre el tratamiento T10 y los tratamientos T8 (Sig. 0.003), T12 (Sig. 0.001), T7 (Sig. 0.001), T6, T11, T5 (Sig. 0.000); entre el tratamiento T2 y los tratamientos T6(Sig. 0.005), T11(Sig. 0.003), T5(Sig. 0.00); entre el tratamiento T9 y los tratamientos T6 (Sig. 0.006), T11(Sig. 0.004), T5 (0.001); entre los tratamientos T3 y T5 (Sig. 0.028) y entre T4 y T5 (Sig. 0.034).

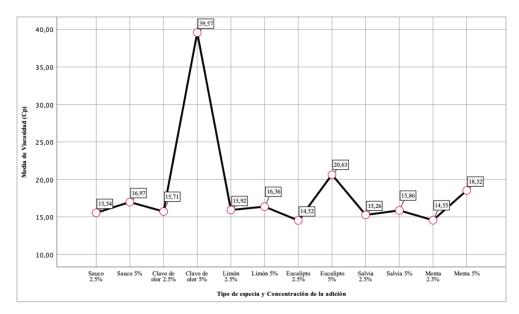
En cuanto al aroma existe diferencia entre el tratamiento T9 y los tratamientos T2 (Sig. 0.032), T8 (Sig. 0.003), T5, T6(Sig. 0.001), T12, T4, T7, T11,T3 (Sig. 0.000); entre el tratamiento T10 y los tratamientos T8(Sig. 0.012), T5(Sig. 0.005), T6(Sig. 0.003), T12(Sig. 0.001), T4, T7, T11, T3 (Sig. 0.000); entre el tratamiento T1 y los tratamientos T7 (Sig. 0.010), T11(Sig. 0.006), T3(0.000); entre los tratamientos T2 y T3 (Sig. 0.001), T8 y T3 (Sig. 0.001), T5 yT3 (Sig. 0.026); entre T6 y T3 (Sig. 0.036).

Figura 3. *Nivel de aceptabilidad del producto obtenido en cada tratamiento.*



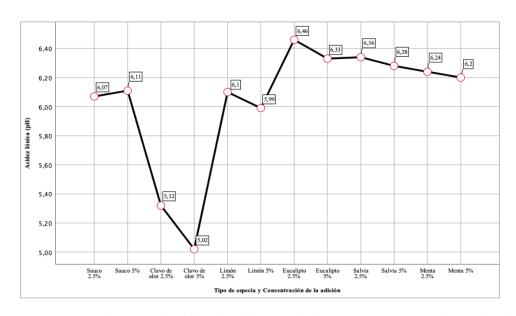
De acuerdo a las figuras 2 y 3; y el análisis de comparaciones múltiples en el análisis estadístico (Anexo 3) se puede asegurar que todos los tratamientos tienen aceptación por los consumidores, ya que están sobre la calificación tres, que es "Ni me gusta ni me disgusta" y la calificación cuatro que es "Me gusta", específicamente los valores de aceptación están entre 3.09 y 3.93. (Anexo 1 - Tabla 5), pero que si existe diferencia significativa en la aceptación entre algunos tratamientos.

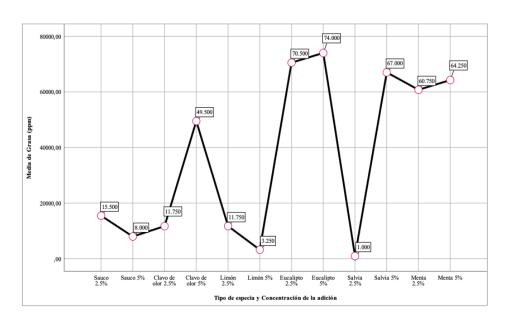
3.2. Características fisicoquímicas


Figura 4.

Densidad registrada en cada tratamiento

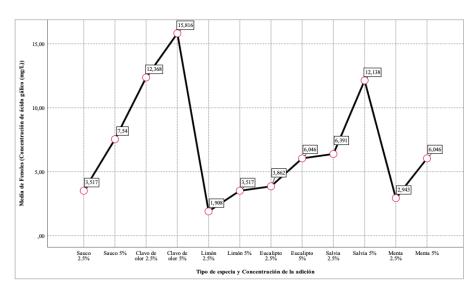
Nota. Los tratamientos (T) significan la adición de seis tipos de extractos naturales en dos niveles o concentraciones; T1 (Sauco 2.5%), T2 (Sauco 5%), T3 (Clavo de olor 2.5%), T4 (Clavo de olor 5%), T5 (Limón 2.5%), T6 (Limón 5%), T7 (Eucalipto 2.5%), T8 (Eucalipto 5%), T9 (Salvia 2.5%), T10 (Salvia 5%), T11(Menta 2.5%) y T12(Menta 5%).

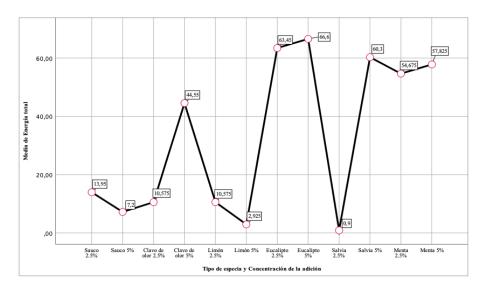

Figura 5.Viscosidad (Cp) registrada en cada tratamiento

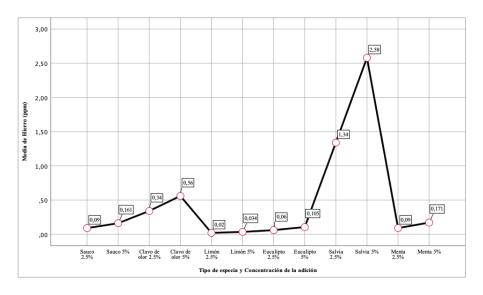

Nota. Los tratamientos (T) significan la adición de seis tipos de extractos naturales en dos niveles o concentraciones; T1 (Sauco 2.5%), T2 (Sauco 5%), T3 (Clavo de olor 2.5%), T4 (Clavo de olor 2.5%), T5 (Clavo de olor

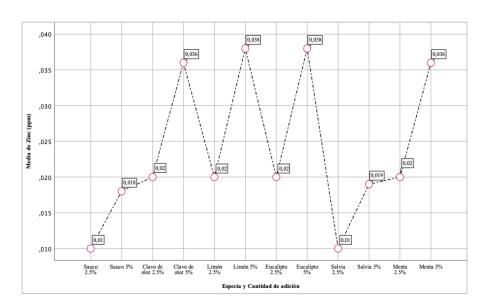
5%), T5 (Limón 2.5%), T6 (Limón 5%), T7 (Eucalipto 2.5%), T8 (Eucalipto 5%), T9 (Salvia 2.5%), T10 (Salvia 5%), T11(Menta 2.5%) y T12(Menta 5%).

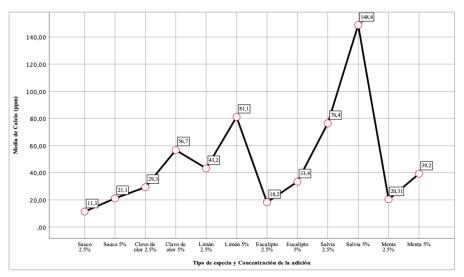
Figura 6.pH registrado en cada tratamiento

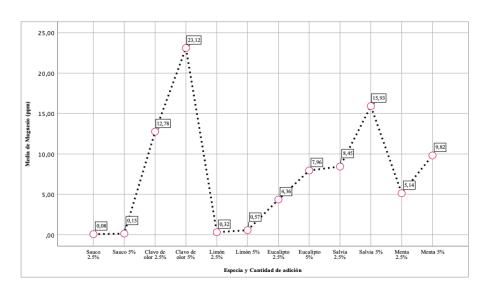

Figura 7.Grasa registrada en cada tratamiento


Figura 8.Actividad antioxidante registrada en cada tratamiento


Figura 9.Fenoles totales registrados en cada tratamiento


Figura 10. *Energía total registrada en cada tratamiento*


Figura 11.Concentración de hierro registrada en cada tratamiento


Figura 12.Concentración de Zinc registrada en cada tratamiento

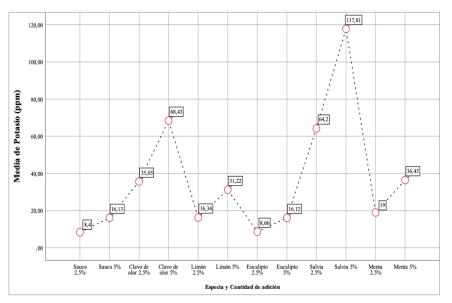

Figura 13.Concentración de calcio registrada en cada tratamiento

Figura 14.Concentración de magnesio registrado en cada tratamiento

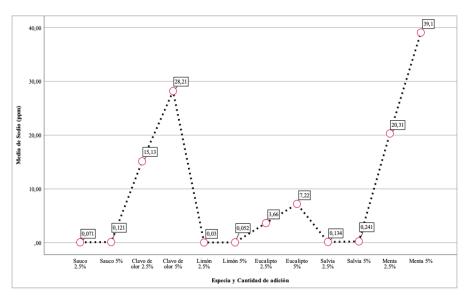


Figura 15.Concentración de potasio registrada en cada tratamiento

Nota. Los tratamientos (T) significan la adición de seis tipos de extractos naturales en dos niveles o concentraciones; T1 (Sauco 2.5%), T2 (Sauco 5%), T3 (Clavo de olor 2.5%), T4 (Clavo de olor 5%), T5 (Limón 2.5%), T6 (Limón 5%), T7 (Eucalipto 2.5%), T8 (Eucalipto 5%), T9 (Salvia 2.5%), T10 (Salvia 5%), T11(Menta 2.5%) y T12(Menta 5%).

Figura 16.Concentración de sodio registrada en cada tratamiento

Nota. Los tratamientos (T) significan la adición de seis tipos de extractos naturales en dos niveles o concentraciones; T1 (Sauco 2.5%), T2 (Sauco 5%), T3 (Clavo de olor 2.5%), T4 (Clavo de olor 5%), T5 (Limón 2.5%), T6 (Limón 5%), T7 (Eucalipto 2.5%), T8 (Eucalipto 5%), T9 (Salvia 2.5%), T10 (Salvia 5%), T11(Menta 2.5%) y T12(Menta 5%).

La figura 4 muestra los valores promedio de la densidad (g/mL) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 9.55E-06) entre tratamientos y según la prueba de Tukey (α = 0.05) la mayor diferencia está entre el T3 y T12, T7, T11, T8; asimismo entre T8 y T6, T4, T1, T10, T9 y T2.

La figura 5 muestra los valores promedio de la viscosidad (Cp) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 7.03E-43) entre tratamientos y según la prueba de Tukey (α = 0.05) para las comparaciones múltiples existe diferencia significativa entre todos los tratamientos, excepto entre T7 y T11, T9 y T1, T1 y T3, T3 y T10, T3 y T5, además de T10 y T5.

La figura 6 muestra los valores promedio de la acidez iónica (pH) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (*p-value* 3.33E-12) entre tratamientos y según la prueba de Tukey (α = 0.05) la mayor diferencia está entre el T4 y T6, T1,T5,T2;T12, T11, T10, T8,T9,T7; entre T3 y T6, T1,T5,T2;T12, T11, T10, T8,T9,T7, asimismo entre T6 y T7.

La figura 7 muestra los valores promedio de grasa (ppm) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 1.03E-40) entre tratamientos y según la prueba de Tukey (α = 0.05) para las comparaciones múltiples existe diferencia significativa entre todos los tratamientos.

La figura 8 muestra los valores promedio de la actividad antioxidante (%) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 5.71E-17) entre tratamientos y según la prueba de Tukey (α = 0.05) existe diferencias altamente significativas entre el T5 y los demás tratamientos; entre T11 y todos los demás tratamientos, excepto T6; entre T6 y todos los demás tratamientos, asimismo en un nivel menor entre T1 y los demás tratamientos.

La figura 9 muestra los valores promedio de fenoles totales (Concentración de ácido gálico mg/L) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 1.03E-27) entre tratamientos y según la prueba de Tukey (α = 0.05) existe diferencias significativas entre todos los tratamientos excepto T11 y T6, T1; T6 y T1, T7; T1 y T7; T8 y T12, T9; T12 y T9, además de T10 y T3.

La figura 11 muestra los valores promedio de hierro (ppm) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 1.28E-40) entre tratamientos y según la prueba de Tukey (α = 0.05) existe diferencias significativas entre todos los tratamientos excepto T15 y T6, T7; T6 y T7; T7 y T1, T11; T1 y T11, T8; T11 y T8, además de T2 y T12.

La figura 12 muestra los valores promedio de zinc (ppm) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 5.40E-13) entre tratamientos y según la prueba de Tukey (α = 0.05) existe diferencias significativas entre los tratamientos T9 y T12, T4, T6, T8; asimismo los tratamientos T1, T2, T10, T3, T11, T5 y T7 tienen diferencias significativas con T12, T4, T6 y T8.

La figura 13 muestra los valores promedio de calcio (ppm) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 4.34E-43) entre tratamientos y según la prueba de Tukey (α = 0.05) para las comparaciones múltiples existe diferencias significativas entre todos los tratamientos.

La figura 14 muestra los valores promedio de magnesio (ppm) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 1.62E-52) entre tratamientos y según la prueba de Tukey (α = 0.05) para las comparaciones múltiples existe diferencias significativas entre todos los tratamientos, excepto entre T1 y T2.

La figura 15 muestra los valores promedio de potasio (ppm) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 3.75E-52) entre tratamientos y según la prueba de Tukey (α = 0.05) para las comparaciones múltiples existe diferencias significativas entre todos los tratamientos, excepto entre T1 y T7; T8 y T2, T5 y entre T2 y T5.

La figura 16 muestra los valores promedio de sodio (ppm) de los productos obtenidos en cada tratamiento, según el ANOVA, existe diferencia significativa (p-value 3.87E-43) entre tratamientos y según la prueba de Tukey (α = 0.05) para las comparaciones múltiples existe diferencias significativas entre todos los tratamientos, excepto entre T5 y T6, T2, T9, T10; entre T6 y T2, T9, T10, entre T2 y T9, T10; además entre T9 y T10.

IV. DISCUSIÓN

En la figura 4, se observa que la densidad de los productos obtenidos en la mayoría tiene una relación directamente proporcional a la concentración en la adición de extracto de las especies vegetales, asimismo se observa que la mayor densidad se evidencia en el tratamiento (T8) con adición de 5% de extracto de eucalipto (0.993g/mL) y la densidad menor se registra en el tratamiento (T3) con 0.9527 g/mL.

En la figura 5, se observa que la viscosidad de los productos obtenidos fluctúa en el rango entre 14.55 Cp a 20.63 Cp, excepto el tratamiento (T4) que registra 39.57 Cp, sin embargo, en todos los casos la viscosidad es bastante menor, que se cree que no influye en la calificación sensorial.

En la figura 6, se observa que la acidez iónica (pH) de los productos obtenidos, en la mayoría de casos están en el rango de 5.99 a 6.46, excepto los productos con adición de extracto de clavo de olor que registran valores entre 5.02 a 5.32.

En la figura 7, se observa que existe alta variabilidad en la concentración de grasa o aceites en los productos obtenidos y para todos los casos la concentración varía entre 1000 ppm a 74000 ppm. En la figura 9, se muestra que la mayor concentración de fenoles se registra en los tratamientos con adición de extracto de clavo de olor con 12.368 mg/L y 15.816 mg/L respectivamente, y las muestras con menor contenido son las que se adicionaron extracto de cáscara de limón y menta, con 1.908 mg/L y 2.943 mg/L respectivamente.

En la figura 10, se muestra que la concentración de energía tiene un comportamiento en relación similar a la concentración de grasas y aceites, sin embargo, para todos los casos el contenido de energía es menor, ya que está en un rango entre 0.9 a 66.6. En la figura 11, se muestra que la concentración de hierro en las muestras, en la mayoría está en el rango entre 0.02 a 0.56 ppm, excepto las muestras con adición de salvia que registran 1.34 y 2.58 ppm.

En la figura 12, se observa que la concentración de zinc es altamente variable entre las muestras, sin embargo, existe una tendencia directamente proporcional en relación a la

cantidad de extracto que se adiciona. Pero en términos generales la concentración de zinc es bastante menor ya que fluctúa en el rango de 0.01 ppm a 0.038 ppm.

La figura 13, indica que la concentración de calcio en las muestras lógicamente depende del tipo de extracto adicionado, las muestras con adición de extracto de sauco registran las menores concentraciones con 11.3 y 21.1 ppm; y las muestras con adición de salvia registran las mayores concentraciones con 76.4 y 148.8 ppm. La figura 14, indica que la concentración de magnesio en las muestras registra mayor concentración en las muestras con adición de extracto de clavo de olor con 12.78 y 23.12 ppm, además de las muestras con adición de extracto de salvia con 8.45 y 15.93 ppm.

En la figura 15, se muestra que el potasio en los productos obtenidos registra las mayores concentraciones en las muestras con adición de extracto de salvia con 64.2 ppm y 117.81 ppm, además de los valores resaltantes en las muestras con adición de extracto de clavo de olor que registran 35.65 ppm y 68.43 ppm. En la figura 16, se muestra la concentración de sodio en las muestras, donde las muestras con adición de menta registran los valores más altos con 20.31 y 39.1 ppm, además de las muestras con adición de clavo de olor que registra 15.13 ppm y 28.21 ppm.

Se ha investigado diferentes productos en relación especial a la adición de cada tipo y concentración de extracto natural de especia, productos donde se priorizó el uso de insumos y el manejo de procedimientos mínimos posibles, resultado de los cuales se puede asegurar que todos los tratamientos tienen aceptación por los consumidores, con la calificación 3.09, que es "Ni me gusta ni me disgusta" y la calificación 3.93 que es "Me gusta" (Figura 1 y 2), pero que según la prueba de Friedman al 95% de confianza, existe diferencia significativa entre los tratamientos en cuando al sabor (Sig. 3,4953E-19), del mismo modo existe diferencia significativa para el color (sig. 8,6585E-15) y aroma (Sig. 9,2294E-25). Como se mencionó la obtención de los extractos se realizaron de forma natural solamente usando procesos de maceración, para evitar incidencias del proceso de extracción en las características sensoriales de cada muestra; lo mencionado difiere con lo mencionado por Sulaiman et al (2011), quienes procedieron con la extracción de 37 vegetales crudos y determinaron que la acetona a 70% es el solvente más eficiente para extraer antioxidantes polifenólicos, por ejemplo.

En la figura 8, se muestra de alrededor del 90% de muestras registran una actividad antioxidante entre 61.18% a 88.75%, las muestras con adición de extracto de limón presentan la cantidad menores con 61.75% y 29.56%, y las mayores concentraciones lo presentan las muestras con adición de extracto de eucalipto, registrando 84,97% y 88.75%; evidenciándose que los extractos naturales sirven como aporte de características especiales a los productos obtenidos, ello confluye con lo mencionado por Mir *et al* (2022) quienes indican que los extractos obtenidos de diferentes fuentes y partes de la planta realizan diversas funciones en los alimentos tales como antioxidantes, agentes antimicrobianos, agentes saborizantes, agentes colorantes, enzimas, nutrientes potenciadores y aditivos de envasado.

V. CONCLUSIONES

Se evaluó las características fisicoquímicas, sensoriales, actividad antioxidante y fenoles totales de agua de mesa con adición de extractos esenciales de especias naturales como sauco, clavo de olor, hojas de limón, hojas de eucalipto, salvia y menta, determinándose que existe diferentes productos de acuerdo al tipo y concentración de extracto adicionado; en las características sensoriales, existe diferencia significativa entre los tratamientos en cuando al sabor (Sig. 3,4953E-19), el color (sig. 8,6585E-15) y aroma (Sig. 9,2294E-25), pero se puede asegurar que todos los tratamientos tienen aceptación por los consumidores, ya que están sobre la calificación "Ni me gusta ni me disgusta" y "Me gusta"; en lo que respecta a las características fisicoquímicas existe diferencias significativas en todos los casos.

La densidad mayor se evidencia en el tratamiento (T8) con adición de 5% de extracto de eucalipto (0.993g/mL) y la densidad menor se registra en el tratamiento (T3) con 0.9527 g/mL, existe diferencia significativa (*p-value* 9.55E-06) entre tratamientos.

La viscosidad fluctúan en el rango entre 14.55 Cp a 20.63 Cp, en todos los casos la viscosidad es bastante menor, existe diferencia significativa (*p-value* 7.03E-43) entre tratamientos.

La acidez iónica (pH), en la mayoría de casos están en el rango de 5.99 a 6.46, excepto los productos con adición de extracto de clavo de olor que registran valores entre 5.02 a 5.32; existe diferencia significativa (*p-value* 3.33E-12) entre tratamientos.

La concentración de grasa o aceites en los productos obtenidos y para todos los casos la concentración varía entre 1000 ppm a 74000 ppm, existe diferencia significativa (*p-value* 1.03E-40) entre tratamientos.

La concentración mayor de fenoles se registra en los tratamientos con adición de extracto de clavo de olor con 12.368 mg/L y 15.816 mg/L respectivamente, y las muestras con menor contenido son las que se adicionaron extracto de cáscara de limón y menta, con

1.908 mg/L y 2.943 mg/L respectivamente, existe diferencia significativa (*p-value* 1.03E-27) entre tratamientos.

El 90% de muestras registran una actividad antioxidante entre 61.18% a 88.75%, las muestras con adición de extracto de limón presentan la cantidad menores con 61.75% y 29.56%, y las mayores concentraciones lo presentan las muestras con adición de extracto de eucalipto, registrando 84,97% y 88.75%, existe diferencia significativa (*p-value* 5.71E-17) entre tratamientos.

La concentración de hierro en las muestras, en la mayoría está en el rango entre 0.02 a 0.56 ppm, excepto las muestras con adición de salvia que registran 1.34 y 2.58 ppm, existe diferencia significativa (*p-value* 1.28E-40) entre tratamientos.

La concentración de zinc es altamente variable entre las muestras, sin embargo, existe una tendencia directamente proporcional en relación a la cantidad de extracto que se adiciona. Pero en términos generales la concentración de zinc es bastante menor ya que fluctúa en el rango de 0.01 ppm a 0.038 ppm, existe diferencia significativa (*p-value* 5.40E-13) entre tratamientos.

La concentración de calcio en las muestras con adición de extracto de sauco registra las menores concentraciones con 11.3 y 21.1 ppm; y las muestras con adición de salvia registran las mayores concentraciones con 76.4 y 148.8 ppm, existe diferencia significativa (*p-value* 4.34E-43) entre tratamientos.

La concentración de magnesio en las muestras registra mayor concentración en las muestras con adición de extracto de clavo de olor con 12.78 y 23.12 ppm, además de las muestras con adición de extracto de salvia con 8.45 y 15.93 ppm, existe diferencia significativa (*p-value* 1.62E-52) entre tratamientos.

El potasio en los productos obtenidos registra las mayores concentraciones en las muestras con adición de extracto de salvia con 64.2 ppm y 117.81 ppm, además de los valores resaltantes en las muestras con adición de extracto de clavo de olor que registran 35.65 ppm y 68.43 ppm, existe diferencia significativa (*p-value* 3.75E-52) entre tratamientos.

La concentración de sodio en las muestras, donde las muestras con adición de menta registran los valores más altos con 20.31 y 39.1 ppm, además de las muestras con adición de clavo de olor que registra 15.13 ppm y 28.21 ppm, existe diferencia significativa (*p-value* 3.87E-43) entre tratamientos.

VI. RECOMENDACIONES

- Se recomienda proceder a un proceso de desarrollo de los productos, cada producto
 obtenido tiene sus características propias y sus atributos sensoriales que sería
 necesario aprovechar, después de seguir un proceso para su producción con
 responsabilidad social.
- Es necesario probar con otras concentraciones de extractos para poder evaluar su aceptación sensorial.
- Es necesario realizar un proceso de extracción natural usando como solvente solamente agua, para evitar la incidencia de trazas de solventes en el producto que será consumible.
- Se recomienda investigar en el desarrollo de la tecnología para la adición y mejor homogenizado del agua con los extractos.
- Se recomienda para cuestiones de marketing del producto basarse en el aporte de nutrientes naturales, especialmente los antioxidantes en el agua de mesa.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Alae-Carew, C., Green, R., Stewart, C., Cook, B., Dangour, A. D., & Scheelbeek, P. F. D. (2022). The role of plant-based alternative foods in sustainable and healthy food systems: Consumption trends in the UK. *Science of The Total Environment*, 807, 151041. https://doi.org/10.1016/j.scitotenv.2021.151041
- Bajaj, K., Adhikary, T., Gill, P. P. S., & Kumar, A. (2023). Edible coatings enriched with plant-based extracts preserve postharvest quality of fruits: A review. *Progress in Organic Coatings*, 182, 107669. https://doi.org/10.1016/j.porgcoat.2023.107669
- Barbieri, G., Bergamaschi, M., Franceschini, M., & Barbieri, G. (2018). Feasibility of addition of polyphenol-rich vegetable extracts in whole cooked products: Benefits and drawbacks. *Meat Science*, *139*, 1-6. https://doi.org/10.1016/j.meatsci.2018.01.010
- Clodoveo, M. L., Tarsitano, E., Crupi, P., Pasculli, L., Piscitelli, P., Miani, A., & Corbo, F. (2022). Towards a new food labelling system for sustainable food production and healthy responsible consumption: The Med Index Checklist. *Journal of Functional Foods*, 98, 105277. https://doi.org/10.1016/j.jff.2022.105277
- Duangjai, A., Suphrom, N., Wungrath, J., Ontawong, A., Nuengchamnong, N., & Yosboonruang, A. (2016). Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts.

 Integrative Medicine Research, 5(4), 324-331.

 https://doi.org/10.1016/j.imr.2016.09.001
- Fernandez, M. V., Bengardino, M., Jagus, R. J., & Agüero, M. V. (2020). Enrichment and preservation of a vegetable smoothie with an antioxidant and antimicrobial extract obtained from beet by-products. *LWT*, *117*, 108622. https://doi.org/10.1016/j.lwt.2019.108622
- Hernandez, M. (2012). Propuesta de un manual de métodos de análisis para diversos alimentos procesados según las exigencias de la normativa salvadoreña y el reglamento técnico centroamericano [Tesis de pregrado, Universidad del Salvador].
- http://ri.ues.edu.sv/2209/1/Hern%C3%A1ndez_Miranda%2C_Marta_Cecilia.pdf Hernández-Sampieri, R., Mendoza, C., & Baptista, P. (2018). *Metodología de la*

- investigación. Las rutas cuantitativa, cualitativa y mixta. https://virtual.cuautitlan.unam.mx/rudics/?p=2612
- Kim, S.-J., Cho, A. R., & Han, J. (2013). Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. *Food Control*, 29(1), 112-120. https://doi.org/10.1016/j.foodcont.2012.05.060
- López, C. (2011). *Planta embotelladora de agua mineral* (p. 150). Universidad Nacional de Cuyo. https://bdigital.uncu.edu.ar/objetos_digitales/4741/tesinalopezminoprio.pdf
- Manzoor, A., Yousuf, B., Pandith, J. A., & Ahmad, S. (2023). Plant-derived active substances incorporated as antioxidant, antibacterial or antifungal components in coatings/films for food packaging applications. *Food Bioscience*, *53*, 102717. https://doi.org/10.1016/j.fbio.2023.102717
- Mesa-Vanegas, A. M., Gaviria, C. A., Cardona, F., Sáez-Vega, J. A., Blair Trujillo, S., & Rojano, B. A. (2010). Actividad antioxidante y contenido de fenoles totales de algunas especies del género Calophyllum. *Revista Cubana de Plantas Medicinales*, 15(2), 13-26.
- Mir, S. A., Shah, M. A., & Manickavasagan, A. (2022). Chapter 1—Sources of plant extracts. En S. A. Mir, A. Manickavasagan, & M. A. Shah (Eds.), *Plant Extracts: Applications in the Food Industry* (pp. 1-22). Academic Press. https://doi.org/10.1016/B978-0-12-822475-5.00011-9
- Montenegro-Landívar, M. F., Tapia-Quirós, P., Vecino, X., Reig, M., Valderrama, C., Granados, M., Cortina, J. L., & Saurina, J. (2021). Fruit and vegetable processing wastes as natural sources of antioxidant-rich extracts: Evaluation of advanced extraction technologies by surface response methodology. *Journal of Environmental Chemical Engineering*, *9*(4), 105330. https://doi.org/10.1016/j.jece.2021.105330
- Ramírez-Navas, J. (2012). Análisis sensorial: Pruebas orientadas al consumidor. *Revista ReCiTeIA*, 12, 83-102.
- Savelli, E., & Murmura, F. (2023). The intention to consume healthy food among older Gen-Z: Examining antecedents and mediators. *Food Quality and Preference*, *105*, 104788. https://doi.org/10.1016/j.foodqual.2022.104788
- Siu, K., & Drewnowski, A. (2023). Toward a New Definition of "Healthy" Food: Issues and Challenges. *Current Developments in Nutrition*, 7(5), 100080.

- https://doi.org/10.1016/j.cdnut.2023.100080
- Sulaiman, S. F., Sajak, A. A. B., Ooi, K. L., Supriatno, & Seow, E. M. (2011). Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. *Journal of Food Composition and Analysis*, 24(4), 506-515. https://doi.org/10.1016/j.jfca.2011.01.020
- Zhang, S., Wang, R., Chu, J., Sun, C., & Lin, S. (2023). Vegetable extracts: Effective inhibitors of heterocyclic aromatic amines and advanced glycation end products in roasted Mackerel. *Food Chemistry*, 412, 135559. https://doi.org/10.1016/j.foodchem.2023.135559

ANEXOS

Anexo 1. Datos de la evaluación sensorial.

Tabla 2. *Resultados de la calificación del sabor del producto obtenido en cada tratamiento.*

Tratami													C	alifi	cacio	n de	los	pane	elista	S											Prom
entos	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P 10	P 11	P 12	P 13	P 14	P 15	P 16	P 17	P 18	P 19	P 20	P 21	P 22	P 23	P 24	P 25	P 26	P 27	P 28	P 29	P 30	edio
T1	2	2	4	2	3	4	3	4	4	2	3	3	3	4	3	3	2	2	3	3	3	3	3	5	2	3	2	3	2	4	2.97
T2	3	2	2	2	3	3	4	1	4	2	3	2	4	3	3	3	4	2	3	3	4	4	3	5	4	4	3	4	2	3	3.07
Т3	4	4	3	5	4	4	3	4	5	4	4	4	5	3	3	4	4	3	4	4	4	3	3	5	4	5	4	4	5	3	3.93
T4	2	4	3	3	3	3	4	3	4	4	4	4	3	2	2	3	4	3	4	4	3	4	3	4	3	5	2	3	3	2	3.27
T5	3	4	4	3	2	4	4	4	5	4	2	3	5	2	3	3	4	4	3	4	3	3	4	5	4	4	4	3	2	3	3.50
T6	3	4	3	3	4	4	2	4	2	2	2	4	5	3	3	4	4	5	3	5	3	3	4	4	5	4	4	3	1	4	3.47
T7	4	4	3	4	3	4	4	3	5	3	4	3	4	3	3	4	4	4	3	2	4	4	4	4	3	5	3	2	3	3	3.53
T8	2	3	2	3	3	4	4	2	2	3	4	3	3	3	3	3	4	3	3	3	4	2	4	4	2	5	4	3	2	3	3.10
Т9	1	2	1	1	3	2	2	1	2	3	3	3	2	2	2	2	4	4	2	2	2	2	3	3	1	2	1	2	1	2	2.10
T10	2	2	3	1	3	3	2	2	2	3	3	3	1	2	3	2	4	4	2	2	3	3	3	2	1	2	2	3	2	2	2.40
T11	3	4	4	3	4	3	4	3	3	4	3	5	3	3	4	4	5	5	4	5	5	4	4	4	5	5	4	4	3	4	3.93
T12	3	2	4	2	4	3	2	3	2	5	4	3	2	3	3	3	5	5	3	4	3	4	4	5	5	4	3	4	2	4	3.43

Tabla 3 *Resultados de la calificación del color del producto obtenido en cada tratamiento.*

Tratami													C	alifi	cació	ón de	los	pane	lista	S											Prom
entos	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P 10	P 11	P 12	P 13	P 14	P 15	P 16	P 17	P 18	P 19	P 20	P 21	P 22	P 23	P 24	P 25	P 26	P 27	P 28	P 29	P 30	edio
T1	4	3	3	3	4	4	4	3	4	3	3	2	3	3	3	4	3	3	4	3	3	4	3	3	3	4	4	2	3	4	3.30
T2	3	2	3	4	4	3	4	2	4	3	3	1	3	3	2	3	2	3	3	2	3	4	3	4	3	3	4	3	2	3	2.97
Т3	2	3	2	4	3	3	2	3	4	4	4	2	3	3	3	3	2	2	4	4	3	3	4	4	4	4	4	4	3	3	3.20
T4	2	2	2	4	3	3	4	2	4	4	4	2	2	3	2	3	3	2	5	2	4	3	4	2	3	5	3	4	4	4	3.13
T5	4	4	4	4	3	4	4	4	5	4	2	4	4	4	5	4	5	4	5	5	4	3	3	5	4	4	4	4	4	4	4.03
Т6	5	4	4	4	4	4	4	4	4	3	2	4	4	3	5	4	5	4	5	5	3	4	3	5	5	4	3	4	3	4	3.97
T7	4	4	4	3	4	4	4	4	5	4	3	4	4	3	5	3	5	4	3	4	3	3	3	4	4	5	3	3	4	4	3.80
Т8	5	4	4	3	4	4	4	3	4	4	3	3	4	3	5	3	5	4	5	2	4	2	3	4	3	5	3	3	4	4	3.70
Т9	4	3	3	2	3	4	2	1	4	3	3	2	3	2	3	3	5	4	4	3	3	3	3	4	1	3	4	2	3	3	3.00
T10	2	2	3	2	4	3	2	2	3	3	3	2	3	2	3	3	3	3	4	3	3	3	4	3	1	3	3	2	3	2	2.73
T11	3	4	4	5	4	3	4	3	4	3	4	3	4	3	5	4	5	4	4	5	4	4	5	4	5	5	4	3	4	3	3.97
T12	4	3	4	3	4	3	3	3	4	4	3	3	4	3	5	4	5	4	5	5	3	3	3	5	5	5	4	3	3	4	3.80

Tabla 4. *Resultados de la calificación del sabor del producto obtenido en cada tratamiento.*

Tratami													C	alifi	cació	in de	los	pane	lista	S											Prom
entos	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P 10	P 11	P 12	P 13	P 14	P 15	P 16	P 17	P 18	P 19	P 20	P 21	P 22	P 23	P 24	P 25	P 26	P 27	P 28	P 29	P 30	edio
T1	3	2	3	3	3	4	3	3	4	3	3	3	3	3	3	3	2	2	4	2	3	3	3	4	3	4	3	3	2	3	3.00
T2	3	2	2	3	3	4	4	3	4	3	3	4	3	3	3	3	3	2	4	1	3	3	3	5	4	4	4	3	3	4	3.20
Т3	5	4	3	4	5	5	3	5	5	4	4	5	5	4	4	5	4	4	4	4	4	5	4	5	4	5	4	4	4	4	4.30
T4	5	3	1	3	3	4	4	5	5	4	4	4	3	4	3	3	3	3	2	3	3	5	4	4	4	5	3	4	5	3	3.63
T5	3	4	4	3	3	4	3	4	5	3	2	4	3	3	3	4	3	4	5	1	3	3	3	5	4	4	4	3	2	4	3.43
T6	3	4	4	3	4	4	3	4	5	3	2	4	3	3	3	4	3	5	5	3	3	3	3	4	5	4	3	3	2	3	3.50
T7	4	5	4	3	5	5	4	3	4	3	3	4	4	3	4	3	3	4	4	5	4	4	5	5	2	5	4	4	3	3	3.87
T8	3	4	4	3	5	4	3	3	2	4	3	3	2	3	3	3	4	3	5	3	5	2	4	4	2	5	3	3	2	3	3.33
Т9	2	2	1	1	3	2	2	1	4	3	3	2	1	1	2	2	2	4	2	1	2	4	4	3	1	2	1	1	1	1	2.03
T10	3	2	3	1	4	2	2	2	2	3	3	2	1	1	2	2	2	4	1	1	3	4	3	2	1	2	2	1	2	1	2.13
T11	4	3	4	4	4	5	3	3	3	3	5	4	3	4	3	4	4	5	5	4	3	4	4	4	5	5	4	4	4	3	3.90
T12	3	2	4	3	4	3	3	3	3	4	4	3	3	3	3	4	4	5	5	3	3	3	3	5	5	4	4	4	2	2	3.47

Tabla 5.Datos para medir la aceptabilidad de cada tratamiento.

Extracto	Proporciones (%)	Tratamientos	Sabor	Color	Aroma	Aceptabilidad
Sauco	2.5	T1	2.97	3.30	3.00	3.09
	5	T2	3.07	2.97	3.20	3.08
Clavo de	2.5	Т3	3.93	3.20	4.30	3.81
olor	5	T4	3.27	3.13	3.63	3.34
Limón	2.5	T5	3.50	4.03	3.43	3.66
	5	T6	3.47	3.97	3.50	3.64
Eucalipto	2.5	T7	3.53	3.80	3.87	3.73
	5	Т8	3.10	3.70	3.33	3.38
Salvia	2.5	Т9	2.10	3.00	2.03	2.38
	5	T10	2.40	2.73	2.13	2.42
Menta	2.5	T11	3.93	3.97	3.90	3.93
	5	T12	3.43	3.80	3.47	3.57

Anexo N° 2. Datos de la evaluación fisicoquímica.

Tabla 6. Valores de la acidez iónica en el producto obtenido en cada tratamiento.

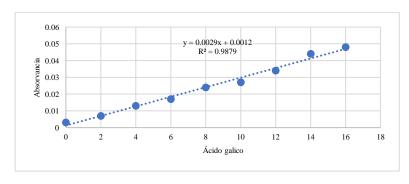
Esencia	Tratamientos	Nivel	Repetición		pН
Escricia	Tratamicitos	TVIVEI	Repetition		Promedio
			R1	6.10	
	T1	2.5%	R2	6.04	6.07
Sauco			R3	6.07	
Sauco			R1	6.13	
	T2	5%	R2	6.11	6.11
			R3	6.10	
			R1	5.40	
	T3	2.5%	R2	5.22	5.32
Clavo de			R3	5.34	
olor			R1	5.03	
	T4	5%	R2	4.93	5.02
			R3	5.10	
			R1	6.11	
	T5	2.5%	R2	6.12	6.10
T :			R3	6.07	
Limón			R1	5.82	
	T6	5%	R2	6.06	5.99
			R3	6.10	
			R1	6.51	
	T7	2.5%	R2	6.47	6.46
F 1' 4			R3	6.40	
Eucalipto			R1	6.32	
	T8	5%	R2	6.40	6.33
			R3	6.28	
			R1	6.50	
	T9	2.5%	R2	5.98	6.34
0.1.			R3	6.53	
Salvia			R1	6.24	
	T10	5%	R2	6.50	6.28
			R3	6.09	
			R1	6.23	
	T11	2.5%	R2	6.25	6.24
			R3	6.23	
Menta			R1	6.21	
	T12	5%	R2	6.20	6.20
	_	•	R3	6.20	2.—2

Tabla 7.Valores de la densidad en el producto obtenido en cada tratamiento.

Esencia	Tratamientos	Nivel	Repetición	Dens	idad (g/ml)
Esencia	Trataimentos	Nivei	Repetition		Promedio
			R1	0.9773	
	T1	2.5%	R2	0.9524	0.9648
C			R3	0.9647	
Sauco			R1	0.9687	
	T2	5%	R2	0.9672	0.9687
			R3	0.9702	
			R1	0.9546	
	T3	2.5%	R2	0.9432	0.9527
Clavo de			R3	0.9602	
olor			R1	0.9642	
	T4	5%	R2	0.9604	0.9639
			R3	0.9672	
			R1	0.9801	
	T5	2.5%	R2	0.9673	0.9721
T : /			R3	0.9688	
Limón -			R1	0.9552	
	T6	5%	R2	0.9723	0.9632
			R3	0.9621	
			R1	0.9772	
	T7	2.5%	R2	0.9832	0.9801
			R3	0.9798	
Eucalipto -			R1	0.9948	
	Т8	5%	R2	0.9897	0.9930
			R3	0.9944	
			R1	0.9628	
	Т9	2.5%	R2	0.9669	0.9662
G 1 :			R3	0.9688	
Salvia -			R1	0.9658	
	T10	5%	R2	0.9624	0.9661
			R3	0.9702	
			R1	0.9779	
	T11	2.5%	R2	0.9793	0.9805
			R3	0.9844	
Menta -			R1	0.9881	
	T12	5%	R2	0.9798	0.9793
			R3	0.9699	

Tabla 8. Valores de la viscosidad (Cp) en el producto obtenido en cada tratamiento.

Econoio	Trotomiontos	Nivol	Donotición	Visc	cosidad (cp)
Esencia	Tratamientos	Nivel	Repetición		Promedio
			R1	15.46	
	T1	2.5%	R2	15.64	15.54
Course			R3	15.51	
Sauco			R1	16.92	
	T2	5%	R2	17.12	16.97
			R3	16.86	
			R1	15.68	
	T3	2.5%	R2	15.73	15.71
Clavo de			R3	15.72	
olor			R1	39.60	
	T4	5%	R2	39.54	39.57
			R3	39.57	
			R1	15.79	
	T5	2.5%	R2	15.96	15.92
T : ś			R3	16.02	
Limón -			R1	16.46	
	T6	5%	R2	16.21	16.36
			R3	16.42	
			R1	14.60	
	T7	2.5%	R2	14.45	14.52
F 1' 4			R3	14.51	
Eucalipto			R1	20.57	
	T8	5%	R2	20.70	20.63
			R3	20.61	
			R1	15.27	
	Т9	2.5%	R2	15.33	15.26
C a 1 = -! -			R3	15.17	
Salvia			R1	15.86	
	T10	5%	R2	15.77	15.86
			R3	15.95	
			R1	14.74	
	T11	2.5%	R2	14.47	14.55
Mand			R3	14.44	
Menta			R1	18.53	
	T12	5%	R2	18.41	18.52
			R3	18.61	


Tabla 9.Valores de la cantidad de grasas y aceites en el producto obtenido en cada tratamiento.

Extracto	Nivel	Tratamientos	Vaso con grasas y aceites (mg)	Vaso vacío (mg)	Volumen de la muestra (ml)	Grasas y aceites (ppm)
Sauco	2.5	T1	137489.1	137482.9	400	15500
2000	5	T2	117403.6	117400.4	400	8000
Clavo de	2.5	Т3	137487.6	137482.9	400	11750
olor	5	T4	159496.8	159477	400	49500
Limón	2.5	T5	137487.6	137482.9	400	11750
	5	T6	159478.3	159477	400	3250
Eucalipto	2.5	T7	137508.4	137480.2	400	70500
•	5	Т8	159512	159482.4	400	74000
Salvia	2.5	Т9	137483.3	137482.9	400	1000
	5	T10	117427.2	117400.4	400	67000
Menta	2.5	T11	159501.3	159477	400	60750
112011	5	T12	117425.3	117399.6	400	64250

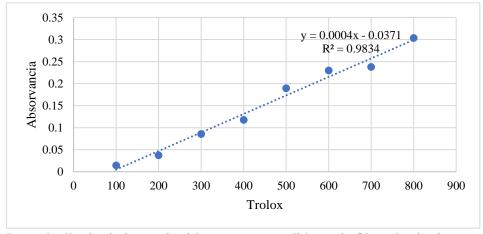
Tabla 10. Valores de absorbancia del ácido gálico

Patrón	Repetición	Absorbancia	Absorbancia promedio
	1	0.003	
0	2	0.002	0.003
	3	0.003	
	1	0.007	
2	2	0.008	0.007
	3	0.005	
	1	0.014	
4	2	0.013	0.013
	3	0.013	•
	1	0.018	
6	2	0.017	0.017
	3	0.017	
	1	0.023	
8	2	0.023	0.024
	3	0.025	•
	1	0.029	
10	2	0.023	0.027
	3	0.03	•
	1	0.032	
12	2	0.031	0.034
	3	0.039	•
	1	0.042	
14	2	0.042	0.044
	3	0.049	•
	1	0.047	
16	2	0.050	0.048
	3	0.047	•

Figura 17.Comportamiento de la Absorbancia del ácido gálico

De la gráfica se encontró la fórmula para el cálculo de los fenoles totales.

 $(\acute{A}cido~g\'{a}lico = \frac{Absorvancia + 0.0012}{0.0029}$


Tabla 11. Valores de la cantidad de fenoles en el producto obtenido en cada tratamiento.

Muestra	Concentració n	Tratamiento	Repetición	Absorbancia	Absorbancia promedio	Concentración de ácido gálico (mg/L)
			R1	0.009		
	2.5%	T1	R2	0.010	0.009	3.517
Sauco			R3	0.008		
Sauco			R1	0.020	-	
	5%	T2	R2	0.021	0.021	7.540
			R3	0.021		
			R1	0.035	_	
	2.5%	T3	R2	0.034	0.035	12.368
Clavo de			R3	0.035		
olor			R1	0.043		
	5%	T4	R2	0.045	0.045	15.816
			R3	0.046		
			R1	0.005	_	
	2.5%	T5	R2	0.004	0.004	1.908
T :			R3	0.004		
Limón			R1	0.009	_	
	5%	T6	R2	0.009	0.009	3.517
			R3	0.009	•	
			R1	0.009		
	2.5%	T7	R2	0.010	0.010	3.862
Eucalipt			R3	0.011	<u>-</u>	
0			R1	0.016		
	5%	T8	R2	0.017	0.016	6.046
			R3	0.016	<u>-</u>	
			R1	0.018		
	2.5%	Т9	R2	0.017	0.017	6.391
0.1.			R3	0.017	•	
Salvia			R1	0.034		
	5%	T10	R2	0.033	0.034	12.138
			R3	0.035	•	
			R1	0.008		
	2.5%	T11	R2	0.007	0.007	2.943
			R3	0.007	.	
Menta			R1	0.016		
	5%	T12	R2	0.017	0.016	6.046
			R3	0.016	•	

Tabla 12.Valores de absorbancia del Trolox

Concentración (µmol)	Repetición	Absorbancia	Absorbancia promedio
	1	0.014	
100	2	0.016	0.0147
	3	0.014	_
	1	0.038	
200	2	0.037	0.0373
	3	0.037	_
	1	0.081	
300	2	0.089	0.0857
	3	0.087	_
	1	0.117	
400	2	0.118	0.1177
	3	0.118	_
	1	0.191	
500	2	0.189	0.1897
	3	0.189	_
	1	0.231	
600	2	0.229	0.2297
	3	0.229	_
	1	0.238	
700	2	0.239	0.2380
	3	0.237	_
	1	0.298	
800	2	0.301	0.3037
	3	0.312	

Figura 18. *Comportamiento de la Absorbancia del Trolox*

Para el cálculo de los antioxidantes se procedió con la fórmula siguiente:

$$(Actividad\ antioxidante(\%) = \left[\frac{AC - AM - AB}{AC}\right]x100$$

Donde:

AM: absorbancia de la muestra más DPPH AB: absorbancia del blanco (muestra +etanol)

AC: absorbancia del blanco del reactivo (DPPH+etanol)

Tabla 13. Valores de la cantidad de antioxidantes en el producto obtenido en cada tratamiento.

Tratamiento	Repetición	Absorbancia	Absorbancia promedio	Absorbancia de blanco	promedio blanco	muestra control	Actividad antioxidanto (%)
T1	R1	0.152	0.135	0.002	0.003	0.468	70.51
	R2	0.134		0.001	-		
	R3	0.119		0.006	-		
Т2	R1	0.088	0.089	0.005	0.005	0.5272	82.11
	R2	0.088		0.004	-		
	R3	0.092		0.006	-		
Т3	R1	0.064	0.062	0.023	0.025	0.468	81.55
	R2	0.059		0.025	-		
	R3	0.062		0.026	-		
T4	R1	0.061	0.065	0.026	0.031	0.5272	81.79
	R2	0.066		0.033	-		
	R3	0.069		0.033	-		
T5	R1	0.329	0.328	0.001	0.001	0.468	29.56
	R2	0.315		0.001	-		
	R3	0.341		0.002	-		
Т6	R1	0.243	0.200	0.001	0.001	0.5272	61.75
	R2	0.191		0.001	-		
	R3	0.167		0.002	-		
T7	R1	0.069	0.069	0.001	0.001	0.468	84.97
	R2	0.070		0.001	-		
	R3	0.069		0.001	-		
Т8	R1	0.059	0.057	0.002	0.002	0.5272	88.75
	R2	0.055		0.001	-		
	R3	0.058		0.003	-		
Т9	R1	0.083	0.081	0.002	0.002	0.468	82.12
	R2	0.084		0.002	-		
	R3	0.077		0.003	-		
T10	R1	0.092	0.092	0.005	0.005	0.5272	81.66
	R2	0.090		0.005	-		
	R3	0.093		0.005	-		
T11	R1	0.153	0.179	0.001	0.003	0.468	61.18
	R2	0.202		0.003	-		

	R3	0.182		0.004			
T12	R1	0.077	0.080	0.005	0.006	0.5272	83.75
	R2	0.080		0.006	_		
	R3	0.082		0.007	_		

Tabla 14.Valores de la cantidad de carbohidratos en el producto obtenido en cada tratamiento.

Extracto	Proporciones (%)	Tratamientos	Carbohidratos (%)
Course	2.5	T1	0
Sauco	5	T2	0
Clavo de	2.5	Т3	0
olor	5	T4	0
Limón	2.5	T5	0
Limon	5	T6	0
E1!4-	2.5	Т7	0
Eucalipto	5	Т8	0
0.1.	2.5	Т9	0
Salvia	5	T10	0
M 4 -	2.5	T11	0
Menta	5	T12	0

Tabla 15. Valores de la cantidad de energía en el producto obtenido en cada tratamiento.

Extracto	Proporciones (%)	Tratamientos	Energía Total (Kcal.)
Course	2.5	T1	13.95
Sauco	5	T2	7.2
Clavo de	2.5	Т3	10.575
olor	5	T4	44.55
I imaka	2.5	T5	10.575
Limón	5	T6	2.925
Evanlinta	2.5	T7	63.45
Eucalipto	5	T8	66.6
Salvia	2.5	Т9	0.9
Saivia	5	T10	60.3
Manta	2.5	T11	54.675
Menta	5	T12	57.825

Tabla 16.Valores de la cantidad de calcio (ppm) en el producto obtenido en cada tratamiento.

Esencia	Indicadores	Tratamientos	Cantidad (ppm)
Cayaa	2.50%	T1	0.01
Sauco	5%	T2	0.018
Clavo de	2.50%	Т3	0.02
olor	5%	T4	0.036
I : ś	2.50%	T5	0.02
Limón	5%	T6	0.038
Evalints	2.50%	T7	0.02
Eucalipto	5%	Т8	0.038
Calvia	2.50%	Т9	0.01
Salvia	5%	T10	0.019
M 4 -	2.50%	T11	0.02
Menta	5%	T12	0.036

Tabla 17.Valores de la cantidad de hierro ppm) en el producto obtenido en cada tratamiento.

Esencia	Indicadores	Tratamientos	Cantidad (ppm)	
Causa	2.50%	T1	0.09	
Sauco	5%	T2	0.161	
Clavo de	2.50%	Т3	0.34	
olor	5%	T4	0.56	
Limón	2.50%	T5	0.02	
Lillion	5%	T6	0.034	
Fugalinta	2.50%	T7	0.06	
Eucalipto	5%	Т8	0.105	
Salvia	2.50%	Т9	1.34	
Saivia	5%	T10	2.58	
Menta	2.50%	T11	0.09	
Menta	5%	T12	0.171	

Tabla 18. Valores de la cantidad de magnesio (ppm) en el producto obtenido en cada tratamiento.

Esencia	Indicadores	Tratamientos	Cantidad (ppm)
Course	2.50%	T1	0.08
Sauco	5%	T2	0.15
Clavo de	2.50%	T3	12.78
olor	5%	T4	23.12
Limón	2.50%	T5	0.32
LIIIIOII	5%	T6	0.57
Eugalinto	2.50%	T7	4.36
Eucalipto	5%	T8	7.96
Calvia	2.50%	T9	8.45
Salvia	5%	T10	15.93
Menta	2.50%	T11	5.14
	5%	T12	9.82

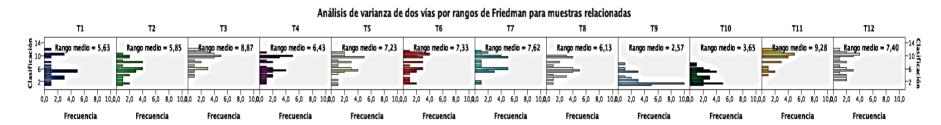
Tabla 19. Valores de la cantidad de potasio (ppm) en el producto obtenido en cada tratamiento.

Esencia	Indicadores	Tratamientos	Cantidad (ppm)
Sauco	2.50%	T1	8.4
Sauco	5%	T2	16.13
Clavo de	2.50%	T3	35.65
olor	5%	T4	68.43
Limón	2.50%	T5	16.34
LIIIIOII	5%	T6	31.22
Eucalipto	2.50%	T7	8.66
Eucanpio	5%	Т8	16.12
Salvia	2.50%	T9	64.2
Salvia	5%	T10	117.81
Menta	2.50%	35.65	19
- Ivienta	5%	T12	36.43

Tabla 20.Valores de la cantidad de sodio (ppm) en el producto obtenido en cada tratamiento.

Esencia	Indicadores	Tratamientos	Cantidad (ppm)
Sauco	2.50%	T1	0.071
Sauco	5%	T2	0.121
Clavo de	2.50%	T3	15.13
olor	5%	T4	28.21
Limón	2.50%	T5	0.03
Lillion	5%	T6	0.052
Evanlinto	2.50%	T7	3.66
Eucalipto	5%	T8	7.22
Colvio	2.50%	T9	0.134
Salvia	5%	T10	0.241
Monto	2.50%	T11	20.31
Menta	5%	T12	39.1

Tabla 21. *Valores de la cantidad de zinc (ppm) en el producto obtenido en cada tratamiento.*


Esencia	Indicadores	Tratamientos	Cantidad (ppm)
Canaa	2.50%	T1	0.01
Sauco	5%	T2	0.018
Clavo de	2.50%	T3	0.02
olor	5%	T4	0.036
T ! /	2.50%	T5	0.02
Limón	5%	T6	0.038
E1:4-	2.50%	T7	0.02
Eucalipto	5%	Т8	0.038
0.1.	2.50%	Т9	0.01
Salvia	5%	T10	0.019
Manda	2.50%	T11	0.02
Menta	5%	T12	0.036

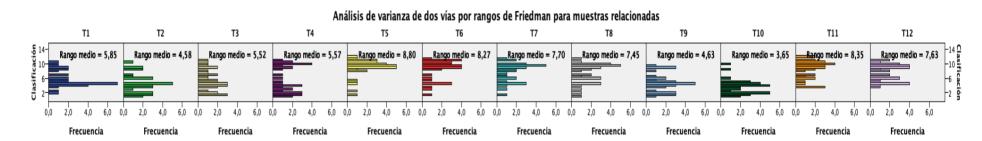
Anexo 3. Análisis estadístico

a) Análisis sensorial - Prueba de Friedman para el sabor

	Resumen de prueba de hipótesis					
	Hipótesis nula	Prueba	Sig.	Decisión		
1	Las distribuciones de	Análisis de varianza	3.4953E-	Rechazar		
	T1, T2, T3, T4, T5, T6,	de dos vías por	19	la hipótesis		
	T7, T8, T9, T10, T11	rangos de Friedman		nula.		
	and T12 son las	para muestras				
	mismas.	relacionadas				

Se muestran significaciones asintóticas. El nivel de significación es de ,05.

N total	30
Estadístico de contraste	113,597
Grados de libertad	11
Sig. asintótica (prueba bilateral)	,000


Cada nodo	muestra el	rango	promedio	de	muestras.

	ia nodo muestra el				
Muestra 1-Muestra 2			Desv. Estadístico de contraste		Sig. ajust.
T9-T10	-1,083	,931	-1,164	,245	1,000
T9-T1	3,067	,931	3,294	,001	,065
T9-T2	3,283	,931	3,527	,000	,028
Т9-Т8	3,567		3,831	,000	,008
	3,567	,931	3,831	,000	,008
T9-T4	3,867	,931	4,153	,000	,002
T9-T5	4,667	,931	5,013	,000	,000
т9-т6	4,767	.931	5,120	.000	.000
T9-T12	-4,833	,931	-5,192	,000	,000
T9-T7	5,050	,931	5,425	,000	,000
т9-тз	6,300	,931	6,767	,000	,000
				-	
T9-T11	-6,717	,931	-7,215	,000	,000
T10-T1	1,983	,931	2,130	,озз	1,000
T10-T2	2,200	,931	2,363	,018	1,000
T10-T8	2,483	.931	2,668	,008	,504
110-18		,931		,008	,504
T10-T4	2,783	,931	2,990	.003	,184
T10-T5	3,583	,931	3,849	,000	,008
Т10-Т6	3,683	.931	3,957	,000	.005
T10-T12	-3,750	,931	-4,028	,000	,004
T10-T7	3,967	,931	4,261	,000	,001
т10-т3	5,217	,931	5,604	,000	,000
T10-T11	-5,633	,931	-6,051	,000	,000
T1-T2	-,217	,931	-,233	,816	1,000
T1-T8	-,500	,931	-,537	,591	1,000
T1-T4	800	.931	-,859	,390	1.000
			-		
T1-T5	-1,600	,931	-1,719	,086	1,000
Т1-Т6	-1,700	,931	-1,826	,068	1,000
T1-T12	-1,767	,931	-1,898	,058	1,000
T1-T7	-1,983	,931	-2,130	,033	1,000
T1-T3	-3,233	,931	-3,473	,001	,034
T1-T11	-3,650	,931	-3.921	,000	,006
T2-T8	-,283	,931	-,304	,761	1,000
T2-T4	-,583	,931	-,627	,531	1,000
T2-T5	-1,383	,931	-1,486	,137	1,000
T2-T6	-1,483	,931	-1,593	,111	1,000
T2-T12	-1,550	,931	-1,665	,096	1,000
T2-T7	-1,767	,931	-1,898	,058	1,000
T2-T3	-3,017	,931	-3,240	,001	,079
T2-T11	-3,433	,931	-3,688	,000	,015
T8-T4	,300	,931	,322	,747	1,000
T8-TS	1,100	,931	1,182	,237	1,000
та-те					
	1,200	,931	1,289	,197	1,000
T8-T12	-1,267	,931	-1,361	,174	1,000
T8-T7	1,483	,931	1,593	,111	1,000
тв-тз	2,733	,931	2,936	,003	,219
T8-T11	-3,150	,931	-3,384	,001	,047
T4-T5	-,800	,931	-,859	,390	1,000
T4-T6	-,900	,931	-,967	,334	1,000
T4-T12	-,967	,931	-1,038	,299	1,000
T4-T7	-1,183	,931	-1,271	,204	1,000
T4-T3	2,433	,931	2,614	,009	,591
T4-T11	-2,850	.931	-3,061	,002	.145
					,
T5-T6	-,100	,931	-,107	,914	1,000
T5-T12	-,167	,931	-,179	,858	1,000
T5-T7	-,383	,931	-,412	,681	1,000
T5-T3	1,633	,931	1,754	,079	1,000
T5-T11	-2,050	,931	-2,202	,028	1,000
T6-T12	-,067	,931	-,072	,943	1,000
T6-T7	283	.931	304	.761	1.000
т6-тз	1,533	,931	1,647	,100	1,000
T6-T11	-1,950	,931	-2,095	,036	1,000
T12-T7	,217	,931	,233	,816	1,000
T12-T3	1,467	,931	1,575	,115	1,000
T12-T11	1,883	,931	2,023	,043	1,000
T7-T3	1,250	,931	1,343	,179	1,000
			-1,790	,073	1,000
T7-T11	-1,667	,931		,073	1,000

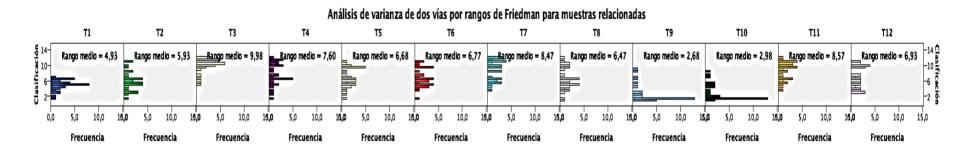
Cada fila prueba la hipótesis nula de que las distribuciones de la Muestra 1 y la Muestra 2 son las mismas. son las mismas ignificaciones asintóticas (pruebas bilaterales). El nivel de significación es , OS. OS. Depres de significación se han ajustado mediante la corrección de Bonferroni para varias

b) Análisis sensorial - Prueba de Friedman para el color

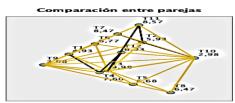
	Resumen de prueba de hipótesis						
	Hipótesis nula	Prueba	Sig.	Decisión			
1	Las distribuciones de T1,	Análisis de varianza de		Rechazar la			
	T2, T3, T4, T5, T6, T7,	dos vías por rangos de	8,6585E-15	hipótesis nula.			
	T8, T9, T10, T11 and	Friedman para muestras		-			
	T12 son las mismas.	relacionadas					
Se muestran significaciones asintóticas. El nivel de significación es de .05.							

N total	30
Estadístico de contraste	95,657
Grados de libertad	11
Sig. asintótica (prueba bilateral)	,000

Comparación entre parejas


			omedio de muestras.		
Muestra 1-Muestra 2	Estadístico de contraste	Error	Desv. Estadístico de contraste	Sig.	Sig. ajust.
T10-T2	.933	,931	1,003	,316	1,000
T10-T9	,983	,931	1,056	,291	1,000
T10-T3	1,867	,931	2,005	,045	1,000
T10-T4	1,917	,931	2,059	.040	1,000
T10-T1	2,200	,931	2,363	,018	1,000
T10-T8	3,800	,931	4,082	,000	,003
T10-T12	-3,983	,931	-4,279	,000	,001
T10-T7	4,050	,931	4,350	,000	,001
T10-T6	4,617	,931	4,959	,000	,000
T10-T11	-4.799	.931	-5,049	,000	,000
T10-T5	5,150	,931	5,532	.000	
					,000
T2-T9	-,050	,931	-,054	,957	1,000
T2-T3	-,933	,931	-1,003	,316	1,000
T2-T4	-,983	,931	-1,056	,291	1,000
T2-T1	1,267	,931	1,361	,174	1,000
T2-T8	-2,867	,931	-3,079	,002	,137
T2-T12	-3,050	,931	-3,276	,001	,069
T2-T7	-3,117	,931	-3,348	,001	,054
T2-T6	-3,683	,931	-3,957	,000	,005
T2-T11	-3,767	,931	-4,046	,000	,003
T2-T5	-4,217	,931	-4,529	,000	,000
т9-тз	,883	,931	,949	,343	1.000
T9-T4	,933	,931	1,003	,316	1,000
T9-T1	1,217	,931	1,307	,191	1,000
Т9-Т8	2,817	,931	3,026	,002	,164
T9-T12	-3,000	,931	-3,223	,001	,084
T9-T7	3,067	,931	3,294	,001	,065
Т9-Т6	3,633	,931	3,903	,000	,006
T9-T11	-3,717	,931	-3,992	.000	,004
T9-T5	4,167	,931	4,476	,000	,001
Т3-Т4	-,050	,931	-,054	,957	1,000
T3-T1	,333	,931	,358	,720	1,000
тз-тв	-1,933	,931	-2,077	,038	1,000
T3-T12	-2,117	,931	-2,274	,023	1,000
T3-T7	-2,183	,931	-2,345	,019	1,000
тз-т6	-2,750	,931	-2,954	,003	,207
T3-T11	-2,833	,931	-3,043	,002	,154
T3-T5	-3,283	,931	-3,527	,000	,028
T4-T1	,283	,931	,304	,761	1,000
T4-T8	-1,883	,931	-2,023	,043	1,000
T4-T12	-2,067	,931	-2,220	,026	1,000
T4-T7	-2,133	,931	-2,292	,022	1,000
T4-T6	-2,700	,931	-2,900	,004	,246
T4-T11	-2,783	,931	-2,990	,003	,184
T4-T5	-3,233	,931	-3,473	,001	,034
T1-T8	-1,600	,931	-1,719	,086	1,000
T1-T12	-1,783	,931	-1,916	,055	1,000
T1-T7	-1,850	,931	-1,987	,047	1,000
T1-T6	-2,417	,931	-2,596	,009	,623
	-2,500	,931	-2,685	,007	,478
T1-T11 T1-T5					
	-2,950	,931	-3,169	,002	,101
T8-T12	-,183	,931	-,197	,844	1,000
T8-T7	,250	,931	,269	,788	1,000
тв-т6	,817	,931	,877	,380	1,000
T8-T11	-,900	,931	-,967	,334	1,000
T8-T5	1,350	,931	1,450	,147	1,000
T12-T7	,067	,931	,072	,943	1,000
T12-T6	,633	,931	,680	,496	1,000
T12-T11	,717	,931	,770	,441	1,000
T12-T5	1,167	,931	1,253	,210	1,000
T7-T6	,567	,931	,609	,543	1,000
T7-T11	-,650	,931	-,698	,485	1,000
T7-T5	1,100	,931	1,182	,237	1,000
T6-T11	-,083	,931	-,090	,929	1,000
T6-T5	,533	,931	,573	,567	1,000
T11-T5	,450	,931	,483	,629	1,000
Cada fila prueba la hipo	stesis nula de que	las distr	ibuciones de la Muest	ra 1 y la N	uestra 2

Cada fila prueba la hipótesis nula de que las distribuciones de la Muestra 1 y la Muestra 2 son las mismas. Se muestran las significaciones asintóticas (pruebas bilaterales). El nivel de significación es , los valores de significación se han ajustado mediante la corrección de Bonferroni para varias


c) Análisis sensorial - Prueba de Friedman para el aroma

	Resumen de prueba de hipótesis						
	Hipótesis nula	Prueba	Sig.	Decisión			
1	Las distribuciones de T1,	Análisis de varianza de	,000	Rechazar la			
	T2, T3, T4, T5, T6, T7,	dos vías por rangos de		hipótesis			
	T8, T9, T10, T11 and T12	Friedman para muestras		nula.			
	son las mismas.	relacionadas					

Se muestran significaciones asintóticas. El nivel de significación es de ,05.

N total	30
Estadístico de contraste	141,213
Grados de libertad	11
Sig. asintótica (prueba bilateral)	,000

			romedio de muestras.		
Muestra 1-Muestra 2		Error	Desv. Estadístico de contraste		
T9-T10	-,300	,931	-,322	.747	1,000
T9-T1	2,250	,931	2,417	,016	1,000
T9-T2	3,250	,931	3,491	,000	,032
т9-т8	3,783	,931	4,064	,000	,003
T9-T5	4,000	,931	4,297	,000	,001
т9-т6	4,083	,931	4,386	,000	,001
T9-T12	-4,250	,931	-4,565	,000	,000
T9-T4	4,917	,931	5,281	,000	,000
T9-T7	5,783	,931	6,212	,000	,000
T9-T11	-5,883	,931	-6,320	,000	,000
Т9-Т3	7,300	,931	7,841	,000	,000
T10-T1	1,950	,931	2,095	,036	1,000
T10-T2	2,950	,931	3,169	,002	,101
Т10-Т8	3,483	,931	3,742	,000	,012
T10-T5	3,700	,931	3,974	,000	,005
T10-T6	3,783	,931	4,064	,000	,003
T10-T12	-3,950	,931	-4,243	,000	,001
T10-T4	4,617	,931	4,959	,000	,000
T10-T7	5,483	,931	5,890	,000	,000
T10-T11	-5,583	,931	-5,997	,000	,000
T10-T3	7,000	,931	7,519	,000	,000
T1-T2	-1,000	,931	-1,074	,283	1,000
T1-T8	-1,533	,931	-1,647	,100	1,000
T1-T5	-1,750	,931	-1,880	,060	1,000
T1-T6	-1,833	,931	-1,969	,049	1,000
T1-T12	-2,000	,931	-2,148	,032	1,000
T1-T4	-2,667	,931	-2,864	,004	,276
T1-T7	-3,533	,931	-3,795	,000	,010
T1-T11	-3,633	,931	-3,903	,000	,006
T1-T3	-5,050	,931	-5,425	,000	,000
T2-T8	-,533	,931	-,573	,567	1,000
T2-T5	-,750	,931	-,806	,420	1,000
T2-T6	-,833	,931	-,895	,371	1,000
T2-T12	-1,000	,931	-1,074	,283	1,000
T2-T4	-1,667	,931	-1,790	,073	1,000
T2-T7	-2,533	,931	-2,721	,007	,425
T2-T11	-2,633	,931	-2,829	,005	,305
T2-T3	-4,050	,931	-4,350	,000	,001
T8-TS	,217	,931	,233	,816	1,000
T8-T6	,300	,931	,322	.747	1,000
T8-T12	-,467	,931	-,501	,616	1,000
T8-T4	1,133	,931	1,217	,223	1,000
T8-T7	2,000	,931	2,148	,032	1,000
T8-T11	-2,100	,931	-2,256	,024	1,000
тв-тз	3,517	,931	3,778	,000	,010
TS-T6	-,083	,931	-,090	,929	1,000
T5-T12	-,250	,931	-,269	,788	1,000
T5-T4	,917	,931	,985	,325	1,000
T5-T7	-1,783	,931	-1,916	,055	1,000
T5-T11	-1,883	,931	-2,023	,043	1,000
т5-т3	3,300	,931	3,545	,000	,026
T6-T12	-,167	,931	-,179	,858	1,000
T6-T4	,833	,931	,895	,371	1,000
T6-T7	-1,700	,931	-1,826	,068	1,000
T6-T11	-1,800	,931	-1,934	,053	1,000
т6-тз	3,217	,931	3,455	,001	,036
T12-T4	,667	,931	,716	.474	1,000
T12-T7	1,533	,931	1,647	,100	1,000
T12-T11	1,633	,931	1,754	,079	1,000
T12-T3	3,050	,931	3,276	,001	,065
T4-T7	-,867	,931	-,931	,352	1,000
T4-T11	-,967	,931	-1,038	,299	1,000
T4-T3	2,383	,931	2,560	,010	,691
T7-T11	-,100	,931	-,107	,914	1,000
T7-T3	1,517	,931	1,629	,103	1,000
T11-T3	1,417	,931	1,522	,128	1,000

T11-T3

1,417 ,931

1,522 ,128

1,000

Cada fila prueba la hipótesis nula de que las distribuciones de la Muestra 1 y la Muestra 2 son las mismas. Se muestran las significaciones asintóticas (pruebas bilaterales). El nivel de significación es , Los valores de significación se han ajustado mediante la corrección de Bonferroni para varias

d) Análisis fisicoquímico – Análisis de Varianza y comparaciones múltiples

• Acidez iónica (pH)

One factor ANOVA

Mean	n	Std. Dev	
6.070	3	0.0300	T1
6.113	3	0.0153	T2
5.320	3	0.0917	T3
5.020	3	0.0854	T4
6.100	3	0.0265	T5
5.993	3	0.1514	T6
6.460	3	0.0557	T7
6.333	3	0.0611	T8
6.337	3	0.3092	T9
6.277	3	0.2074	T10
6.237	3	0.0115	T11
6.203	3	0.0058	T12
6.039	36	0.4310	Total

ANOVA table

Source	SS	df	MS	F	p-value
Treatment	6.1280	11	0.55709	35.92	3.33E-12
Error	0.3723	24	0.01551		
Total	6.5002	35			

Tukey simultaneous comparison t-values (d.f. = 24)

		T4	Т3	T6	T1	T5	T2	T12	T11	T10	Т8	Т9	T7
		5.020	5.320	5.993	6.070	6.100	6.113	6.203	6.237	6.277	6.333	6.337	6.460
T4	5.020												
T3	5.320	2.95											
T6	5.993	9.57	6.62										
T1	6.070	10.33	7.38	0.75									
T5	6.100	10.62	7.67	1.05	0.30								
T2	6.113	10.75	7.80	1.18	0.43	0.13							
T12	6.203	11.64	8.69	2.07	1.31	1.02	0.89						
T11	6.237	11.96	9.01	2.39	1.64	1.34	1.21	0.33					
T10	6.277	12.36	9.41	2.79	2.03	1.74	1.61	0.72	0.39				
Т8	6.333	12.92	9.96	3.34	2.59	2.29	2.16	1.28	0.95	0.56			
Т9	6.337	12.95	10.00	3.38	2.62	2.33	2.20	1.31	0.98	0.59	0.03		
T7	6.460	14.16	11.21	4.59	3.84	3.54	3.41	2.52	2.20	1.80	1.25	1.21	

critical values for experimentwise error rate:

Densidad

One factor ANOVA

	~ 1 D	
n	Std. Dev	
3	0.012450	T1
3	0.001500	T2
3	0.008663	T3
3	0.003408	T4
3	0.006997	T5
3	0.008603	T6
3	0.003009	T7
3	0.002836	T8
3	0.003066	T9
3	0.003911	T10
3	0.003421	T11
3	0.009112	T12
36	0.011704	Total
	3 3 3 3 3 3 3 3 3 3 3 3	3 0.012450 3 0.001500 3 0.008663 3 0.003408 3 0.006997 3 0.008603 3 0.003009 3 0.002836 3 0.003911 3 0.003421 3 0.009112

ANOVA table

Source	SS	df	MS	F	p-value
Treatment	0.003788	11	0.0003443	8.21	9.55E-06
Error	0.001007	24	0.0000420		
Total	0.004795	35			

Tukey simultaneous comparison t-values (d.f. = 24)

		Т3	T6	T4	T1	T10	Т9	T2	T5	T12	T7	T11	T8
		0.95267	0.96320	0.96393	0.96480	0.96613	0.96617	0.96870	0.97207	0.97927	0.98007	0.98053	0.99297
Т3	0.95267												
T6	0.96320	1.99											
T4	0.96393	2.13	0.14										
T1	0.96480	2.29	0.30	0.16									
T10	0.96613	2.55	0.55	0.42	0.25								
Т9	0.96617	2.55	0.56	0.42	0.26	0.01							
T2	0.96870	3.03	1.04	0.90	0.74	0.49	0.48						
T5	0.97207	3.67	1.68	1.54	1.37	1.12	1.12	0.64					
T12	0.97927	5.03	3.04	2.90	2.74	2.48	2.48	2.00	1.36				
T7	0.98007	5.18	3.19	3.05	2.89	2.63	2.63	2.15	1.51	0.15			
T11	0.98053	5.27	3.28	3.14	2.98	2.72	2.72	2.24	1.60	0.24	0.09		
Т8	0.99297	7.62	5.63	5.49	5.33	5.07	5.07	4.59	3.95	2.59	2.44	2.35	

Critical values for experimentwise error rate:

Viscosidad

One factor ANOVA

Mean	n	Std. Dev	
15.537	3	0.0929	T1
16.967	3	0.1361	T2
15.710	3	0.0265	T3
39.570	3	0.0300	T4
15.923	3	0.1193	T5
16.363	3	0.1343	T6
14.520	3	0.0755	T7
20.627	3	0.0666	T8
15.257	3	0.0808	T9
15.860	3	0.0900	T10
14.550	3	0.1652	T11
18.517	3	0.1007	T12
18.283	36	6.7212	Total

ANOVA table

Source	SS	df	MS	F	p-value
Treatment	1,580.8721	11	143.71565	13994.49	7.03E-43
Error	0.2465	24	0.01027		
Total	1,581.1186	35			

Tukey simultaneous comparison t-values (d.f. = 24)

		T7	T11	Т9	T1	Т3	T10	T5	T6	T2	T12	T8	T4
	ı	14.520	14.550	15.257	15.537	15.710	15.860	15.923	16.363	16.967	18.517	20.627	39.570
T7	14.520												
T11	14.550	0.36											
Т9	15.257	8.90	8.54										
T1	15.537	12.29	11.92	3.38									
Т3	15.710	14.38	14.02	5.48	2.09								
T10	15.860	16.19	15.83	7.29	3.91	1.81							
T5	15.923	16.96	16.60	8.06	4.67	2.58	0.77						
T6	16.363	22.28	21.92	13.37	9.99	7.90	6.08	5.32					
T2	16.967	29.57	29.21	20.67	17.28	15.19	13.37	12.61	7.29				
T12	18.517	48.30	47.94	39.40	36.02	33.92	32.11	31.34	26.02	18.73			
Т8	20.627	73.80	73.44	64.90	61.52	59.42	57.61	56.84	51.53	44.23	25.50		
T4	39.570	302.7	302.3	293.8	290.4	288.3	286.5	285.7	280.4	273.1	254.4	228.9	

Critical values for experiment wise error rate:

0.	
05	3.61
0.	
01	4.32

Grasa

One factor ANOVA

Mean	n	Std. Dev	
15500.00	3	100.00	T1
7766.67	3	251.66	T2
11706.67	3	140.12	T3
49800.00	3	608.28	T4
11966.67	3	202.07	T5
3483.33	3	225.46	T6
70500.00	3	500.00	T7
74166.67	3	1258.31	T8
1006.67	3	90.18	T9
67000.00	3	1000.00	T10
60750.00	3	200.00	T11
64250.00	3	250.00	T12
36491.39	36	29094.11	Total

ANOVA table

Source	SS	df	MS	F	p-value
Treatment	29619351430.55	11	2692668311.87	9235.70	1.03E-40
Error	6997200.00	24	291550.00		
Total	29626348630.55	35			

Tukey simultaneous comparison t-values (d.f. = 24)

		T9	T6	T2	Т3	T5	T1	T4	T11	T12	T10	T7	T8
	ı	1006.7	3483.3	7766.7	11706.7	11966.7	15500.0	49800.0	60750.0	64250.0	67000.0	70500.0	74166.7
Т9	1006.7												
T6	3483.3	5.62											
T2	7766.7	15.33	9.72										
Т3	11706.7	24.27	18.65	8.94									
T5	11966.7	24.86	19.24	9.53	0.59								
T1	15500.0	32.87	27.26	17.54	8.60	8.01							
T4	49800.0	110.68	105.06	95.34	86.40	85.82	77.80						
T11	60750.0	135.51	129.89	120.18	111.24	110.65	102.64	24.84					
T12	64250.0	143.45	137.83	128.12	119.18	118.59	110.58	32.78	7.94				
T10	67000.0	149.69	144.07	134.36	125.42	124.83	116.81	39.01	14.18	6.24			
T7	70500.0	157.63	152.01	142.29	133.36	132.77	124.75	46.95	22.12	14.18	7.94		
Т8	74166.7	165.94	160.33	150.61	141.67	141.08	133.07	55.27	30.43	22.49	16.26	8.32	

Critical values for experiment wise error rate:

• Fenoles

One factor ANOVA

Mean	n	Std. Dev	
3.51724	3	0.344828	T1
7.54023	3	0.199086	T2
12.36782	3	0.199086	T3
15.81609	3	0.526733	T4
1.90805	3	0.199086	T5
3.51724	3	0.000000	T6
3.86207	3	0.344828	T7
6.04598	3	0.199086	T8
6.39080	3	0.199086	T9
12.13793	3	0.344828	T10
2.94253	3	0.199086	T11
6.04598	3	0.199086	T12
6.84100	36	4.265005	Total

ANOVA table

Source	SS	df	MS	F	p-value
Treatment	634.836174	11	57.7123794	759.70	1.03E-27
Error	1.823226	24	0.0759678		
Total	636.659400	35			

Tukey simultaneous comparison t-values (d.f. = 24)

		T5	T11	T6	T1	T7	T8	T12	T9	T2	T10	T3	T4
	,	1.91	2.94	3.52	3.52	3.86	6.05	6.05	6.39	7.54	12.14	12.37	15.82
T5	1.91												
T11	2.94	4.60											
T6	3.52	7.15	2.55										
T1	3.52	7.15	2.55	0.00									
T7	3.86	8.68	4.09	1.53	1.53								
T8	6.05	18.39	13.79	11.24	11.24	9.70							
T12	6.05	18.39	13.79	11.24	11.24	9.70	0.00						
Т9	6.39	19.92	15.32	12.77	12.77	11.24	1.53	1.53					
T2	7.54	25.03	20.43	17.88	17.88	16.34	6.64	6.64	5.11				
T10	12.14	45.46	40.86	38.31	38.31	36.77	27.07	27.07	25.54	20.43			
Т3	12.37	46.48	41.88	39.33	39.33	37.80	28.09	28.09	26.56	21.45	1.02		
T4	15.82	61.80	57.20	54.65	54.65	53.12	43.41	43.41	41.88	36.77	16.34	15.32	

critical values for experimentwise error rate:

• Antioxidantes

One factor ANOVA

Mean	n	Std. Dev
70.51282	3	3.147632 T1
82.10673	3	0.609740 T2
81.55271	3	0.444800 T3
81.79059	3	1.505549 T4
29.55840	3	2.885275 T5
61.74760	3	7.288142 T6
84.97151	3	0.123365 T7
88.74557	3	0.547563 T8
82.12251	3	0.686870 T9
81.66414	3	0.289743 T10
61.18234	3	5.507407 T11
83.75063	3	0.666139 T12
74.14213	36	16.334868 Total

ANOVA table

Source	SS	df	MS	F	p-value
Treatment	9,127.313891	11	829.7558083	94.08	5.71E-17
Error	211.663553	24	8.8193147		
Total	9,338.977445	35			

Tukey simultaneous comparison t-values (d.f. = 24)

		T5	T11	T6	T1	T3	T10	T4	T2	Т9	T12	T7	T8
	,	29.56	61.18	61.75	70.51	81.55	81.66	81.79	82.11	82.12	83.75	84.97	88.75
T5	29.56												
T11	61.18	13.04											
T6	61.75	13.28	0.23										
T1	70.51	16.89	3.85	3.61									
T3	81.55	21.44	8.40	8.17	4.55								
T10	81.66	21.49	8.45	8.21	4.60	0.05							
T4	81.79	21.54	8.50	8.27	4.65	0.10	0.05						
T2	82.11	21.67	8.63	8.40	4.78	0.23	0.18	0.13					
Т9	82.12	21.68	8.64	8.40	4.79	0.23	0.19	0.14	0.01				
T12	83.75	22.35	9.31	9.07	5.46	0.91	0.86	0.81	0.68	0.67			
T7	84.97	22.85	9.81	9.58	5.96	1.41	1.36	1.31	1.18	1.17	0.50		
Т8	88.75	24.41	11.37	11.13	7.52	2.97	2.92	2.87	2.74	2.73	2.06	1.56	

critical values for experimentwise error rate:

• Calcio

One factor ANOVA

Mean	10	Std. Dev	
Mean	n	sia. Dev	
11.300	3	0.2000	T1
21.133	3	1.0504	T2
29.300	3	0.2000	T3
56.667	3	0.4509	T4
43.200	3	0.2000	T5
81.067	3	1.0504	T6
18.233	3	0.3512	T7
33.400	3	0.4000	T8
76.400	3	0.4000	T9
148.700	3	0.7550	T10
20.317	3	0.0603	T11
39.200	3	0.4000	T12
48.243	36	37.6090	Total

ANOVA table

Source	SS	df	MS	F	p-value
Treatment	49,497.9474	11	4,499.81340	14566.56	4.34E-43
Error	7.4139	24	0.30891		
Total	49,505.3614	35			

Tukey simultaneous comparison t-values (d.f. = 24)

		T1	T7	T11	T2	T3	T8	T12	T5	T4	T9	T6	T10
	,	11.30	18.23	20.32	21.13	29.30	33.40	39.20	43.20	56.67	76.40	81.07	148.70
T1	11.30												
T7	18.23	15.28											
T11	20.32	19.87	4.59										
T2	21.13	21.67	6.39	1.80									
Т3	29.30	39.66	24.39	19.80	18.00								
Т8	33.40	48.70	33.42	28.83	27.03	9.03							
T12	39.20	61.48	46.20	41.61	39.81	21.82	12.78						
T5	43.20	70.29	55.02	50.43	48.63	30.63	21.59	8.81					
T4	56.67	99.97	84.69	80.10	78.30	60.30	51.27	38.49	29.67				
Т9	76.40	143.45	128.17	123.58	121.78	103.79	94.75	81.97	73.16	43.48			
T6	81.07	153.74	138.46	133.87	132.07	114.07	105.04	92.26	83.44	53.77	10.28		
T10	148.70	302.77	287.49	282.90	281.10	263.11	254.07	241.29	232.48	202.80	159.32	149.03	

critical values for experimentwise error rate:

• Hierro

One factor ANOVA

Mean	n	Std. Dev	
0.0900	3	0.01000	T1
0.1620	3	0.00100	T2
0.3400	3	0.02000	T3
0.5600	3	0.02000	T4
0.0200	3	0.01000	T5
0.0340	3	0.00200	T6
0.0600	3	0.02000	T7
0.1050	3	0.00200	T8
1.3400	3	0.02000	T9
2.5800	3	0.02000	T10
0.0900	3	0.01000	T11
0.1710	3	0.00100	T12
0.4627	36	0.74076	Total

ANOVA table

Source	SS	df	MS	F	p-value
Treatment	19.20102	11	1.745547	9067.78	1.28E-40
Error	0.00462	24	0.000192		
Total	19.20564	35		•	

Tukey simultaneous comparison t-values (d.f. = 24)

		T5	T6	T7	T1	T11	T8	T2	T12	T3	T4	T9	T10
		0.02	0.03	0.06	0.09	0.09	0.11	0.16	0.17	0.34	0.56	1.34	2.58
T5	0.02												
T6	0.03	1.24											
T7	0.06	3.53	2.30										
T1	0.09	6.18	4.94	2.65									
T11	0.09	6.18	4.94	2.65	0.00								
Т8	0.11	7.50	6.27	3.97	1.32	1.32							
T2	0.16	12.53	11.30	9.00	6.36	6.36	5.03						
T12	0.17	13.33	12.09	9.80	7.15	7.15	5.83	0.79					
Т3	0.34	28.25	27.01	24.72	22.07	22.07	20.74	15.71	14.92				
T4	0.56	47.67	46.43	44.14	41.49	41.49	40.16	35.13	34.34	19.42			
Т9	1.34	116.52	115.29	112.99	110.34	110.34	109.02	103.99	103.19	88.27	68.85		
T10	2.58	225.98	224.74	222.45	219.80	219.80	218.48	213.45	212.65	197.73	178.31	109.46	

Critical values for experimentwise error rate:

• Magnesio

One factor ANOVA

<i>M</i>	lean	n	Std. Dev	
0.	.080	3	0.0100	T1
0.	.150	3	0.0100	T2
12.	.780	3	0.0200	T3
23.	.120	3	0.1200	T4
0.	.320	3	0.0300	T5
0.	.570	3	0.0200	T6
4.	.360	3	0.0300	T7
7.	.960	3	0.0100	T8
8.	.450	3	0.0300	T9
15.	.930	3	0.0300	T10
5.	140	3	0.0400	T11
9.	.820	3	0.0200	T12
7.	.390	36	7.0105	Total

ANOVA table

Source	SS	df	MS	F	p-value
Treatment	1,720.0932	11	156.37211	88932.01	1.62E-52
Error	0.0422	24	0.00176		
Total	1,720.1354	35			

Tukey simultaneous comparison t-values (d.f. = 24)

		T1	T2	T5	T6	T7	T11	T8	Т9	T12	Т3	T10	T4
	ı	0.08	0.15	0.32	0.57	4.36	5.14	7.96	8.45	9.82	12.78	15.93	23.12
T1	0.08												
T2	0.15	2.04											
T5	0.32	7.01	4.97										
T6	0.57	14.31	12.27	7.30									
Т7	4.36	125.01	122.96	118.00	110.70								
T11	5.14	147.79	145.75	140.78	133.48	22.78							
Т8	7.96	230.16	228.11	223.15	215.84	105.15	82.37						
Т9	8.45	244.47	242.42	237.46	230.16	119.46	96.68	14.31					
T12	9.82	284.48	282.44	277.47	270.17	159.47	136.69	54.33	40.01				
Т3	12.78	370.94	368.89	363.93	356.62	245.93	223.15	140.78	126.47	86.45			
T10	15.93	462.94	460.90	455.93	448.63	337.93	315.15	232.78	218.47	178.46	92.00		
T4	23.12	672.94	670.90	665.93	658.63	547.93	525.15	442.79	428.47	388.46	302.01	210.00	

Critical values for experimentwise error rate:

Potasio

One factor ANOVA

Mean	n	Std. Dev	
8.400	3	0.2000	T1
16.130	3	0.0200	T2
35.650	3	0.0500	T3
68.430	3	0.0300	T4
16.340	3	0.1000	T5
31.223	3	0.1050	T6
8.660	3	0.0500	T7
16.120	3	0.0400	T8
64.200	3	0.2000	T9
117.810	3	0.0100	T10
18.667	3	0.5774	T11
36.427	3	0.1150	T12
36.505	36	31.4594	Total

ANOVA table

TITTO TIT TEROI	•				
Source	SS	df	MS	F	p-value
Treatment	34,638.3363	11	3,148.93966	82939.59	3.75E-52
Error	0.9112	24	0.03797		
Total	34,639.2475	35			

Tukey simultaneous comparison t-values (d.f. = 24)

		T1	Т7	Т8	T2	T5	T11	Т6	Т3	T12	Т9	T4	T10 117.8
		8.40	8.66	16.12	16.13	16.34	18.67	31.22	35.65	36.43	64.20	68.43	1
T1	8.40												
T7	8.66	1.63											
Т8	16.12	48.52	46.89										
T2	16.13	48.59	46.95	0.06									
T5	16.34	49.91	48.27	1.38	1.32								
T11	18.67	64.53	62.90	16.01	15.94	14.62							
T6	31.22	143.46	141.82	94.93	94.87	93.55	78.93						
Т3	35.65	171.28	169.65	122.7 6	122.6 9	121.3 7	106.7 5	27.82					
T12	36.43	176.16	174.53	127.6 4	127.5 8	126.2 6	111.6	32.71	4.88				
Т9	64.20	350.73	349.10	302.2	302.1	300.8	286.2	207.2	179.4 5	174.5			
	0.120	220.72	5 15110	328.8	328.7	327.4	312.7	233.8	206.0	201.1			
T4	68.43	377.32	375.69	0	4	2	9	6	4	6	26.59		
T10	117.81	687.70	686.07	639.1 8	639.1 2	637.8 0	623.1 7	544.2 5	516.4 2	511.5 4	336.9 7	310.3	

critical values for experimentwise error

rate:

Anexo 4. Documentos reportados de los análisis fisicoquímicos.

Figura 19.

Reporte de análisis de metales pesados para clavo de olor

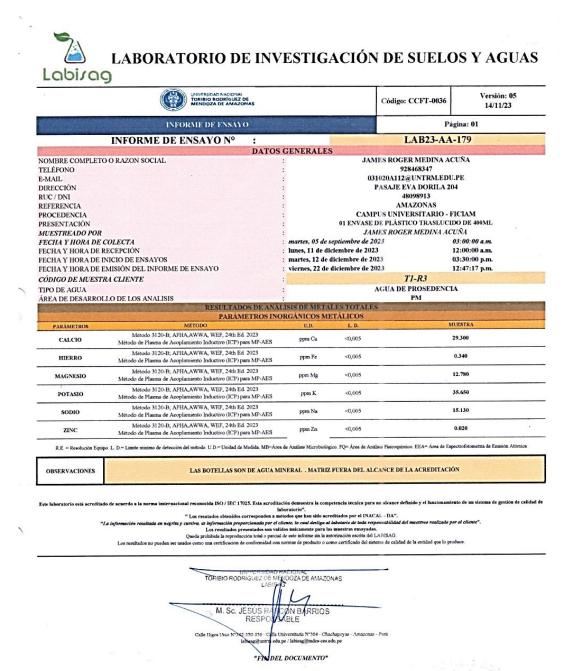


Figura 20. Reporte de análisis de metales pesados para eucalipto

Inhoratorio",

"Los resultados obtenidos corresponden a métodos que han sido acreditados por el DACAL. DA",
formación neultuda en negrita y curriru, en información proportionada por el clímica, in cual destiga al labotario de toda responsabilidad del muestreo realizado por el clore de la composición toda o paración de el este informe en la antorización entrio de LABSAG.

Los resultados no pueden ser usados como una certificación de conformidad con normas de producto o como certificado del sistema de caladad de la entidad que lo produce

UNIVERSIDAD NACIONAL TORIBIO RODRIGUEZ DE MENDOZA DE AMAZONAS RESPON BLE Calle Higos Urco N°342-350-356 - Called rsitaria N°304 - Chachapoyas - Amazonas - Perti trm edu pe / labisag@indes-

"FIN DEL DOCUMENTO"

Figura 21.

Reporte de análisis de metales pesados para menta

Anexo 5. Fotografías

Figura 22. *Adición de hexano a la muestra*

Figura 23. *Extracción de hexano mediante baño maría*

Figura 24. *Envasado de agua de mesa con adición de extractos esenciales*

Figura 25.Envasado de agua de mesa con adición de extractos esenciales

Figura 26. *Agua de mesa con extractos esenciales envasada*

Figura 27.Dosificación para determinar la absorbancia del ácido gálico

Figura 28. *Medición de la absorbancia para determinar actividad antioxidante*

Figura 29. *Reacción de las muestras, después de adicionar DPPH*

Figura 30. *Evaluación sensorial*

Figura 31. *Evaluación sensorial*

