UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO AMBIENTAL

EVALUACIÓN DE LA CAPACIDAD DE REMOCIÓN DE CONTAMINANTES DE LA LENTEJA DE AGUA (Lemna minor l.), ELODEA (Elodea canadensis m.) Y BERROS (Nasturtium officinale wt aiton) EN AGUAS GRISES DOMÉSTICAS

Autora: Bach. Fani Greysith Alva Valqui

Asesor: Dr. Erick Stevinsonn Arellanos Carrión

Registro: (.....)

CHACHAPOYAS – PERÚ 2024

AGRADECIMIENTO

A Dios por darme salud y bienestar, a mi madre por el apoyo absoluto en el proceso de mi formación profesional.

A mi asesor al Dr. Erick Stevinsonn Arellanos Carrión por todo el apoyo que me brindó durante la elaboración de la presente tesis; además agradezco a la Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM) y a los docentes de esta casa de estudios por haberme acogido en sus aulas y brindarme todos los conocimientos necesarios en mi formación profesional.

AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

Dr. JORGE LUIS MAICELO QUINTANA **RECTOR**

Dr. OSCAR ANDRÉS GAMARRA TORRES VICERRECTOR ACADÉMICO

Dra. MARÍA NELLY LUJÁN ESPINOZA **VICERRECTORA DE INVESTIGACIÓN**

Ph.D. RICARDO EDMUNDO CAMPOS RAMOS **DECANO DE LA FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL**

VISTO BUENO DEL ASESOR DE TESIS

ANEXO 3-L

VISTO BUENO DEL ASESOR DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL

El que suscribe el presente, docente de la UNTRM (χ)/Profesional externo (), hace constar
que ha asesorado la realización de la Tesis titulada <u>EVALUACIÓN</u> DE VA
CARAGOAD DE REMOCIÓN DE CONTAMINANTES DE LA LENTELA DE AGUA (LAMIN
mino: L), ELOCEA (Eloclea canadiarys'n) V BERROS (Abothrhium officiarle wt alba) EN AGUAS GRISE Domesticas., del egresado FANI GRENSITH ALVA VALQUI
de la Facultad de INGENIGRIA CIVIL Y AMBIENTAL
Escuela Profesional de INENIERÍA AMBIENTAL
de esta Casa Superior de Estudios.

El suscrito da el Visto Bueno a la Tesis mencionada, dándole pase para que sea sometida a la revisión por el Jurado Evaluador, comprometiéndose a supervisar el levantamiento de observaciones que formulen en Acta en conjunto, y estar presente en la sustentación.

Chachapoyas, 27 de Noviemer de 2024

Firma y nombre completo del Asesor

Erick Steinson Arelland Carrion

JURADO EVALUADOR DE LA TESIS

Mg. Damaris Leiva Tafu

PRESIDENTE

Mg. Jefferson Fitzgerald Reyes Farje

SECRETARIO

M.Sc. Gino Alfredo Vergara Medin

VOCAL

CONSTANCIA DE ORIGINALIDAD DE LA TESIS

ANEXO 3-Q

	Los suscritos, miembros del Jurado Evaluador de la Tesis titulada:
	ENALUACION DE LA CAPACIDAD DE REMODIN DE CUIVIAMINANTES DE LA LENIEM DE AGUA (LETTING TINGT)
	ELUDER (Eledea Congidensis m.) Y BERROS (Nosturtium officinals but outer) EN AGUAS CHOSES OWNESTICAS
	presentada por el estudiante ()/egresado (K) GREYSITH ALVA YALVAL
	de la Escuela Profesional de INECNIERÍA AMBIENTAL
	con correo electrónico institucional 7693270842 @ untranado pe
	después de revisar con el software Turnitin el contenido de la citada Tesis, acordamos:
	a) La citada Tesis tiene <u>19</u> % de similitud, según el reporte del software Turnitin que
	se adjunta a la presente, el que es menor (\times) / igual ($$) al 25% de similitud que es el máximo permitido en la UNTRM.
	b) La citada Tesis tiene % de similitud, según el reporte del software Turnitin que
	se adjunta a la presente, el que es mayor al 25% de similitud que es el máximo
James .	permitido en la UNTRM, por lo que el aspirante debe revisar su Tesis para corregir la
NTRM	redacción de acuerdo al Informe Turnitin que se adjunta a la presente. Debe presentar
	al Presidente del Jurado Evaluador su Tesis corregida para nueva revisión con el
	software Turnitin.
	Chachapoyas, 15 de Noviembre del 2021
	SECRETARIO PRESIDENTE
	VOCAL
	OBSERVACIONES:

REPORTE DE TURNITIN

EVALUACIÓN DE LA CAPACIDAD DE REMOCIÓN DE CONTAMINANTES DE LA LENTEJA DE AGUA (Lemna minor I.), ELODEA (Elodea canadensis m.) Y BERROS (Nasturtium officinale wt aiton) EN AGUAS GRISES DOMÉSTICAS

19 _% INDICE DE SIMILITUD	19% FUENTES DE INTERNET	8% PUBLICACIONES	10% TRABAJOS DEL ESTUDIANTE	
FUENTES PRIMARIAS				
1 reposito	orio.untrm.edu.po	e		4,
2 hdl.hand Fuente de Int				3,
dspace. Fuente de Int	unitru.edu.pe			1,9
dspace. Fuente de Int	espoch.edu.ec			1,
cladea.c				19
6 Submitt Trabajo del e	ed to Colegio Brastudiante	ains		1 9
7 vdocum				1 9
8 www.ds	space.uce.edu.ec			1,9
Juriki	fere iec,			

ACTA DE SUSTENTACIÓN DE LA TESIS

ANEXO 3-S

ACTA DE SUSTENTACIÓN DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL

En la ciudad de Chachapoyas, el día 25 de Noviembredel año 2029 siendo las 12:15 horas, el
aspirante: ALVIT VILLOUT, Fani Greysith , asesorado por
Dr. Erick Stevinsonn Arcllanos Carrien defiende en sesión pública
presencial (X) / a distancia () la Tesis titulada: Evaluación de la capacidad de semeción
de centaminantes de la Lenteja de agra (Lemna Miner L.) Elodea (Elodea Celodea Canadensis m.) y Berras (Nest virtium Officiale wtaites) para obtener el Título
Profesional de Trageniero Ambiental a ser otorgado por la Universidad
Nacional Toribio Rodríguez de Mendoza de Amazonas; ante el Jurado Evaluador, constituido por:
Procedió el aspirante a hacer la exposición de la Introducción, Material y métodos, Resultados, Discusión y Conclusiones, haciendo especial mención de sus aportaciones priginales. Terminada la defensa de la Tesis presentada, los miembros del Jurado Evaluador pasaron a exponer su opinión sobre la misma, formulando cuantas cuestiones y objectiones consideraron oportunas, las cuales fueron contestadas por el aspirante. Tras la intervención de los miembros del Jurado Evaluador y las oportunas respuestas del aspirante, el Presidente abre un turno de intervenciones para los presentes en el acto de sustentación, para que formulen las cuestiones u objectones que consideren pertinentes. Seguidamente, a puerta cerrada, el Jurado Evaluador determinó la calificación global concedida a la sustentación de la Tesis para obtener el Titulo Profesional, en términos de: Aprobado (X) por Unanimidad (X)/Mayoría () Desaprobado ()
Otorgada la calificación, el Secretario del Jurado Evaluador lee la presente Acta en esta misma sesión pública. A continuación se levanta la sesión.
Siendo las 1:05 p. horas del mismo día y fecha, el Jurado Evaluador concluye el acto de sustentación de la Tesis para obtener el Título Profesional. SECRETARIO De la Tesis para del mismo día y fecha, el Jurado Evaluador concluye el acto de sustentación de la Tesis para obtener el Título Profesional.
PRESIDENTE
OBSERVACIONES: VOCAL

ÍNDICE GENERAL

AGRADECIMIENTO	ii
AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRÍG	
DE MENDOZA DE AMAZONAS	iii
VISTO BUENO DEL ASESOR DE TESIS	iv
JURADO EVALUADOR DE LA TESIS	v
CONSTANCIA DE ORIGINALIDAD DE LA TESIS	vi
ACTA DE SUSTENTACIÓN DE LA TESIS	viii
ÍNDICE GENERAL	ix
ÍNDICE DE TABLAS	xi
ÍNDICE DE ILUSTRACIONES	xii
RESUMEN	xiii
ABSTRACT	xiv
I. INTRODUCCIÓN	15
II. MATERIAL Y MÉTODOS	18
2.1. Diseño de Investigación	18
2.2. Unidad de análisis	18
2.3. Materiales, equipos y software	20
2.4. Variables de Estudio	20
2.5. Metodología	23
2.5.1. Caracterización de los parámetros1fisicoquímicos de las aguas grises dome	esticas
	23
2.5.1.1. Construcción del sistemade1tratamiento	23
2.5.1.2. Instalación del tanque de la Imacenamiento	23

2.5.1	.3.	Recolección y transporte de muestras de agua	23
2.5.1	.4.	Mediciones en campo	24
2.5.1	.5.	Fase de laboratorio	24
5.2.2	. Evalu	uación de la capacidad de remoción de contaminantes de sistemas de	
tratar	niento	biológico	27
III.	RESU	JLTADOS	28
3.1.	Carac 28	eterización de los parámetros fisicoquímicos de las aguas grises doméstica	ıS
3.2. 1	Eficien	ncia de los biofiltros	31
3.2.1	. Cu	amplimiento de los parámetros evaluados con los estándares de calidad	
ambi	ental p	para agua	34
IV.	DISC	USIONES	37
V.	CON	CLUSIONES	39
VI.	RECO	OMENDACIONES	40
VII.	REFE	ERENCIAS BIBLIOGRÁFICAS	41
VIII.	ANEX	XOS	46
Anex	o 01. I	Matriz de información para el procesamiento de datos	46
Anex	to 02.	Prueba t para dos muestras suponiendo varianzas iguales	47
4	47		
Anex	to 03. I	Parámetros registrados versus estándares de calidad ambiental	60
Anex	to 03.	Resultados de laboratorio	63
(64		
Anex	to 04. I	Panel fotográfico	71

ÍNDICE DE TABLAS

Tabla 1. Materiales, equipos y software	20
Tabla 2. Descripción de variables	21
Tabla 3. Resultados de la primera fecha de muestreo	28
Tabla 4. Resultados de la segunda fecha de muestreo	29
Tabla 5. Resultados de la tercera fecha de muestreo	29
Tabla 6. Resultados de la última fecha de muestreo	30
Tabla 7. Eficacia de los biofiltros	31

ÍNDICE DE ILUSTRACIONES

	Ilustración 1. Sistema de	Tratamiento	1	9
--	---------------------------	-------------	---	---

RESUMEN

Existen diversos métodos convencionales para el tratamiento de aguas residuales, los cuales son muy costosos y afectan las cualidades del suelo, agua y muchas veces también de los seres vivos, en contraposición las especies macrófitas son viables para el tratamiento de agua residual ya que su operación y mantenimiento es de bajo costo, además presentan grandes propiedades para la reducción de sustancias tóxicas del agua. Por lo tanto, el objetivo de este estudio es evaluar la capacidad de remoción de contaminantes de la lenteja de agua (Lemna minor L.), elodea (Elodea canadensis M.) y berros (Nasturtium officinale WT. Aiton.) en aguas grises domésticas. Para este propósito se caracterizó las aguas grises de una vivienda mediante 7 biofiltros de vidrio donde se utilizaron macrófitas flotantes como la lenteja de agua, elodea y berros, distribuidas de manera aleatorio en los diferentes biofiltros, se tomaron ocho muestras de un litro, para analizar la entrada y salida de las aguas grises, estas muestras fueron tomadas mensualmente durante tres meses, para realizar la identificación de las aguas grises se realizó el análisis de los parámetros fisicoquímicos tales como Ph, temperatura, dureza, oxígeno disuelto, conductividad eléctrica, solidos disueltos totales, solidos disueltos totales, fosfatos, nitratos, amonio, DBO5, alcalinidad y cloruros para cada uno de los biofiltros, posterior a esto se evaluó las diferencias en la capacidad de remoción de los sistemas mediante la desviación estándar de los resultados obtenidos, seguidamente se halló el p valor y finalmente, se empleó la prueba t de student, consiguiendo como resultado que hubo diferencias significativas en el comportamiento de los sistemas para la reducción de algunos parámetros como el caso de los biofiltros dos, tres, cuatro, cinco, seis y siete que disminuyeron el valor del pH y los biofiltros tres, cinco y siete que aumentaron la concentración de alcalinidad. Se concluyó que el uso de macrófitas flotantes como sistema de tratamiento de aguas grises domesticas tiene gran capacidad de remoción de contaminantes.

Palabras Clave: Eficiencia, Tratamiento biológico, Aguas grises, macrófitas flotantes

ABSTRACT

There are various conventional methods for the treatment of wastewater, which are very expensive and affect the properties of the soil, water and often also of living beings. In contrast, macrophyte species are viable for the treatment of wastewater since their operation and maintenance is low cost, they also have great properties for reducing toxic substances in water. Therefore, the research objective is to evaluate the contaminant removal capacity of duckweed (Lemna minor L.), elodea (Elodea canadensis M.) and watercress (Nasturtium officinale WT. Aiton.) in domestic gray water. For this purpose, the gray water of a home was characterized using 7 glass biofilters where floating macrophytes such as duckweed, elodea and watercress were used, randomly distributed in the different biofilters. Eight one-liter samples were taken to analyze the entry and exit of the gray water, these samples were taken monthly for three months, to carry out the characterization of the gray water, the analysis of physicochemical parameters such as Ph, temperature, hardness, dissolved oxygen, electrical conductivity, dissolved solids were carried out, totals, total dissolved solids, phosphates, nitrates, ammonium, BOD5, alkalinity and chlorides for each of the biofilters, after this the differences in the removal capacity of the systems were evaluated by means of the standard deviation of the results obtained, then the found the p value and finally, the student's t test was applied, obtaining as a result that there are significant differences in the behavior of the systems for the reduction of some parameters such as the case of biofilters two, three, four, five, six and seven that decreased the pH value and biofilters three, five and seven that increased the alkalinity concentration. It is concluded that the use of floating macrophytes as a domestic gray water treatment system has a great capacity to remove contaminants.

Keywords: Efficiency, Biological treatment, Gray water, floating macrophytes

I. INTRODUCCIÓN

El agua es un elemento fundamental para la vida humana, pero en la actualidad se está afrontando problemas por escases y disminución de fuentes de agua dulce. Los principales factores que agravan la problemática son el crecimiento poblacional y el uso inadecuado del recurso (MINAM, 2016; World Economic Forum, 2019). Las fuentes de agua son receptoras de derivados de actividades antrópicas (Guanes et al., 2015) ocasionando alteraciones en estas (Herrera et al., 2020). Boyd (2019) afirma que la contaminación del recurso hidrico es debido a la ausencia de tratamientos de agua residual, inadecuado manejo de residuos, agricultura, minería, ganadería, petróleo, etc. (Flores, 2016; Villanueva y Zapata, 2016).

Las aguas residuales, son aquellas que son desechadas después de su uso, las cuales tienen modificación en su calidad por la adición de sustancias externas, llegan a los ríos y mares alterando sus características naturales (Rodríguez et al., 2006). Se clasifican en aguas negras, provenientes de los servicios higiénicos e inodoros, y aguas grises, surgidas de cocinas y lavado de ropa; estas últimas representan una fracción del 75% del total de aguas residuales domésticas (Melendez, et al., 2022). En el año 2021, en el Perú se descargaron aproximadamente 255 164 326 m³ de aguas residuales domesticas (INEI, 2022).

García et al. (2021), Meléndez et al. (2022) y Gómez et al. (2021) determinaron que las aguas grises son riesgosas debido a la propagación de enfermedades ya que transportan gran cantidad de microorganismos patógenos, por otro lado, Murcia et al. (2014) y Sáenz et al. (2023) afirman que las aguas grises también han sido utilizadas para irrigación a pequeña escala alterando las propiedades del suelo debido a la acumulación de Na. El tratamiento de aguas grises constituye una alternativa para mitigar los impactos que estas generan.

Ante esta situación, se tienen diversos métodos convencionales en donde las aguas residuales pasan por un debido tratamiento, los cuales en su mayoría son muy costosos y afectan las propiedades del suelo, agua y muchas veces también de los seres vivos (Núñez et al., 2012). En este sentido, se usan sistemas de tratamiento natural, entre los cuales se encuentran las lagunas de oxidación, humedales artificiales y macrófitas flotantes (Charris y Osorio, 2016). El uso de macrófitas en agua residual resulta ser un tratamiento viable ya que no presenta costos elevados

para su operación y mantenimiento (Rodríguez et al., 2010). Asimismo, genera gran disminución de DQO, DBO5, SST y N (Pérez et al., 2014), también destacan por su gran capacidad estableciendo condiciones óptimas donde la materia orgánica logra su descomposición (Martelo et al., 2012) así como también por absorber sustancias radioactivas como el uranio (Fernández, 2001).

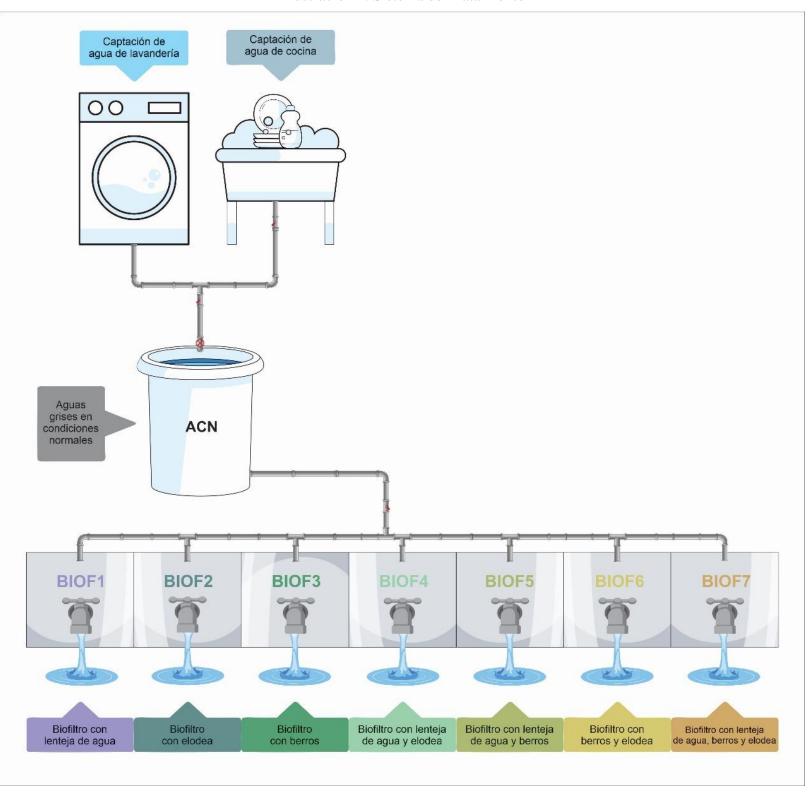
Cabe destacar que el uso de macrófitas en el tratamiento de aguas residuales reduce concentraciones de DBO, grasas y aceites (Mellado, 2019), además siendo utilizadas en el tratamiento de aguas jabonosas disminuyen notablemente la cantidad de demanda química de oxígeno (DQO) y conductividad eléctrica (Morales, 2018). Según estudios anteriores, se ha demostrado que las macrófitas tienen la característica de reducir patógenos en aguas residuales (Martelo y Borrero, 2012; Del Pilar, 2004 y Bres et al., 2012), es as que, Leon et al. (2018) observó que las macrófitas *C. thalictroides*, *P. stratiotes y L. minor* son eficaces en la reducción de carga bacteriana en las aguas residuales. De la misma manera, Bermudez, et al. (2020) demostró que *Eichhornia crassipes* y *L. minor* tienen un desempeño mayor a 44,4% en la eliminación de materia orgánica, sólidos suspendidos y sedimentados de las aguas residuales de autolavado.

Por otro lado, Tocto et al. (2018), utilizó *Nymphoides humboldtiana*, *Eichhornia crassipes* y *Nasturtium officinale*, mostrando que son muy capaces para la remoción de parámetros fisicoquímicos y microbiológicos. Márquez et al. (2020) identificó que *Nasturtium officinale WT*. *Aiton* tiene la capacidad depuradora de metales pesados, removiendo entre el 95 y 99% de Cr y Pb. También el uso de *Elodea canadensis* es eficaz en cuanto a la remoción de fósforo total de aguas contaminadas (Jimenez et al., 2016), y tiene efecto positivo para la reducción de sólidos totales, Demanda Bioquímica de Oxigeno (DBO) y contenido de cloruro (Gonzáles et al., 2012). Por lo antes descrito, se evidencia que no existe antecedentes de haber utilizado las especies de la lenteja de agua (*Lemna minor L.*), elodea (*Elodea canadensis M.*) y berros (*Nasturtium officinale WT. Aiton.*) en un sistema integrado de tratamiento de aguas grises domésticas.

Por lo argumentado, esta investigación tuvo como objetivo general evaluar la capacidad de remoción de contaminantes de la lenteja de agua (*Lemna minor L.*), elodea (*Elodea canadensis M.*) y berros (*Nasturtium officinale WT. Aiton.*) en aguas grises domésticas. Los objetivos

específicos fueron: a) Caracterizar los parámetros fisicoquímicos de las aguas grises domésticas y b) Evaluar la capacidad de remoción de contaminantes y las diferencias entre sistemas de tratamiento biológico utilizando tres especies de macrófitas flotantes lenteja de agua (Lemna minor L.), elodea (Elodea canadensis M.) y berros (Nasturtium officinale WT. Aiton)

II. MATERIAL Y MÉTODOS


2.1. Diseño de Investigación

Esta investigación es aplicada, con un nivel de investigación evaluativo, por la naturaleza de los datos la investigación tiene enfoque cuantitativo. Asimismo, la investigación es experimental ya que las variables fueron manipuladas durante la combinación de las especies, finalmente, es de corte transversal ya que los datos de las variables se recolectarán en un solo momento en el tiempo.

2.2. Unidad de análisis

El sistema constará de un tanque de 200 L de volumen estas aguas serán distribuidas en los tanques de 20 litro para cada biofiltro. Para los ensayos, se tomarán ocho muestras de un litro, para analizar la entrada y salida de las aguas grises, estas muestras serán tomadas mensualmente durante tres meses utilizando este criterio de conveniencia por razones económicas y tiempo.

Ilustración 1. Sistema de Tratamiento

2.3. Materiales, equipos y software

Tabla 1. Materiales, equipos y software

Categoría	Descripción
	Cámara fotográfica
	Libreta de campo
	Lapicero
	Guantes
	Rotulador
Materiales	Cooler
Materiales	Bolsas de hielo
	Frascos de plástico oscuros de 500ml.
	Frascos de plástico transparentes de 11.
	Tubos de ensayo
	Vasos de precipitación de 50ml. y 200ml.
	Fiolas de 25ml.
	termómetro Digital
	Multiparámetro
Equipos	Espectrofotómetro
	Estufa
	Pipetas
Software	Software estadístico Statistix 8.1.

2.4. Variables de Estudio

- Biofiltros: {1, 2, 3, ..., 7}
- Agua en condiciones normales
- Concentración de materia orgánica (DBO5)
- Cantidad de Potencial de hidrogeno (pH)
- Grados de Temperatura (T°)
- Concentración de Oxígeno disuelto
- Cantidad de Conductividad eléctrica

- Concentración de Solidos disueltos totales
- Concentración de Solidos suspendidos totales
- Concentración de Alcalinidad
- Concentración de Fosfatos
- Concentración de Nitratos
- Concentración de Dureza total
- Concentración de Cloruros
- Concentración de Amonio

Tabla 2. Descripción de variables

Código	Nombre	Descripción de la variable
ACN	Entrada	Agua en condiciones normales
B 1	Biofiltro 1	Biofiltro con Lenteja de agua
B 2	Biofiltro 2	Biofiltro con elodea
В 3	Biofiltro 3	Biofiltro con Berros
D 4	Biofiltro 4	Biofiltro con Lenteja de agua y
B 4		elodea
В 5	Biofiltro 5	Biofiltro con Lenteja de agua y
		berros
B 6	Biofiltro 6	Biofiltro con Berros y elodea
В 7	Biofiltro 7	Biofiltro con Lenteja de agua,
D /		berros y elodea
DBO ₅	Concentración de materia orgánica (DBO ₅) mg/l O2	Cantidad de oxígeno que los microorganismos consumen para degradar sustancias orgánicas contenidas en una muestra.
рН	Cantidad de Potencial de hidrogeno (pH)	Indica la acidez o la alcalinidad del agua y su rango varía entre 0-14

T°	Grados de	Magnitud de calor medible mediante
1	Temperatura (°C)	el termómetro.
	Concentración de	Cantidad de oxígeno gaseoso
OD	Oxígeno disuelto	disuelto en el agua.
	(mg/l)	
	Cantidad de	Capacidad de una sustancia para
CE	Conductividad	dejar pasar la corriente eléctrica a
	eléctrica (Us/cm2)	través de él.
	Concentración de	Suma de catiónes o aniones,
SDT	Solidos disueltos	minerales, sales, metales, disueltos
	totales (mg/l)	en el agua.
	Concentración de	material particulado en suspensión
SST	Solidos suspendidos	de las corrientes de agua.
	totales (mg/l)	
	Concentración de	Capacidad del agua para neutralizar
ALC	Alcalinidad (Ppm	los ácidos.
	CaCO3)	
DO	Concentración de	Son compuestos hechos de fósforo y
PO_4	Fosfatos (Ppm PO4)	oxígeno.
NO	Concentración de	Son compuestos nitrogenados
NO_3	Nitratos (Ppm NO3)	presentes en la naturaleza.
	Concentración de	Capacidad del agua para consumir
DT	Dureza total (Ppm	jabón.
	CaCO3)	
		Combinación de cloro (ion negativo)
CI	Concentración de	con un metal (ion positivo).
CL	Cloruros (Ppm CT)	Compuestos que contienen un
		enlace carbono-cloro.

	NH ₄ Concentración de Amonio (Ppm NH4)	Nitrógeno formado	durante	la
NH_4		degradación de	compue	stos
		orgánicos de nitrógeno	о.	

2.5. Metodología

2.5.1. Caracterización de los parámetros fisicoquímicos de las aguas grises domesticas 2.5.1.1. Construcción del sistemade tratamiento

Para el desarrollo de este estudio se diseñó el sistema de tratamiento de aguas grises el cual consiste en siete cajas de material de vidrio con dimensiones de 40cm. de largo, 35cm. de ancho y 20cm. de altura. El agua de la lavandería y de la cocina fue captada en un tanque de almacenamiento para luego ser dirigida hacia los siete biofiltros; estos biofiltros constan de tres capas de piedras de diferentes tamaños, una malla, arena y macrófitas flotantes distribuidas de la siguiente manera.

- Biofiltro 1: Lenteja de agua (100%)
- Biofiltro2: Elodea (100%)
- Biofiltro 3: Berros (100%)
- Biofiltro 4: Lenteja de agua y elodea (50%/50%)
- Biofiltro 5: Lenteja de agua y berros (50%/50%)
- Biofiltro 6: Elodea y berros (50%/50%)
- Biofiltro 7: Lenteja de agua, elodea y berros (33.3%/33.3%/33.3%)

2.5.1.2. Instalación del tanque de almacenamiento

Se instaló un tanque de material de plástico con una capacidad de almacenamiento de 200 litros, el cual tiene la función de captar y almacenar el agua del lavado de ropa y de los platos, para luego redirigir el agua hacia los siete biofiltros mencionados anteriormente.

2.5.1.3. Recolección y transporte de muestras de agua

La toma de muestras se realizó de manera mensual, iniciando el día 16 de noviembre de 2020, y culminando el día 18 de febrero de 2021; las aguas grises fueron estancadas y cambiadas cada mes, se tomaron muestras en el tanque de almacenamiento antes de ser distribuida a los biofiltros y posteriormente a la salida de estos, se tomaron muestras para cada biofiltro.

Las muestras fueron recogidas en envases de plástico oscuros de 500 ml. para determinar la materia orgánica y en frascos de plástico transparentes de un litro para los diferentes análisis

fisicoquímicos, posterior a esto las muestras fueron trasladadas en un Cooler al Laboratorio de Aguas y Suelos(LABISAG) del Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES) de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM) para su respectivo análisis.

2.5.1.4. Mediciones en campo

Se hizo uso de un termómetro digital para la toma de la temperatura al momento de la recolección de las muestras de cada punto de muestreo.

2.5.1.5. Fase de laboratorio

Para caracterizar las aguas grises domesticas se realizó el análisis de estas a través de los parámetros fisicoquímicos, hacienda uso de los métodos para la determinación de cada uno de estos. A continuación, se detalla cada uno:

Análisis de pH

Se aplicó el método 4500 - H+: APHA, AWWA, WEF; Electrodométrico. Primero se agito la muestra y se extrajo 150ml de la muestra en un vaso de precipitación de 200ml de capacidad; posterior a esto se hizo uso de un multiparámetro, se colocó la sonda de pH dentro del vaso con la muestra y paso a dar lectura. (APHA-AWWA-WEF, 2005).

Análisis de oxígeno disuelto

Se realizó con el método 4500 - O G: APHA, AWWA, WEF; Electrodo de Membrana. Se agitó la muestra y se tomó 150ml de agua en un vaso de precipitación de 200ml de capacidad, posteriormente se hizo uso del multiparámetro y se colocó la sonda de oxígeno disuelto dentro del vaso con la muestra y se tomó lectura. (APHA-AWWA-WEF, 2005).

• Determinación de conductividad eléctrica

Para determinar la conductividad eléctrica de las aguas grises se usó el método 2510B: APHA, AWWA, WEF; Electrodométrico. Se agitó la muestra y se extrajo 150ml de esta en un vaso de precipitados de 200ml, luego se midió mediante el multiparámetro, colocando la sonda de conductividad eléctrica dentro del vaso con la muestra, posterior a es esto se tomó lectura. (APHA-AWWA-WEF, 2005).

Determinación de solidos suspendidos totales

Se utilizó el método de solidos totales secados, para la determinación de este parámetro se tomó un vaso de precipitados de 200ml, se limpió con agua destilada y se colocó en la estufa a 105°C por 1 hora; posterior a esto se dejó enfriar el vaso y se pasó a pesar, esto fue el peso inicial, luego se agregó 200ml de la muestra y se colocó en la estufa a 105 °C por 24 horas, pasado este tiempo se volvió a pesar, lo que representa el peso final, para obtener el valor de los sólidos totales se restó el peso final con el peso inicial. (APHA-AWWA-WEF, 2005).

• Determinación de la Alcalinidad

Se realizó con el método 2 320 B: APHA, AWWA, WEF; Titulación con HCl. Se extrajo 50ml de la muestra de aguas grises en un vaso de precipitados, posteriormente se agregó 3 gotas de rojo de metilo y 3 gotas de verde de bromocresol, nuestra muestra tomo un color celeste; luego se procedió con la titulación con ácido clorhídrico 0,1192 N hasta que nuestra muestra tomo un color grosella, y se tomó nota del gasto del ácido. (APHA-AWWA-WEF, 2005).

Determinación de Fosfatos

Para la determinación de fosfatos se utilizó el método de PhosVer3, Digestión con Persulfato Ácido para lo que cual se tomó 5ml de la cada muestra y se colocó en tubos de ensayo debidamente rotulados, para la lectura de este parámetro se utilizó un blanco, es decir un tubo de ensayo con 5ml de agua destilada; posteriormente se agregó el contenido de un sobre del reactivo PhosVer 3 de HACH a cada uno de los tubos de ensayo y se agito por 1 minuto y después se dejó reaccionar por 20 minutos, luego se llevó al espectrofotómetro y se tomó lectura. (APHA-AWWA-WEF, 2005).

Nitratos

Para la determinación de nitratos se utilizó el método 8039; HACH: Reducción de Cadmio para lo cual se tomó 5ml de las muestras de agua y se puso en tubos de ensayo debidamente rotulados , para la lectura de este parámetro se utilizó un blanco, es decir un tubo de ensayo con 5ml de agua destilada; posteriormente se agregó el contenido de un sobre del reactivo NitraVer 5 de HACH a cada uno de los tubos de ensayo y se agito por 1 minuto y después se

dejó reaccionar por 20 minutos, luego se dio lectura en el espectrofotómetro. (APHA-AWWA-WEF, 2005).

• Determinación de la demanda bioquímica de oxígeno (DBO5)

Se utilizó el método 8043; HACH: Dilución donde se tomó la muestra en un frasco de color oscuro, para determinar este parámetro se utilizó el método de digestor por reactor, para este análisis de utilizaron 2 botellas glassco de 355ml. por muestra, además ya que son aguas residuales se realizó la dilución de 1% y 5%; se preparó el agua de dilución donde se colocó 1ml de solución tampón, cloruro de calcio, cloruro férrico y sulfato de magnesio por cada litro de agua destilada, posterior a esto se puso a airear por 1 hora; se adiciono a los frascos la cantidad de muestra de 3.5ml. y 17.5ml. respectivamente; seguidamente se llenaron los frascos con el líquido disuelto con oxígeno y se llevó al oxímetro, se colocó el electrodo dentro del frasco. Se tomo nota del oxígeno disuelto inicial, luego se dejó reposar en la incubadora y después de 5 días se realizó nuevamente la medición del oxígeno disuelto final. (APHA-AWWA-WEF, 2005).

• Concentración de Dureza total

Para determinar la concentración de dureza total se tomó 50ml de la muestra de agua y se agregó 2ml. del buffer de dureza y una pisca de negro de eriocromo (NET) se agito y la muestra tomo un color vino, posteriormente se tituló con el reactivo Ácido Etilendiamino Tetraacético (EDTA) hasta que el color de la muestra se torne a un color azul, y se anotó el gasto del reactivo. (APHA-AWWA-WEF, 2005).

Determinación de Cloruros

Se realizó con el método 2340 C: APHA, AWWA, WEF; Titulación con EDTA, se utilizó el método de titulación con nitrato de plata para lo cual se agitó y se tomó 50ml de la muestra y se agregó 3 gotas de cromato de potasio al 5% se agito y las muestras tomaron un color amarillo, seguido a esto se procedió a titular con nitrato de plata hasta que las muestras cambiaron de color amarillo a un color anaranjado, se anotó el gasto del reactivo. (APHA-AWWA-WEF, 2005).

Determinación de Amonio

Para la determinación de amonio se utilizó el método 4500-NH3 C; APHA, AWWA, WEF: Nessler, para lo cual se tomaron 5 ml. de cada muestra en fiolas de 25ml., para la lectura de este parámetro se utilizó un blanco, es decir una fiola con 5ml de agua destilada; luego se agregó 2 gotas de sal de tartrato de sodio y potasio al 50% y 2 ml. de reactivo Nessler, seguidamente se aforó con agua destilada, se dejó reposar durante 30 minutos y se pasó a dar lectura en el espectrofotómetro y se tomó lectura. (APHA-AWWA-WEF, 2005).

5.2.2. Evaluación de la capacidad de remoción de contaminantes de sistemas de tratamiento biológico

En esta etapa se diseñó el sistema de purificación de aguas grises que consistió en captar el agua de la lavandería y la cocina en condiciones normales para pasarlo por la trampa de grasas, luego fue dirigido a los 7 biofiltros para la purificación de estas.

- El sistema constó de un tanque de 200 L de volumen en el cual se captó el agua de la lavandería y de la cocina, después fue distribuida a los tanques de 20 L para cada biofiltro.
- Se colocaron los tanques de los biofiltros en paralelo y en la parte inferior de cada tanque se colocaron pequeños baldes de 4 L para recoger las muestras de agua filtrada.
- Se evaluó los parámetros de las aguas grises antes de ser distribuida a los diferentes biofiltros y posteriormente a la salida de estos mismos.
- Este procedimiento se realizó 3 veces de manera mensual.
- Para evaluar las diferencias en la capacidad de remoción de los sistemas de tratamiento biológico se estimó la desviación estándar referente a los resultados obtenidos de los parámetros fisicoquímicos en la entrada y salida de los biofiltros, seguidamente se halló el p valor y finalmente, se aplicó la prueba t de student.

III. RESULTADOS

3.1. Caracterización de los parámetros fisicoquímicos de las aguas grises domésticas

Los resultados obtenidos se muestran en función a los 13 parámetros fisicoquímicos que se realizaron en las 2 fases, tanto en campo como en laboratorio y se muestran en las siguientes tablas según las fechas de los muestreos.

Tabla 3. Resultados de la primera fecha de muestreo

Parámetro	Unidad				Punto d	e muestre	0		
rarameno	Omuau	ACN	B1	B2	В3	B4	B5	В6	В7
Ph		9.69	9.69	7.76	7.48	7.54	7.38	7.50	7.42
Temperatura	°C	16	16.7	16.2	16.5	15.8	16.2	16	15.8
Oxígeno	mg/l	3.07	3.07	2.01	3.35	4.88	2.18	2.86	4.67
Disuelto									
Conductividad	Us/cm2	17.7	19.1	12.3	9.6	4.6	7.3	5.2	7.7
Eléctrica									
Solidos	mg/l	917	1155	637	479	224	352	254	370
Disueltos									
Totales									
Sólidos	mg/l	2.07	2.91	2.7	0.92	0.59	0.8	1.14	1.49
Totales									
Alcalinidad	Ppm	190.72	190.72	190.72	214.56	190.72	250.32	166.88	214
	CaCO3								.56
Cloruros	Ppm CT	34.52	32.47	48.71	145.16	428.71	76.4	52.53	85
Dureza	Ppm	81.84	100.44	128.96	209.56	244.28	192.2	158.72	209.56
	CaCO3								
Nitratos	Ppm NO3	159.6	156.7	202.7	114.30	63.04	96.28	243.4	69.05
Fosfatos	Ppm PO4	0.70	2.11	2.32	0.04	0.04	0.04	0.48	0.47
Amonio	Ppm NH4	4.32	6.99	17.3	5.68	6.07	6.14	4.12	4.95
DBO5	mg/l O2	263.6	225.8	196.1	102.7	175.8	107.5	193.7	207.3

En la tabla 3 se muestran los resultados de la fecha uno de muestreo de los 13 parámetros fisicoquímicos evaluados

Tabla 4. Resultados de la segunda fecha de muestreo

PARÁMETRO	UNIDAD			PU	INTO DE	MUESTI	REO		
FARAMETRO	UNIDAD	ACN	B1	B2	В3	B4	В5	В6	В7
Ph	pН	7.37	7.29	7.82	7.58	7.52	7.47	7.54	7.59
Temperatura	°C	17.4	18.5	18	17.6	17.4	17.4	17.8	17.6
Oxígeno	mg/l	0.72	4.68	0.9	5.27	6.02	4.33	5.68	4.48
Disuelto									
Conductividad	Us/cm2	17.7	18	2830	21.9	16.3	2440	17.1	18.8
Eléctrica									
Solidos Totales	mg/l	1.85	1.41	2.25	1.78	1.36	1.83	1.41	1.50
Alcalinidad	Ppm CaCO3	238.4	357.6	596	476.8	476.8	715.2	476.8	476.8
Cloruros	Ppm CT	142.5	266	199.5	256.5	199.5	285	161.5	237.5
Dureza	Ppm CaCO3	347.2	248	347.2	446.4	595.2	496	434	334.8
Nitratos	Ppm NO3	210.1	54.55	172.7	47.83	31.57	48.89	53.49	51.72
Fosfatos	Ppm PO4	5.463	2.17	3.83	1.39	0.46	0.45	0.30	0.50
Amonio	Ppm NH4	12.05	7.58	7.58	27.21	15.69	36.45	19.53	22.06
DBO5	mg/l O2	149.8	68.3	118.7	110.5	65.5	96.7	82.8	72.3

En la tabla 4 se muestran los resultados de la segunda fecha de muestreo para los 13 parámetros fisicoquímicos.

Tabla 5. Resultados de la tercera fecha de muestreo

PARÁMETRO	UNIDAD			PU	NTO DE	MUESTF	REO		_
TARANILTRO		ACN	B1	B2	В3	B4	B5	B6	B7
Ph	pН	9.46	7.84	7.91	7.75	7.67	7.76	7.57	7.46
Temperatura	°C	17.20	17.8	17.9	16.5	16.7	16.5	16.3	15.9
Oxígeno	mg/l	6.88	5.76	4.9	5.59	4.4	5.32	4.12	2.39
Disuelto									
Conductividad	Us/cm2	2260.3	3380.7	3033	3966.7	4402.3	3959.3	3084	3567.7
Eléctrica									
Solidos	mg/l	482	673	761	915	1015	900	689	975
Disueltos Totales									
Solidos Totales	mg/l	16.12	1.12	1.17	1.43	1.53	1.31	1.13	1.18

Alcalinidad	Ppm CaCO3	178.8	333.76	405.28	476.8	441.04	429.12	369.52	429.12
Cloruros	Ppm CT	0.67	18.15	14.33	36.29	17.19	21.97	10.51	31.52
Dureza	Ppm CaCO3	0.9	31.54	15.02	34.55	36.05	21.03	19.53	54.2
Nitratos	Ppm NO3	154.3	55.26	104.3	43.23	38.99	51.37	31.57	54.2
Fosfatos	Ppm PO4	0.70	0.02	1.80	0.80	0.27	0.56	0.29	1.09
Amonio	Ppm NH4	13.88	25.2	18.48	23.79	25.91	28.74	21.31	25.36
DBO5	mg/l O2	149.9	98.9	69	92.9	61.3	66.8	85.6	79.4

En la tabla 5 se muestran los resultados de la tercera fecha de muestreo.

Tabla 6. Resultados de la última fecha de muestreo

PARÁMETRO	UNIDAD			PU	NTO DE	MUESTE	REO		
FARAMETRO	UNIDAD	ACN	B1	B2	В3	B4	B5	B6	B7
Ph	pН	7.91	8.03	8.54	8.15	8.16	7.92	7.95	7.74
Temperatura	°C	14.2	13.3	13.5	13.4	13.4	13.1	13.4	13.5
Oxígeno	mg/l	7.12	5.87	5.72	6.06	5.89	4.28	3	3.51
Disuelto									
Conductividad	Us/cm2	441.7	2335.3	2298	2991.3	21042.	3633	3000.7	3640.7
Eléctrica						7			
Solidos	mg/l	89.7	499	493	662	673	817	661	809
Disueltos Totales									
Solidos Totales	mg/l	0.2	0.92	0.91	1.05	1.1	1.22	1.12	0.93
Alcalinidad	Ppm CaCO3	35.76	178.8	238.4	298	298	369.52	345.68	774.8
Cloruros	Ppm CT	10.51	9.55	10.51	15.28	14.33	17.19	9.55	22.92
Dureza	Ppm CaCO3	2988.9	180.24	645.86	1261.6	1381.8	1847.4	1486.9	2463.2
		8			8	4	6	8	8
Nitratos	Ppm NO3	26.97	109.4	94.16	69.05	74.71	46.42	27.32	41.47
Fosfatos	Ppm PO4	0.04	0.37	0.66	0.27	0.33	1.98	0.43	1.54
Amonio	Ppm NH4	0.62	5.29	5.49	7.96	10.01	11.66	8.94	17.35
DBO5	mg/l O2	116.1	56.8	69	90	99.6	94.9	87.6	47.5

En la tabla 6 se muestran los resultados de la última fecha de muestreo de los 13 parámetros fisicoquímicos

3.2. Eficiencia de los biofiltros

La eficacia según RAE (2001), es la capacidad de lograr el efecto que se desea o se espera, se realizó la prueba t de Student para pares de datos, para poder determinar las diferencias significativas entre los tratamientos y comparar el comportamiento de los biofiltros tanto en la entrada como también en la salida del sistema. En este estudio un biofiltro es eficaz, si el valor de salida es menor al de entrada, y si se expone estadísticamente que hay diferencias es decir según p valor (<0.05).

Tabla 7. Eficacia de los biofiltros

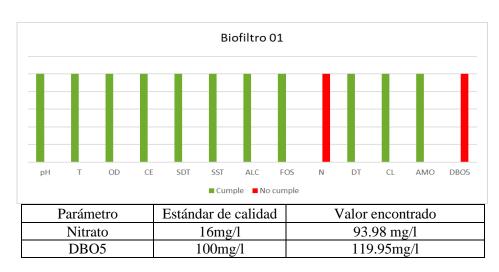
D: of:14.	Douém stro	Prom	edio	n valor
Biofiltr	Parámetro	Entrada	Salida	p-valor
	pН	9.11 ± 0.81	8.21 ± 1.03	0.22
	Temperatura	16.20 ± 1.47	16.58 ± 2.31	0.79
	Oxígeno disuelto	4.45 ± 3.10	4.85 ± 1.30	0.82
	Conductividad eléctrica	684.35±1069.48	1438.28±1694	0.48
	SDT	394.60±394.32	706.50±310.05	0.26
	SST	5.06 ± 7.42	1.59 ± 0.90	0.39
1	Alcalinidad	160.92 ± 87.32	265.22 ± 93.54	0.15
	Fosfatos	1.73 ± 2.51	1.17±1.13	0.70
	Nitratos	137.74 ± 78.01	93.98 ± 49.08	0.38
	Dureza	854.73±1430.50	140.06±94.18	0.36
	Cloruros	46.3 ± 65.41	81.54±123.33	0.63
	Amonio	7.83 ± 6.39	11.26 ± 9.34	0.57
	DBO5	169.85±64.49	119.95±92.29	0.41

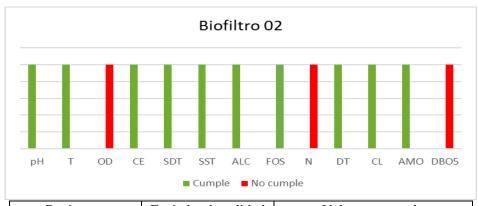
Biofiltro	Parámetro	Proi	medio	p-valor	
Diomino	Farameno	Entrada	Salida	p-vaior	
	рН	9.11±0.81	8.01±0.36	0.048	
	Temperatura	16.20±1.47	16.40 ± 2.10	0.88	
	Oxígeno disuelto	4.45 ± 3.10	3.38 ± 2.30	0.60	
	Conductividad eléctrica	684.35±1069.48	2043.33±1389.03	0.17	
	SDT	394.60 ± 394.32	596±129.26	0.37	
	SST	5.06 ± 7.42	1.76 ± 0.86	0.41	
2	Alcalinidad	160.92 ± 87.32	357.60±183.64	0.10	
	Fosfatos	1.73 ± 2.51	2.15 ± 1.31	0.77	
	Nitratos	137.74 ± 78.01	143.47±52.69	0.91	
	Dureza	854.73±1430.50	284.26 ± 277.68	0.46	
	Cloruros	46.3±65.41	68.26 ± 89.16	0.71	
	Amonio	7.83 ± 6.39	12.21±6.63	0.38	
	DBO5	169.85±64.49	113.20±60.03	0.25	

D: a 6:14ma	Donémotro	Pro	nedio	n valor	
Biofiltro	Parámetro	Entrada	Salida	p-valor	
	рН	9.11±0.81	7.74 ± 0.30	0.02	
	Temperatura	16.20±1.47	16±1.81	0.87	
	Oxígeno disuelto	4.45 ± 3.10	5.07±1.19	0.72	
	Conductividad eléctrica	684.35±1069.48	1747.38 ± 2038.78	0.39	
	SDT	394.60±394.32	679.50±179.14	0.24	
	SST	5.06±7.42	1.30±0.39	0.35	
3	Alcalinidad	160.92±87.32	366.54±131.80	0.04	
	Fosfatos	1.73±2.51	0.62 ± 0.60	0.43	
	Nitratos	137.74 ± 78.01	68.60 ± 32.47	0.15	
	Dureza	854.73 ± 1430.50	488.05±542.67	0.65	
	Cloruros	46.3±65.41	113.31±111.15	0.34	
	Amonio	7.83 ± 6.39	16.16±10.91	0.24	
	DBO5	169.85 ± 64.49	98.85 ± 9.54	0.07	

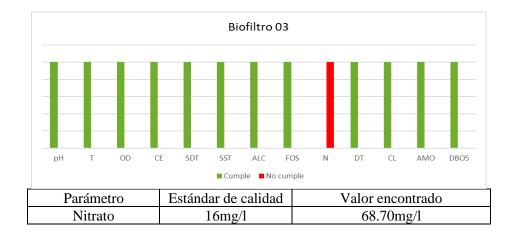
D: o €14.00	Douglas atua	Pro	medio	n uglar	
Biofiltro	Parámetro	Entrada	Salida	p-valor	
	рН	9.11±0.81	7.72±0.28	0.02	
	Temperatura	16.20±1.47	15.83±1.74	0.75	
	Oxígeno disuelto	4.45±3.10	5.30 ± 0.79	0.61	
	Conductividad eléctrica	684.35±1069.48	6366.48±10000.80	0.30	
	SDT	394.60±394.32	646.25±324.40	0.36	
	SST	5.06 ± 7.42	1.15 ± 0.41	0.33	
4	Alcalinidad	160.92 ± 87.32	351.64±132.20	0.05	
	Fosfatos	1.73±2.51	0.28 ± 0.18	0.29	
	Nitratos	137.74 ± 78.01	652.08 ± 20.20	0.07	
	Dureza	854.73±1430.50	564.34±591.83	0.72	
	Cloruros	46.3±65.41	69.93±87.77	0.68	
	Amonio	7.83 ± 6.39	14.42 ± 8.62	0.27	
	DBO5	169.85±64.49	100.55 ± 53.02	0.15	

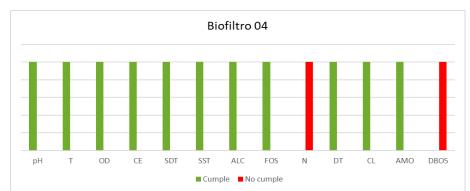
Biofiltro	Parámetro	Pro	nedio	p-valor	
Бюшио	Farametro	Entrada	Salida	p-vaior	
-	рН	9.11±0.81	7.63±0.25	0.01	
	Temperatura	16.20±1.47	15.80±1.87	0.75	
	Oxígeno disuelto	4.45 ± 3.10	4.03 ± 1.32	0.81	
	Conductividad eléctrica	684.35±1069.48	2509.90±1791.65	0.13	
	SDT	394.60±394.32	721.5 ± 249.42	0.21	
	SST	5.06±7.42	1.29±0.42	0.35	

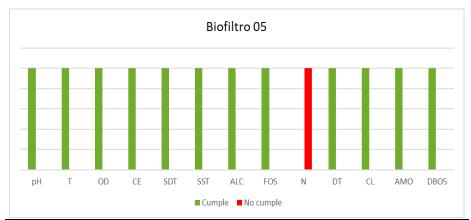

5	Alcalinidad	160.92±87.32	441.04±197.31	0.04
	Fosfatos	1.73±2.51	0.85±0.76	0.53
	Nitratos	137.74±78.01	60.74 ± 23.78	0.11
	Dureza	854.73±1430.50	639.17±829.12	0.80
	Cloruros	46.3±65.41	100.14±126.13	0.48
	Amonio	7.83±6.39	20.75 ± 14.22	0.15
	DBO5	169.85±64.49	91.48±17.37	0.06


Biofiltro	Parámetro	Pror	nedio	n valor	
Бюшио	Parametro	Entrada	Salida	p-valor	
	рН	9.11±0.81	7.64 ± 0.21	0.01	
	Temperatura	16.20±1.47	15.88±1.83	0.79	
	Oxígeno disuelto	4.45 ± 3.10	3.92 ± 1.30	0.76	
	Conductividad eléctrica	684.35±1069.48	1526.75 ± 1750.40	0.44	
	SDT	394.60±394.32	566.25 ± 208.58	0.47	
	SST	5.06 ± 7.42	1.20 ± 0.14	0.34	
6	Alcalinidad	160.92 ± 87.32	339.72 ± 128.57	0.06	
	Fosfatos	1.73 ± 2.51	0.38 ± 0.09	0.32	
	Nitratos	137.74 ± 78.01	88.95±103.61	0.48	
	Dureza	854.73 ± 1430.50	524.81±664.17	0.69	
	Cloruros	46.3±65.41	58.52 ± 71.52	0.81	
	Amonio	7.83 ± 6.39	13.48 ± 8.29	0.32	
	DBO5	169.85±64.49	112.43±54.22	0.22	

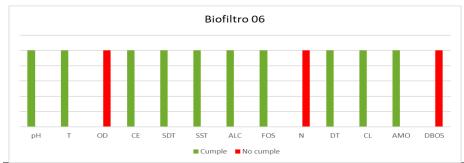
Biofiltro	Parámetro	Pro	Promedio	
DIOIIIIO		Entrada	Salida	p-valor
·	рН	9.11±0.81	7.55±0.14	0.01
	Temperatura	16.20±1.47	15.70±1.68	0.67
	Oxígeno disuelto	4.45 ± 3.10	3.76 ± 1.05	0.69
	Conductividad eléctrica	684.35±1069.48	1808.73±2073.46	0.37
	SDT	394.60±394.32	740.75 ± 259.26	0.19
	SST	5.06±7.42	1.28±0.27	0.35
	Alcalinidad	160.92±87.32	474.07±230.43	0.04
	Fosfatos	1.73 ± 2.51	6.29 ± 10.52	0.43
7	Nitratos	137.74 ± 78.01	54.11±11.38	0.08
	Dureza	854.73 ± 1430.50	759.42±1142.77	0.92
	Cloruros	46.3±65.41	94.24 ± 99.38	0.45
	Amonio	7.83 ± 6.39	17.43 ± 8.95	0.13
	DBO5	169.85±64.49	101.63±71.76	0.21

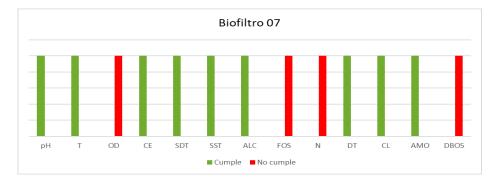

Los resultados que se alcanzaron a partir de la prueba T de Student, respecto al resultado del p-valor > 0.05(tabla 7), nos muestran que no se encontró diferencias significativas en el B1 para ninguno de los parámetros evaluados, por otro lado, en el B2 se hallaron diferencias significativas en el pH con un valor de 0.048, seguidamente, en los B3 y B4 se obtuvo un valor de 0.02 y en los B5, B6 y B7 se obtuvo un valor de 0.01. En el parámetro de concentración de Alcalinidad se encontraron diferencias significativas en los B3, B5 y B7 con un valor de 0.04, demostrando que son eficaces para la reducción de algunos parámetros como el caso de los B2, B3, B4, B5, B6 y B7 que disminuyeron el valor del pH y los B3, B5 y B7 en cuanto a la concentración de alcalinidad.


3.2.1. Cumplimiento de los parámetros evaluados con los estándares de calidad ambiental para agua



Parámetro	Estándar de calidad	Valor encontrado
Oxígeno disuelto	≥5mg/l	3.38mg/l
Nitrato	16mg/l	143.47mg/l
DBO5	100mg/l	113.2mg/l




Parámetro	Estándar de calidad	Valor encontrado
Nitrato	16mg/l	52.08 mg/l
DBO5	100mg/l	100.55mg/l

Parámetro	Estándar de calidad	Valor encontrado
Nitrato	16mg/l	60.74 mg/l

Parámetro	Estándar de calidad	Valor encontrado
Oxígeno disuelto	≥5mg/l	3.92mg/l
Nitrato	16mg/l	88.95 mg/l
DBO5	100mg/l	112.43mg/l

Parámetro	Estándar de calidad	Valor encontrado
Oxígeno disuelto	≥5mg/l	3.76mg/l
Fosfatos	5 mg/l	6.29mg/l
Nitrato	16mg/l	54.11 mg/l
DBO5	100mg/l	101.63mg/l

La semejanza de los parámetros estimados de las cuatro repeticiones de la salida de los siete biofiltros se realizó en relación con la normativa del Decreto Supremo N° 004-2017-MINAM Estándares de Calidad Ambiental (ECA) para Agua como se muestra en el anexo 03 en donde se evidencia los valores de Oxígeno disuelto, concentración de Nitratos, DBO5, Dureza y concentración de Fosfatos que alcanzaron valores elevados sobrepasando los estándares de calidad. Además, se señala algunos tratamientos que podrían utilizarse para cada uno de los contaminantes encontrados como la Aireación, Osmosis inversa, Filtración y eliminación biológica del fósforo.

IV. DISCUSIONES

En esta investigación se evaluó la capacidad de remoción de contaminantes de las especies lenteja de agua (*Lemna minor l.*), elodea (*Elodea canadensis m.*) y berros (*Nasturtium officinale wt aiton*) en aguas grises domésticas, este estudio es original ya que evaluó las especies mencionadas en forma individual y combinaciones de dos a dos y tres, donde las mejores combinaciones son los biofiltros con *Nasturtium officinale wt aiton*, *Nasturtium officinale wt aiton* y *Lemna minor l.* y por último el biofiltro con las tres especies estudiadas. El trabajo de Bermúdez et al. (2020) evaluó Jacinto de Agua (*Eichhornia crassipes*) y Lenteja de Agua (*Lemna minor*), pero sin ejecutar combinaciones entre estas especies, de la misma manera León et al. (2018) pero agregando las especies *Azolla caroliniana Willd*, *Pistia stratiotes L.* y *Salvinia auriculata Aubl.* Jimenez et al. (2016) de igual manera, pero con las especies *Elodea Canadensis Michax* (Ilacho) y *Myriophyllum Quitensis Kunth* (hinojo), Rodríguez et al. (2010) en su estudio utilizo la lenteja de agua y el buchón de agua, el estudio de Charris y Osorio (2016) evaluó las especies *Cyperus ligularis y Echinochloa colonum*, así mismo, Cárdenas et al. (2023) estudio la capacidad depuradora de *Pistia stratiotes L.*, por su parte en el estudio de Mendoza et al. (2018) se evaluaron las especies *Pistia stratiotes* y *Eichhornia crassipes*.

En cuanto al tipo de agua, se realizó el tratamiento de aguas grises domesticas ya que por lo general este tipo de agua es poco estudiada y a la fecha se tienen pocas investigaciones sobre el tema debido a que los autores no disocian las aguas residuales en sus componentes principales como son las aguas negras y aguas grises, es así que Rodríguez et al. (2010), Charris y Osorio (2016), León et al. (2018), Mendoza et al. (2018), Bermúdez et al. (2020) y Cárdenas et al. (2023) realizaron su investigación en aguas residuales domésticas, por otro lado Morales y Milla (2018) trataron los contaminantes presentes en aguas jabonosas.

En estudios previos no se han estudiado los siguientes parámetros concentración de nitratos, concentración de amonio, concentración de cloruros y concentración de dureza total, estos parámetros brindan mayor información sobre la calidad del agua, se sospechó que existen diferencias en cuanto a la remoción de estas concentraciones al estar evaluando sistemas con combinaciones de tres macrófitas, este aspecto también es diferenciador en este estudio ya que los estudios precedentes evaluaron únicamente parámetros correlacionados por ejemplo León et al. (2018) estudio las concentraciones de pH, SDT, T° y E. coli, por su parte Bermúdez et al. (2020)

evaluó las concentraciones de DQO, DBO5, pH, Solidos Disueltos Totales y Solidos Suspendidos Totales, de igual manera Rodríguez et al. (2010) pero adicionando las concentraciones de alcalinidad, conductividad eléctrica y temperatura, mientras que Morales y Milla (2018) evaluaron los parámetros fisicoquímicos como el pH, T°, Oxígeno Disuelto, Conductividad Eléctrica, Solidos Disueltos Totales, Solidos Suspendidos Totales, Alcalinidad, Fosfatos, DBO5 y DQO.

Los valores que se obtuvieron tras realizar las pruebas de laboratorio muestran que la mayoría de los parámetros estimados se encuentran dentro de las categorías establecidas por los estándares de calidad ambiental para agua (ECA) D. S. N° 004-2017-MINAM, teniendo únicamente las concentraciones de DBO5, oxígeno disuelto, nitratos y fosfatos por encima de los valores establecidos, sin embargo, estas concentraciones si fueron reducidas por los biofiltros evaluados. En la investigación de Bermúdez et al. (2020) se obtuvieron altos porcentajes en cuanto a la reducción de DQO, BDO, Solidos suspendidos y solidos disueltos, alcanzando hasta el 97% de remoción y una disminución de 1.5 unidades en el Ph, por su parte Rodríguez et al. (2010), tuvo como resultados el aumento en las concentraciones de conductividad eléctrica, alcalinidad y pH, mientras que obtuvo la reducción en cuanto a la concentración de DBO5, DQO y solidos disueltos totales, por otro lado Jiménez et al. (2016) obtuvo resultados que exceden los límites autorizados por la normativa establecida en las concentraciones de fosforo, DBO5, pH, DQO y solidos disueltos totales, también Morales y Milla (2018) obtuvieron valores por encima de los límites máximos permisibles en las concentraciones de DBO5 y DQO.

V. CONCLUSIONES

Se caracterizo las aguas grises, donde se estudiaron 13 parámetros fisicoquímicos que son: el pH, Temperatura, Oxígeno Disuelto, Conductividad eléctrica, Solidos Disueltos Totales, Solidos Suspendidos Totales, Alcalinidad, Fosfatos, DBO5, Nitratos, Dureza Total, Amonio, y Alcalinidad, todos estuvieron dentro de los rangos esperados a excepción de oxígeno disuelto, nitratos y fosfatos, incumpliendo con la normativa del decreto supremo N° 004-2017-MINAM.

Los biofiltros B2(Elodea canadensis m.), B3(Nasturtium officinale wt aiton), B4(Nasturtium officinale wt aiton y Lemna minor l.), B5(Nasturtium officinale wt aiton y Lemna minor l.), B6(Elodea canadensis m.yNasturtium officinale wt aiton) y B7(Lemna minor l., Elodea canadensis m. y Nasturtium officinale wt aiton) son eficaces para la reducción de la cantidad de pH, teniendo diferencia significativa con respecto al biofiltro B1(Lemna minor l), mientras que los biofiltros B3(Nasturtium officinale wt aiton), B5(Nasturtium officinale wt aiton y Lemna minor l.) y B7(Lemna minor l., Elodea canadensis m. y Nasturtium officinale wt aiton) aumentaron la concentración de alcalinidad en las aguas grises domésticas mostrando de esta manera diferencia significativa respecto a los demás biofiltros.

VI. RECOMENDACIONES

- Realizar más repeticiones de manera periódica de los análisis de laboratorio en intervalos de tiempo de siete días, 15 días, 30 días, etc. para obtener resultados más confiables referentes a los parámetros fisicoquímicos
- Realizar un sistema de tratamiento biológico de flujo vertical u horizontal utilizando las macrófitas empleadas en este estudio, para analizar la capacidad de remoción de contaminantes en agua grises con flujo continuo evitando de esta manera la descomposición de las plantas acuáticas y por ende el aumente de algunos parámetros fisicoquímicos como la concentración de amonio, nitratos y oxígeno disuelto.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Avalos, G. A., & González, E. A. (2017). Disminución de sólidos de aguas grises mediante un proceso de aireación. *Ra Ximhai*, 393-404. https://doi.org/10.35197/rx.13.03.2017.23.gt
- APHA-AWWA-WEF (2005) Standard Methods for the Examination of Water and Wastewater. 21th Edition. New York, 4-90 a 4-94, método 4500-H+)
- Boyd, C. E. (2019). Water Quality: An Introduction. http://ci.nii.ac.jp/ncid/BA51164133
- Bres, P. A., Crespo, D. E., Rizzo, P. F., y La Rossa, R. (2012). Capacidad de las macrofitas Lemna minor y Eichhornia crassipes para eliminar el níquel. *DOAJ (DOAJ: Directory of Open Access Journals)*. https://doaj.org/article/b6dc82712383496e9c19448423db6a82.
- Cárdenas, E., Allende, Z., Ferreira, M., Velázquez, A., & Vogt, C. (2023). Estudio de la capacidad depuradora de Pistia stratiotes L. en el tratamiento de aguas residuales generados en el Laboratorio de Efluentes de FACEN-UNA. Reportes Científicos de la FACEN, 14(1), 70-77. https://doi.org/10.18004/rcfacen.2023.14.1.70
- Cantillo, S. P. y Corpus, W. (2018). Diseño e implementación de un filtro para tratamiento de aguas grises en la aplicación de un sistema de riego para una huerta casera en San Andrés Islas, Colombia. Revista loginn. https://doi.org/10.23850/25907441.1662
- Charris, J. C., & Caselles-Osorio, A. (2016). Eficiencia de eliminación de contaminantes del agua residual doméstica con humedales construidos experimentales plantados con Cyperus ligularis (Cyperaceae) y Echinochloa colonum (Poaceae). *DOAJ (DOAJ: Directory Of Open Access Journals)*. https://doaj.org/article/bd17b682cf014fce896187c043d216f2
- Del Pilar Arroyave, M. (2004). La Lenteja De Agua (Lemna Minor L.): Una Planta Acuática Promisoria. *Revista EIA*, *1*(1), 33–38. https://doi.org/10.24050/reia.v1i1.121
- Flores, A., y Manuel, J. (2016). Caracterización de la biodiversidad acuática en la cuenca andinoamazónica de Madre de Dios - Perú. http://rabida.uhu.es/dspace/bitstream/10272/12705/2/Caracterizacion de la biodiversida d.pdf

- Garavito Bermúdez, G. I., Ospina Romero, L. V., y Ospina Mora, D. C. (2020). Evaluación de un sistema a escala laboratorio, de un filtro de macrófitas en flotación como tratamiento de aguas residuales de un autolavado. *Revista Logos Ciencia & Tecnología*, 12(1), 10-20.
- García Prieto, J. C., Roig, M. G., Navas Herranz, J. N. H., y Ayuso Olmos, J. M. (2021). Evaluación Científico-Técnica de la viabilidad y análisis de costes de la tecnología de electrocoagulación para la eliminación de la turbidez y materia orgánica de aguas grises. *Plataforma Tecnológica Española del Agua (PTEA), Edición N.o.3, ISSN 2792-8101*.
- Gómez, L., Moreno, M., Vargas, M., y Cedeño, M. (2021). Análisis de la generación de aguas grises en los hogares y evaluación de sistemas de tratamiento. *Revista de Iniciación Científica*, 7, 65-71.
- Grenda, K., Arnold, J., Gamelas, J. a. F., Cayre, O. J., y Rasteiro, M. G. (2020). Flocculation of silica nanoparticles by natural, wood-based polyelectrolytes. *Separation and Purification Technology*, 231, 115888. https://doi.org/10.1016/j.seppur.2019.115888
- Guanes, R. M. L., Mendoza, R. B., Espinosa, M. G., Marcial, N. R., Otárola, F. J., y Castillejos, K. M. (2015). Concentración de metales en agua y sedimentos de la cuenca alta del río Grijalva, frontera México-Guatemala. *Tecnología Y Ciencias Del Agua*, *6*(4), *61–74*. http://www.scielo.org.mx/pdf/tca/v6n4/v6n4a4.pdf
- Herrera-R, G. A., Oberdorff, T., Anderson, E. P., Brosse, S., Carvajal-Vallejos, F. M., Frederico, R. G., Hidalgo, M., Jézéquel, C., Maldonado, M., Maldonado-Ocampo, J. A., Ortega, H., Radinger, J., Torrente-Vilara, G., Zuanon, J., y Tedesco, P. A. (2020). The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. *Global Change Biology*, 26(10), 5509–5523. https://doi.org/10.1111/gcb.15285
- INEI (2022). Anuario De Estadisticas Ambietales 2022. Lima, Peru.
- Jaco, E., Gómez, W., Loroña, F., Zamora, N., y Huaman, N. (2022). Eficiencia de la Opuntia fic us indica como coagulante para el tratamiento de las aguas residuales grises y su aplicación en un sistema piloto. *Ingeniería del Agua*, 26(3), 157-171.

- León, R., Pernía, B., Siguencia, R., Franco, S., Noboa, A., y Cornejo, X. (2018). Potencial de plantas acuáticas para la remoción de coliformes totales y Escherichia coli en aguas servidas. *Enfoque UTE*, *9*(4), *131-144*.
- Márquez, J. M., Valdés, A., García, C., Rodríguez, H., Gamboa, J., & Luna, H. L. (2020). Evaluación de los efectos sinérgicos de cromo y plomo durante el proceso de fitorremediación con berro (Nasturtium officinale) en un humedal artificial. *Biotecnia*, 22(2), 171-178. https://doi.org/10.18633/biotecnia.v22i2.1259
- Martelo, J., y Lara-Borrero, J. A. (2012). Macrófitas flotantes en el tratamiento de aguas residuales: una revisión del estado del arte. *Ingeniería Y Ciencia*, 8(15), 221–243. https://doi.org/10.17230/ingciencia.8.15.11
- Mendoza, Y. I., IPérez, J., & Galindo, A. A. (2018). Evaluación del Aporte de las Plantas Acuáticas Pistia stratiotes y Eichhornia crassipes en el Tratamiento de Aguas Residuales Municipales. InformacióN TecnolóGica, 29(2), 205-214. https://doi.org/10.4067/s0718-07642018000200205
- Meléndez, F. A., Descalzo, E. N. E., Pérez, J. E. L., Castillo, R. A. Z., y López, M. A. Y. (2022). Diseño de un Sistema de Tratamiento de Aguas Grises Claras para Reuso Como Agua de Regadio. *Revista de la Sociedad Química del Perú*, 88(1), 52-62. https://doi.org/10.37761/rsqp.v88i1.375
- Mellado, G. (2019) Determinación De La Eficiencia De Tres Especies Macrófitas Para El Tratamiento De Aguas Residuales Domésticas. (tesis de pregrado). Universidad Nacional Federico Villarreal, Lima, Perú
- Morales, E. (2018). Evaluación del sistema biológico para el tratamiento de aguas jabonosa. (Tesis de pregrado). Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Perú
- Nivala, J., Murphy, C., y Freeman, A. (2020). Recent advances in the application, design, and operations & maintenance of aerated treatment wetlands. *Water*, 12(4), 1188.
- Núñez, L., Tornello, C., Puentes, N., y Moretton, J. (2012). Bacterias resistentes a antibióticos en aguas grises como agentes de riesgo sanitario. *Revista Ambiente & Água*, 7(1), 235–243. https://doi.org/10.4136/ambi-agua.638

- Paitán, H. Ñ., Mejía, E. M., Ramírez, E. N., y Paucar, A. V. (2014). Metodología de la investigación cuantitativa-cualitativa y redacción de la tesis. *Ediciones de la U*.
- Pérez, J. C., Arias, A. N. A., y Calle, J. R. (2014). Evaluación de un Humedal Artificial de Flujo Subsuperficial en el Tratamiento de las Aguas Residuales Generadas en la Institución Universitaria Colegio Mayor de Antioquia, Colombia. *Revista Internacional de Contaminación Ambiental, 30(3), 275–283.*http://scielo.unam.mx/pdf/rica/v30n3/v30n3a4.pdf
- Reséndiz G. M., Sandoval, L. C. y santillan, F. J. (2023). los humedales construidos: una estrategia para el tratamiento sustentable de agua residual. *Publicación digital de la red del agua UNAM*, 1(21),83.
- Rodríguez-Miranda, J. P., Gómez, E., Garavito, L., y López, F. (2010). Estudio de comparación del tratamiento de aguas residuales domésticas utilizando lentejas y buchón de agua en humedales artificiales. *DOAJ (DOAJ: Directory of Open Access Journals)*. https://doaj.org/article/51ff95df7b93435296cdb2b63336f4e4
- Sáenz-Arias, S., Garcés-Ordóñez, O., Córdoba-Meza, T., García, L. M. B., Díaz, L. F. E., Aguas, L. J. V., y Canals, M. (2023). Contaminación por vertidos de aguas residuales: Una revisión de las interacciones microorganismos—microplásticos y sus posibles riesgos ambientales en aguas costeras colombianas. *Ecosistemas*, 32(1), 2489. https://doi.org/10.7818/ecos.2489
- Tocto, R. Y. A., Ordoñez, E. C., Rascón, J., y Silva, R. C. (2018). Fitorremediación de aguas residuales domésticas utilizando las especies Eichhornia crassipes, Nymphoides humboldtiana y Nasturtium officinale. *Revista de investigación en agroproducción sustentable*, 2(3), 48. https://doi.org/10.25127/aps.20183.403
- Villanueva, M., & Zapata, F. C. C. (2016b). Analysis of benthic macroinvertebrates biodiversity of Cunas river by means of environmental indicators, Junin-Peru. *Scientia Agropecuaria*, 7(1), 33–44. https://doi.org/10.17268/sci.agropecu.2016.01.04
- World Economic Forum. (2019). Global Risks Report 2019. Geneva Switzerland, p. 114.
- Yepes, C. M., Hurtado, L. A. del P., Hernández, D. M. H., y Chaparro, T. R. C. (2018, octubre). Utilización de un Reactor Anaerobio Tipo Uasb-Hibrido Para el Tratamiento de Aguas

Grises Provenientes de una Lavandería Comercial. XIII Latin American Workshop and Symposium on Anaerobic Digestion (DAAL XIII), Bogotá, Colombia. https://www.researchgate.net/publication/330600924_utilizacion_de_un_reactor_anaerobio_tipo_uasb-

hibrido para el tratamiento de aguas grises provenientes de una lavanderia comerci al

VIII. ANEXOS

Anexo 01. Matriz de información para el procesamiento de datos

											F	PARÁMET	ROS FISICO	QUIMICO	3											
h: - 614 4	PH	ł	TEMPERA	ATURA	10)	CE		SD	Т	SST	Г	ALCALII	NIDAD	FOSFA	TOS	NITRA	TOS	DUR	ΞZA	CLOR	JROS	AMO	NIO	DBC	05
biofltro 1	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA
prueba 1	9.69	9.69	16	16.7	3.07	3.07	17.7	19.1	917	1155	2.07	2.91	190.72	190.72	0.704	2.106	159.6	156.7	81.84	100.44	31.52	32.47	4.318	6.992	263.6	255.8
prueba 2	9.37	7.29	17.4	18.5	0.72	4.68	17.7	18	89.7	499	1.85	1.41	238.4	357.6	5.463	2.171	210.1	54.55	347.2	248	142.5	266	12.5	7.575	149.8	68.3
prueba 3	9.46	7.84	17.2	17.8	6.88	5.76	2260.3	3380.7	482	673	16.12	1.12	178.8	333.76	0.699	0.023	154.3	55.26	0.9	31.54	0.67	18.15	13.88	25.2	149.9	98.9
prueba 4	7.91	8.03	14.2	13.3	7.12	5.87	441.7	2335.3	89.7	499	0.2	0.92	35.76	178.8	0.04	0.368	26.97	109.4	2988.98	180.24	10.51	9.55	0.624	5.29	116.1	56.8
biofltro 2	PH	1	TEMPERA	ATURA	10)	CE		SD	T	SST	Г	ALCALI	NIDAD	FOSFA	TOS	NITRA	TOS	DUR	EZA	CLOR	JROS	AMO	NIO	DBC)5
DIOILLIOZ	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA
prueba 1	9.69	7.76	16	16.2	3.07	2.01	17.7	12.3	917	637	2.07	2.7	190.72	190.72	0.704	2.321	159.6	202.7	81.84	128.96	31.52	48.71	4.318	17.3	263.6	196.1
prueba 2	9.37	7.82	17.4	18	0.72	0.9	17.7	2830	89.7	493	1.85	2.25	238.4	596	5.463	3.83	210.1	172.7	347.2	347.2	142.5	199.5	12.5	7.575	149.8	118.7
prueba 3	9.46	7.91	17.2	17.9	6.88	4.9	2260.3	3033	482	761	16.12	1.17	178.8	405.28	0.699	1.801	154.3	104.3	0.9	15.02	0.67	14.33	13.88	18.48	149.9	69
prueba 4	7.91	8.54	14.2	13.5	7.12	5.72	441.7	2298	89.7	493	0.2	0.91	35.76	238.4	0.04	0.662	26.97	94.16	2988.98	645.86	10.51	10.51	0.624	5.485	116.1	69
biofltro 3	PH		TEMPER		10	_	CE		SD		SST		ALCALI		FOSFA		NITRA		DUR		CLOR		AMO	_	DBC	
DIOILLIOO	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA
prueba 1	9.69	7.48	16	16.5	3.07	3.35	17.7	9.6	917	479	2.07	0.92	190.72	214.56	0.704	0.04	159.6	114.3	81.84	209.56	31.52	145.16	4.318	5.679	263.6	102.7
prueba 2	9.37	7.58	17.4	17.6	0.72	5.27	17.7	21.9	89.7	662	1.85	1.78	238.4	476.8	5.463	1.39	210.1	47.83	347.2	446.4	142.5	256.5	12.5	27.21	149.8	110.5
prueba 3	9.46	7.75	17.2	16.5	6.88	5.59	2260.3	3966.7	482	915	16.12	1.43	178.8	476.8	0.699	0.801	154.3	43.23	0.9	34.55	0.67	36.29	13.88	23.79	149.9	92.2
prueba 4	7.91	8.15	14.2	13.4	7.12	6.06	441.7	2991.3	89.7	662	0.2	1.05	35.76	298	0.04	0.265	26.97	69.05	2988.98	1261.7	10.51	15.28	0.624	7.964	116.1	90
biofltro 4	PH	_	TEMPER		10	_	CE		SD		SST		ALCALI		FOSFA		NITRA		DUR		CLOR		AMO		DBC	
	ENTRADA			SALIDA	ENTRADA		ENTRADA		ENTRADA				ENTRADA	SALIDA	ENTRADA				ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA		ENTRADA	
prueba 1	9.69	7.54	16	15.8	3.07	4.88	17.7	4.6	917	224	2.07	0.59	190.72	190.72	0.704	0.04	159.6	63.04	81.84	244.28	31.52	48.71	4.318	6.068	263.6	175.8
prueba 2	9.37	7.52	17.4	17.4	0.72	6.02	17.7	16.3	89.7	673	1.85	1.36	238.4	476.8	5.463	0.46	210.1	31.57	347.2	595.2	142.5	199.5	12.5	15.69	149.8	65.5
prueba 3	9.46	7.67	17.2	16.7	6.88	4.4	2260.3	4402.3	482	1015	16.12	1.53	178.8	441.04	0.699	0.265	154.3	38.99	0.9	36.05	0.67	17.19	13.88	25.91	149.9	61.3
prueba 4	7.91	8.13	14.2	13.4	7.12	5.89	441.7	21042.7	89.7	673	0.2	1.1	35.76	298	0.04	0.333	26.97	74.71	2988.98	1381.8	10.51	14.33	0.624	10.01	116.1	99.6
biofltro 5	PH		TEMPER		10		CE		SD		SST		ALCALI		FOSFA		NITRA		DUR		CLOR		AMO		DBC	
					ENTRADA				ENTRADA		ENTRADA				ENTRADA				ENTRADA		ENTRADA	SALIDA			ENTRADA	
prueba 1	9.69	7.38	16	16.2	3.07	2.18	17.7	7.3	917	352	2.07	0.8	190.72	250.32	0.704	0.4	159.6	96.28	81.84	192.2	31.52	76.4	4.318	6.14	263.6	107.5
prueba 2	9.37	7.47	17.4	17.4	0.72	4.33	17.7	2440	89.7	817	1.85	1.83	238.4	715.2	5.463	0.446	210.1	48.89	347.2	496	142.5	285	12.5	36.45	149.8	96.7
prueba 3	9.46	7.76	17.2	16.5	6.88	5.32	2260.3	3959.3	482	900	16.12	1.31	178.8	429.12	0.699	0.562	154.3	51.37	0.9	21.03	0.67	21.97	13.88	28.74	149.9	66.8
prueba 4	7.91	7.92	14.2	13.1	7.12	4.28	441.7	3633	89.7	817	0.2	1.22	35.76	369.52	0.04	1.982	26.97	46.42	2988.98	1847.5	10.51	17.19	0.624	11.66	116.1	94.9
biofltro 6	PH	_	TEMPER		00	_	CE		SD		SST		ALCALI		FOSFA		NITR/		DUR		CLORI		AMO		DBC	
					ENTRADA		ENTRADA		ENTRADA		ENTRADA				ENTRADA			SALIDA	ENTRADA		ENTRADA	SALIDA	ENTRADA		ENTRADA	
prueba 1 prueba 2	9.69 9.37	7.5 7.54	16 17.4	16 17.8	3.07 0.72	2.86 5.68	17.7 17.7	5.2 17.1	917 89.7	254 661	2.07 1.85	1.14	190.72 238.4	166.88 476.8	0.704 5.463	0.475	159.6 210.1	243.4 53.49	81.84 347.2	158.72 434	31.52 142.5	52.53 161.5	4.318 12.5	4.124 19.53	263.6 149.8	193.7 82.8
		_																								
prueba 3	9.46	7.57	17.2	16.3	6.88	4.12	2260.3	3084	482	689	16.12	1.13	178.8	369.52	0.699	0.294	154.3	31.57	0.9	19.53	0.67	10.51	13.88	21.31	149.9	85.6 87.6
prueba 4	7.91 PF	7.95	14.2 TEMPER	13.4	7.12 O [441.7	3000.7	89.7	661 T	0.2 SS1	1.12	35.76 ALCALII	345.68 NIDAD	0.04 FOSFA		26.97 NITRA	27.32	2988.98 DUR	1487	10.51 CLORI	9.55	0.624 AMO	8.936 NIO	116.1 DB0	
biofltro 7	ENTRADA				ENTRADA				ENTRADA	SALIDA			ENTRADA		ENTRADA				ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA		ENTRADA	
prueba 1	9.69	7.42	16	15.8	3.07	4.67	17.7	7.7	917	370	2.07	1.49	190.72	215.56	0.704	0.465	159.6	69.05	81.84	209.56	31.52	85	4.318	4.95	263.6	207.3
prueba 2	9.37	7.59	17.4	17.6	0.72	4.48	17.7	18.8	89.7	809	1.85	1.5	238.4	476.8	5.463	22.06	210.1	51.72	347.2	334.8	142.5	237.5	12.5	22.06	149.8	72.3
prueba 3	9.46	7.46	17.2	15.9	6.88	2.39	2260.3	3567.7	482	975	16.12	1.18	178.8	429.12	0.699	1.088	154.3	54.2	0.9	30.04	0.67	31.52	13.88	25.36	149.9	79.4
																										47.5
prueba 4	7.91	7.74	14.2	13.5	7.12	3.51	441.7	3640.7	89.7	809	0.2	0.93	35.76	774.8	0.04	1.54	26.97	41.47	2988.98	2463.3	10.51	22.92	0.624	17.35	116.1	_

Anexo 02. Prueba t para dos muestras suponiendo varianzas iguales

Ph biofiltro 1			Ph biofiltro 2			Ph biofiltro 3			Ph biofiltro 4		
	Variable 1	Variable 2									
Media	9.11	8.21	Media	9.11	8.01	Media	9.11	7.74	Media	9.11	7.72
Varianza	0.65549167	1.06869167	Varianza	0.65549167	0.129825	Varianza	0.65549167	0.08713333	Varianza	0.65549167	0.08096667
Observaciones	4	4									
Varianza agrupada	0.86209167		Varianza agrupada	0.39265833		Varianza agrupada	0.3713125		Varianza agrupada	0.36822917	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	1.36320544		Estadístico t	2.48256297		Estadístico t	3.17374879		Estadístico t	3.24527205	
P(T<=t) una cola	0.11087672		P(T<=t) una cola	0.02381982		P(T<=t) una cola	0.00961366		P(T<=t) una cola	0.00878512	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.22175344		P(T<=t) dos colas	0.05		P(T<=t) dos colas	0.02		P(T<=t) dos colas	0.02	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

Ph biofiltro 5			Ph biofiltro 6			Ph biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	9.11	7.63	Media	9.11	7.64	Media	9.11	7.55
Varianza	0.65549167	0.063025	Varianza	0.65549167	0.04353333	Varianza	0.65549167	0.02089167
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	0.35925833		Varianza agrupada	0.3495125		Varianza agrupada	0.33819167	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	3.48019511		Estadístico t	3.51044159		Estadístico t	3.78149857	
P(T<=t) una cola	0.00656969		P(T<=t) una cola	0.00633231		P(T<=t) una cola	0.00458212	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.01		P(T<=t) dos colas	0.01		P(T<=t) dos colas	0.01	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

T° biofiltro 1			T° biofiltro 2			T° biofiltro 3			T° biofiltro 4		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	16.20	16.58	Media	16.20	16.40	Media	16.2	16.000000	Media	16.20	15.83
Varianza	2.16	5.31583333	Varianza	2.16	4.42	Varianza	2.16	3.27333333	Varianza	2.16	3.0425
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	3.73791667		Varianza agrupada	3.29		Varianza agrupada	2.71666667		Varianza agrupada	2.60125	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	-0.27430357		Estadístico t	-0.15593624		Estadístico t	0.17160377		Estadístico t	0.32881772	
P(T<=t) una cola	0.39652543		P(T<=t) una cola	0.44059874		P(T<=t) una cola	0.43469521		P(T<=t) una cola	0.3767336	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.79		P(T<=t) dos colas	0.88		P(T<=t) dos colas	0.87		P(T<=t) dos colas	0.75	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

T° biofiltro 5			T° biofiltro 6			T° biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	16.20	15.80	Media	16.20	15.88	Media	16.20	15.70
Varianza	2.16	3.5	Varianza	2.16	3.3425	Varianza	2.16	2.83333333
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	2.83		Varianza agrupada	2.75125		Varianza agrupada	2.49666667	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	0.33626508		Estadístico t	0.27709796		Estadístico t	0.44751204	
P(T<=t) una cola	0.37405975		P(T<=t) una cola	0.39550203		P(T<=t) una cola	0.33510423	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.75		P(T<=t) dos colas	0.79		P(T<=t) dos colas	0.67	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

OD biofiltro 1			OD biofiltro 2			OD biofiltro 3			OD biofiltro 4		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	4.45	4.85	Media	4.45	3.38	Media	4.45	5.07	Media	4.45	5.30
Varianza	9.617025	1.68856667	Varianza	9.617025	5.27109167	Varianza	9.617025	1.41629167	Varianza	9.617025	0.617625
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	5.65279583		Varianza agrupada	7.44405833		Varianza agrupada	5.51665833		Varianza agrupada	5.117325	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	-0.23643974		Estadístico t	0.55202624		Estadístico t	-0.37330916		Estadístico t	-0.53138883	
P(T<=t) una cola	0.41047821		P(T<=t) una cola	0.30043576		P(T<=t) una cola	0.3608762		P(T<=t) una cola	0.30711866	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.82		P(T<=t) dos colas	0.60		P(T<=t) dos colas	0.72		P(T<=t) dos colas	0.61	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

OD biofiltro 5			OD biofiltro 6			OD biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	4.45	4.03	Media	4.45	3.92	Media	4.45	3.76
Varianza	9.617025	1.74635833	Varianza	9.617025	1.7025	Varianza	9.617025	1.09529167
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	5.68169167		Varianza agrupada	5.6597625		Varianza agrupada	5.35615833	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	0.24918704		Estadístico t	0.31654504		Estadístico t	0.41858038	
P(T<=t) una cola	0.40576359		P(T<=t) una cola	0.38115623		P(T<=t) una cola	0.34504627	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.81		P(T<=t) dos colas	0.76		P(T<=t) dos colas	0.69009254	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

CE biofiltro 1			CE biofiltro 2			CE biofiltro 3			CE biofiltro 4		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	684.35	1438.28	Media	684.35	2043.325	Media	684.35	1747.375	Media	684.35	6366.475
Varianza	1143780.62	2869635.83	Varianza	1143780.62	1929412.02	Varianza	1143780.62	4156626.26	Varianza	1143780.62	100015913
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	2006708.23		Varianza agrupada	1536596.32		Varianza agrupada	2650203.44		Varianza agrupada	50579846.9	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	-0.7526638		Estadístico t	-1.55041003		Estadístico t	-0.92346166		Estadístico t	-1.12989224	
P(T<=t) una cola	0.24006465		P(T<=t) una cola	0.08601083		P(T<=t) una cola	0.19569554		P(T<=t) una cola	0.15082898	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.48012931		P(T<=t) dos colas	0.17202167		P(T<=t) dos colas	0.39		P(T<=t) dos colas	0.30165796	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

CE biofiltro 5			CE biofiltro 6			CE biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	684.35	2509.9	Media	684.35	1526.75	Media	684.35	1808.725
Varianza	1143780.62	3210002.25	Varianza	1143780.62	3063904.56	Varianza	1143780.62	4299216
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	2176891.44		Varianza agrupada	2103842.59		Varianza agrupada	2721498.31	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	-1.74980779		Estadístico t	-0.82134711		Estadístico t	-0.96387817	
P(T<=t) una cola	0.06536266		P(T<=t) una cola	0.22142654		P(T<=t) una cola	0.1861652	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.13072533		P(T<=t) dos colas	0.44285308		P(T<=t) dos colas	0.3723304	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

SDT bio filtro 1			SDT bio filtro 2			SDT bio filtro 3			SDT biofiltro 4		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	394.60	706.50	Media	394.6	596	Media	394.6	679.5	Media	394.6	646.25
Varianza	155489.513	96129	Varianza	155489.513	16708	Varianza	155489.513	32091	Varianza	155489.513	105234.25
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	125809.257		Varianza agrupada	86098.7567		Varianza agrupada	93790.2567		Varianza agrupada	130361.882	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	-1.24358099		Estadístico t	-0.97067987		Estadístico t	-1.3156143		Estadístico t	-0.98568154	
P(T<=t)unacola	0.13001882		P(T<=t) una cola	0.18459757		P(T<=t)unacola	0.11816837		P(T<=t) una cola	0.1811768	
Valor crítico de t (un a c ola)	1.94318028		Valor crítico de t (un a c ola)	1.94318028		Valor crítico de t (un a c ola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t)dos colas	0.26003764		P(T<=t)dos colas	0.36919514		P(T<=t)dos cola s	0.23633673		P(T<=t) dos colas	0.3623536	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t(dos colas)	2.44691185	

SDT bio filtro 5			SDT bio filtro 6			SDT bio filtro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	394.6	721.5	Media	394.6	566.25	Media	394.6	740.75
Varianza	155489.513	62211	Varianza	155489.513	43507.5833	Varianza	155489.513	67214.9167
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	108850.257		Varianza agrupada	99498.5483		Varianza agrupada	111352.215	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	-1.40124859		Estadístico t	-0.76957408		Estadístico t	-1.46699929	
P(T<=t)unacola	0.10534316		P(T<=t)unacola	0.23537711		P(T<=t)unacola	0.09637173	
Valor crítico de t (un a cola)	1.94318028		Valor crítico de t (un a c ola)	1.94318028		Valor crítico de t (un a c ola)	1.94318028	
P(T<=t)dos colas	0.21068631		P(T<=t)dos colas	0.47075422		P(T<=t)dos colas	0.19274347	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

SST biofiltro 1			SST biofiltro 2			SST biofiltro 3			SST biofiltro 4		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	5.06	1.59	Media	5.06	1.7575	Media	5.06	1.30	Media	5.06	1.145
Varianza	55.0624667	0.81486667	Varianza	55.0624667	0.731425	Varianza	55.0624667	0.15136667	Varianza	55.0624667	0.16816667
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupa da	27.9386667		Varianza agrupada	27.8969458		Varianza agrupa da	27.6069167		Varianza agrupada	27.6153167	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotétic a de las medias	0	
Grados de liberta d	6		Grados de libertad	6		Grados de liberta d	6		Grados de libertad	6	
Estadístico t	0.9284139		Estadístico t	0.88425901		Estadístico t	1.01337696		Estadístico t	1.05359027	
P(T<=t) una cola	0.19450792		P(T<=t) una cola	0.20529339		P(T<=t) una cola	0.17499382		P(T<=t) una cola	0.16631924	
Valor crítico de t (una cola)	1.94318028		Valor crítico det (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico det (una cola)	1.94318028	
P(T<=t)dos colas	0.38901583		P(T<=t) dos colas	0.41058679		P(T<=t)dos colas	0.34998763		P(T<=t) dos colas	0.33263847	
Valor crítico de t(dos colas)	2.44691185		Valor crítico det (dos colas)	2.44691185		Valor crítico de t(dos colas)	2.44691185		Valor crítico det (dos colas)	2.44691185	

SST biofiltro 5			SST biofiltro 6			SST biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	5.06	1.29	Media	5.06	1.2	Media	5.06	1.275
Varianza	55.0624667	0.179	Varianza	55.0624667	0.01966667	Varianza	55.0624667	0.07496667
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	27.6207333		Varianza agrupada	27.5410667		Varianza agrupa da	27.5687167	
Diferenc ia hipotétic a de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipo té tica de las me dias	0	
Grados de libertad	6		Grados de libertad	6		Grados de liberta d	6	
Estadístico t	1.01446892		Estadístico t	1.0401882		Estadístico t	1.01946567	
P(T<=t) una cola	0.17475354		P(T<=t) una cola	0.16917062		P(T<=t)una cola	0.17365742	
Valor crítico det (una cola)	1.94318028		Valor crítico det (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.34950708		P(T<=t) dos colas	0.33834124		P(T<=t)dos colas	0.34731484	
Valor crítico det (dos colas)	2.44691185		Valor crítico det (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

ALC biofiltro 1			ALC biofiltro 2			ALC biofiltro 3			ALC biofiltro 4		
	Variable 1	Variable 2									
Media	160.92	265.22	Media	160.92	357.6	Media	160.92	366.54	Media	160.92	351.64
Varianza	7625.30347	8750.15413	Varianza	7625.30347	33721.8389	Varianza	7625.30347	17370.0624	Varianza	7625.30347	17476.6272
Observaciones	4	4									
Varianza agrupada	8187.7288		Varianza agrupada	20673.5712		Varianza agrupada	12497.6829		Varianza agrupada	12550.9653	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadísticot	-1.63011251		Estadísticot	-1.93449426		Estadísticot	-2.60115122		Estadístico t	-2.40753534	
P(T<=t) una cola	0.0770999		P(T<=t) una cola	0.05060578		P(T<=t) una cola	0.02029975		P(T<=t) una cola	0.02637531	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.1541998		P(T<=t) dos colas	0.10121156		P(T<=t) dos colas	0.0405995		P(T<=t) dos colas	0.05275063	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

ALC biofiltro 5			ALC biofiltro 6			ALC biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	160.92	441.04	Media	160.92	339.72	Media	160.92	474.07
Varianza	7625.30347	38931.6736	Varianza	7625.30347	16529.3845	Varianza	7625.30347	53097.9695
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	23278.4885		Varianza agrupada	12077.344		Varianza agrupada	30361.6365	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadísticot	-2.59646054		Estadístico t	-2.30089497		Estadístico t	-2.5415861	
P(T<=t) una cola	0.02042796		P(T<=t) una cola	0.03051278		P(T<=t) una cola	0.02199336	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.04085592		P(T<=t) dos colas	0.06102555		P(T<=t) dos colas	0.04398672	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

FOS biofiltro 1			FOS biofiltro 2			FOS biofiltro 3			FOS biofiltro 4		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	1.7265	1.167	Media	1.7265	2.1535	Media	1.7265	0.624	Media	1.7265	0.2745
Varianza	6.30232567	1.278958	Varianza	6.30232567	1.729179	Varianza	6.30232567	0.362674	Varianza	6.30232567	0.030971
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	3.79064183		Varianza agrupada	4.01575233		Varianza agrupada	3.33249983		Varianza agrupada	3.16664833	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadísticot	0.40640469		Estadísticot	-0.30134182		Estadísticot	0.85409962		Estadísticot	1.15393593	
P(T<=t) una cola	0.3492718		P(T<=t) una cola	0.38666224		P(T<=t) una cola	0.21291511		P(T<=t) una cola	0.14620542	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.6985436		P(T<=t) dos colas	0.77332448		P(T<=t) dos colas	0.42583021		P(T<=t) dos colas	0.29241084	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

FOS biofiltro 5			FOS biofiltro 6			FOS biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	1.7265	0.8475	Media	1.7265	0.376	Media	1.7265	6.28825
Varianza	6.30232567	0.57668633	Varianza	6.30232567	0.00841667	Varianza	6.30232567	110.748939
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	3.439506		Varianza agrupada	3.15537117		Varianza agrupada	58.5256323	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	0.67027935		Estadístico t	1.07518788		Estadísticot	-0.84328315	
P(T<=t) una cola	0.26381044		P(T<=t) una cola	0.16180694		P(T<=t) una cola	0.21569902	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.52762089		P(T<=t) dos colas	0.32361388		P(T<=t) dos colas	0.43139804	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

N biofiltro 1			N biofiltro 2			N biofiltro 3			N biofiltro 4		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	137.7425	93.9775	Media	137.7425	143.465	Media	137.7425	68.6025	Media	137.7425	52.0775
Varianza	6086.01856	2408.51269	Varianza	6086.01856	2776.1169	Varianza	6086.01856	1054.57409	Varianza	6086.01856	408.082225
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	4247.26563		Varianza agrupada	4431.06773		Varianza agrupada	3570.29633		Varianza agrupada	3247.05039	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	0.94970171		Estadísticot	-0.12157565		Estadísticot	1.63641044		Estadísticot	2.1260521	
P(T<=t) una cola	0.18946602		P(T<=t) una cola	0.4536023		P(T<=t) una cola	0.07643465		P(T<=t) una cola	0.03881579	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.37893205		P(T<=t) dos colas	0.9072046		P(T<=t) dos colas	0.1528693		P(T<=t) dos colas	0.07763158	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

N biofiltro 5			N biofiltro 6			N biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	137.7425	60.74	Media	137.7425	88.945	Media	137.7425	54.11
Varianza	6086.01856	565.4578	Varianza	6086.01856	10734.3118	Varianza	6086.01856	129.564467
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	3325.73818		Varianza agrupada	8410.16516		Varianza agrupada	3107.79151	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadísticot	1.88832088		Estadísticot	0.75250659		Estadísticot	2.12160309	
P(T<=t) una cola	0.05395151		P(T<=t) una cola	0.24010853		P(T<=t) una cola	0.03905511	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.10790302		P(T<=t) dos colas	0.48021707		P(T<=t) dos colas	0.07811023	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

D biofiltro 1			D biofiltro 2			D biofiltro 3			D biofiltro 4		
	Variable 1	Variable 2									
Media	854.73	140.055	Media	854.73	284.26	Media	854.73	488.0475	Media	854.73	564.3425
Varianza	2046331.46	8870.60357	Varianza	2046331.46	77108.0904	Varianza	2046331.46	294485.676	Varianza	2046331.46	350262.439
Observaciones	4	4									
Varianza agrupada	1027601.03		Varianza agrupada	1061719.78		Varianza agrupada	1170408.57		Varianza agrupada	1198296.95	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadísticot	0.99703711		Estadístico t	0.78296591		Estadísticot	0.47933201		Estadísticot	0.37515496	
P(T<=t) una cola	0.17862097		P(T<=t) una cola	0.23171051		P(T<=t) una cola	0.32433647		P(T<=t) una cola	0.36022456	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.35724194		P(T<=t) dos colas	0.46342103		P(T<=t) dos colas	0.64867294		P(T<=t) dos colas	0.72044912	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

D biofiltro 5			D biofiltro 6			D biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	854.73	639.1725	Media	854.73	524.8075	Media	854.73	759.42
Varianza	2046331.46	687447.204	Varianza	2046331.46	441115.777	Varianza	2046331.46	1305927.42
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	1366889.33		Varianza agrupada	1243723.62		Varianza agrupada	1676129.44	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadísticot	0.26074228		Estadísticot	0.41837429		Estadístico t	0.10411174	
P(T<=t) una cola	0.40150474		P(T<=t) una cola	0.34511759		P(T<=t) una cola	0.4602368	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.80300949		P(T<=t) dos colas	0.69023518		P(T<=t) dos colas	0.92047361	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

CL biofiltro 1			CL biofiltro 2			CL biofiltro 3			CL biofiltro 4		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	46.3	81.5425	Media	46.3	68.2625	Media	46.3	113.3075	Media	46.3	69.9325
Varianza	4278.63647	15211.4029	Varianza	4278.63647	7949.88249	Varianza	4278.63647	12353.2533	Varianza	4278.63647	7703.84696
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	9745.01968		Varianza agrupada	6114.25948		Varianza agrupada	8315.94488		Varianza agrupada	5991.24171	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadísticot	-0.50488253		Estadísticot	-0.39721427		Estadísticot	-1.03916046		Estadísticot	-0.4317837	
P(T<=t) una cola	0.31582231		P(T<=t) una cola	0.3524771		P(T<=t) una cola	0.16939091		P(T<=t) una cola	0.34049163	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.63164462		P(T<=t) dos colas	0.7049542		P(T<=t) dos colas	0.33878182		P(T<=t) dos colas	0.68098326	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

CL biofiltro 5			CL biofiltro 6			CL biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	46.3	100.14	Media	46.3	58.5225	Media	46.3	94.235
Varianza	4278.63647	15909.3529	Varianza	4278.63647	5114.59383	Varianza	4278.63647	9876.38197
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	10093.9947		Varianza agrupada	4696.61515		Varianza agrupada	7077.50922	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadísticot	-0.75785918		Estadístico t	-0.25222176		Estadístico t	-0.80580045	
P(T<=t) una cola	0.23861766		P(T<=t) una cola	0.4046437		P(T<=t) una cola	0.22555196	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.47723532		P(T<=t) dos colas	0.80928741		P(T<=t) dos colas	0.45110391	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

AMbiofiltro 1			AMbiofiltro 2			AMbiofiltro 3			AMbiofiltro4		
	Variable 1	Variable 2									
Media	7.8305	11.26425	Media	7.8305	12.21	Media	7.8305	16.16075	Media	7.8305	14.4195
Varianza	40.8906597	87.2531589	Varianza	40.8906597	43.9766167	Varianza	40.8906597	119.115058	Varianza	40.8906597	74.279001
Observaciones	4	4									
V arianza agrupada	64.0719093		Varianza agrupada	42.4336382		Varianza agrupada	80.002859		Varianza agrupada	57.5848303	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	-0.60666625		Estadístico t	-0.95078954		Estadístico t	-1.31710464		Estadístico t	-1.22794937	
P (T<=t) una cola	0.28315204		P(T<=t) una cola	0.18921113		P (T<=t) una cola	0.11793366		P (T<=t) una cola	0.13272422	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.56630407		P(T<=t) dos colas	0.37842226		P(T<=t) dos colas	0.23586731		P(T<=t) dos colas	0.26544845	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

AMbiofiltro 5			AMbiofiltro6			AMbiofiltro7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	7.8305	20.7475	Media	7.8305	13.475	Media	7.8305	17.43
Varianza	40.8906597	202.136758	Varianza	40.8906597	68.6979907	Varianza	40.8906597	80.0262
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
V arianza agrupada	121.513709		Varianza agrupada	54.7943252		Varianza agrupada	60.4584298	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	-1.65715839		Estadístico t	-1.07838213		Estadístico t	-1.74596357	
P(T<=t) una cola	0.07428178		P(T<=t) una cola	0.1611482		P(T<=t) una cola	0.06571109	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.14856357		P(T<=t) dos colas	0.32229641		P(T<=t) dos colas	0.13142217	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

DBO5 biofiltro 1			DBO5 biofiltro 2			DBO5 biofiltro 3			DBO5 biofiltro 4		
	Variable 1	Variable 2									
Media	169.85	119.95	Media	169.85	113.2	Media	169.85	98.85	Media	169.85	100.55
Varianza	4159.37667	8517.99	Varianza	4159.37667	3603.31333	Varianza	4159.37667	91.03	Varianza	4159.37667	2810.84333
Observaciones	4	4									
Varianza agrupada	6338.68333		Varianza agrupada	3881.345		Varianza agrupada	2125.20333		Varianza agrupada	3485.11	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	0.88637197		Estadístico t	1.28594913		Estadístico t	2.17807636		Estadístico t	1.66012193	
P(T<=t) una cola	0.20476718		P(T<=t) una cola	0.12292765		P(T<=t) una cola	0.03612635		P(T<=t) una cola	0.07397908	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.40953435		P(T<=t) dos colas	0.24585531		P(T<=t) dos colas	0.07225271		P(T<=t) dos colas	0.14795816	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

DBO5 biofiltro 5			DBO5 biofiltro 6			DBO5 biofiltro 7		
	Variable 1	Variable 2		Variable 1	Variable 2		Variable 1	Variable 2
Media	169.85	91.475	Media	169.85	112.425	Media	169.85	101.625
Varianza	4159.37667	301.5625	Varianza	4159.37667	2939.70917	Varianza	4159.37667	5150.20917
Observaciones	4	4	Observaciones	4	4	Observaciones	4	4
Varianza agrupada	2230.46958		Varianza agrupada	3549.54292		Varianza agrupada	4654.79292	
Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0		Diferencia hipotética de las medias	0	
Grados de libertad	6		Grados de libertad	6		Grados de libertad	6	
Estadístico t	2.346899		Estadístico t	1.36310649		Estadístico t	1.41419195	
P(T<=t) una cola	0.02865041		P(T<=t) una cola	0.11089145		P(T<=t) una cola	0.10351865	
Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028		Valor crítico de t (una cola)	1.94318028	
P(T<=t) dos colas	0.05730083		P(T<=t) dos colas	0.2217829		P(T<=t) dos colas	0.2070373	
Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185		Valor crítico de t (dos colas)	2.44691185	

Anexo 03. Parámetros registrados versus estándares de calidad ambiental

Biofiltro	Unidad	Valor máximo permisible DS N°004-	Valor obtenido	_ Cumple / No cumple	Tratamiento requerido	
		2017- MINAM	Promedio			
B1						
pН	Adimensional	6.5-8.5	8.21	Cumple		
Temperatura	°C	<35	16.58	Cumple		
Oxígeno disuelto	Mg/l	≥5	5.19	Cumple		
Conductivid ad eléctrica	Us/cm2	2500	1438.28	Cumple		
SDT	Mg/l	1000	706.50	Cumple		
SST	Ml/L	80	1.59	Cumple		
Alcalinidad			265.22			
Fosfatos	Mg/l	5	1.67	Cumple		
Nitratos	Mgl	16	93.98	No cumple	² Osmosis inversa	
Dureza	Mg/l	500	140.06	Cumple		
Cloruros	Mg/l	500	81.54	Cumple		
Amonio			11.26			
DBO5	Mg/l	100	119.95	No cumple	¹ Filtración	
B2						
pН	Adimensional	6.5-8.5	8.01	Cumple		
Temperatura	°C	<35	16.40	Cumple		
Oxígeno disuelto	Mg/l	≥5	3.38	No cumple	¹ Aireación	
Conductivid ad eléctrica	Us/cm2	2500	2043.33	cumple		
SDT	Mg/l	1000	596	Cumple		
SST	Ml/L	80	1.59	Cumple		
Alcalinidad			357.60			
Fosfatos	Mg/l	5	2.15	Cumple		
Nitratos	mgl	16	143.47	No cumple	Osmosis inversa	
Dureza	Mg/l	500	284.26	Cumple		
Cloruros	Mg/l	500	68.26	Cumple		
Amonio			12.21	-		
DBO5 B3	Mg/l	100	113.2	No cumple	Filtración	
pН	Adimensional	6.5-8.5	7.74	Cumple		
Temperatura	$^{\circ}\mathrm{C}$	<35	16	Cumple		
Oxígeno disuelto	Mg/l	≥5	5.07	Cumple		

Conductivid ad eléctrica	Us/cm2	2500	1747.38	Cumple	
SDT	Mg/l	1000	679.5	Cumple	
SST	Ml/L	80	1.30	Cumple	
Alcalinidad			366.54		
Fosfatos	Mg/l	5	0.62	Cumple	
Nitratos	mgl	16	68.60	No cumple	Osmosis inversa
Dureza	Mg/l	500	488.05	Cumple	
Cloruros	Mg/l	500	113.31	Cumple	
Amonio			16.16	1	
DBO5	Mg/l	100	98.85	Cumple	
B4	8			- · · · ·	
pН	Adimensional	6.5-8.5	7.72	Cumple	
Temperatura	°C	<35	15.83	Cumple	
Oxígeno				•	
disuelto	Mg/l	≥5	5.30	Cumple	
Conductivid					
ad eléctrica	Us/cm2	2500	6366.48		
SDT	Mg/l	1000	646.25	Cumple	
SST	Ml/L	80	1.15	Cumple	
Alcalinidad			351.64	Cumpic	
Fosfatos	Mg/l	5	0.28	Cumple	
Nitratos	mgl	16	52.08	Cumpic	Osmosis
Muatos	iligi	10	32.00	No cumple	inversa
Dureza	Mg/l	500	564.34	No cumple	
Cloruros	Mg/l	500	69.93	Cumple	
Amonio	1V1g/1		14.42	Cumpic	
DBO5	Mg/l	100	100.55	No cumple	Filtración
B5	IVIg/I	100	100.55	140 cumple	Thiracion
pH	Adimensional	6.5-8.5	7.63	Cumple	
Temperatura	°C	<35		-	
Oxígeno	C	\.).)		Cumple	
			15.8	Cumple	
•	Mg/l	≥5	4.03	Cumple No cumple	Aireación
disuelto	Mg/l			•	Aireación
disuelto Conductivid	Mg/l Us/cm2			•	Aireación
disuelto Conductivid ad eléctrica	Us/cm2	≥5 2500	4.03 2509.9	No cumple Cumple	Aireación
disuelto Conductivid ad eléctrica SDT	Us/cm2 Mg/l	≥5 2500 1000	4.03 2509.9 721.5	No cumple Cumple Cumple	Aireación
disuelto Conductivid ad eléctrica SDT SST	Us/cm2 Mg/l Ml/L	≥5 2500 1000 80	4.03 2509.9 721.5 1.29	No cumple Cumple	Aireación
disuelto Conductivid ad eléctrica SDT SST Alcalinidad	Us/cm2 Mg/l Ml/L	≥5 2500 1000 80	4.03 2509.9 721.5 1.29 441.04	No cumple Cumple Cumple Cumple	Aireación
disuelto Conductivid ad eléctrica SDT SST Alcalinidad Fosfatos	Us/cm2 Mg/l Ml/L Mg/l	≥5 2500 1000 80 5	4.03 2509.9 721.5 1.29 441.04 0.85	No cumple Cumple Cumple	
disuelto Conductivid ad eléctrica SDT SST Alcalinidad	Us/cm2 Mg/l Ml/L	≥5 2500 1000 80	4.03 2509.9 721.5 1.29 441.04	No cumple Cumple Cumple Cumple	 Osmosis
disuelto Conductivid ad eléctrica SDT SST Alcalinidad Fosfatos Nitratos	Us/cm2 Mg/l Ml/L Mg/l mg/l	≥5 2500 1000 80 5 16	4.03 2509.9 721.5 1.29 441.04 0.85 60.74	No cumple Cumple Cumple Cumple Cumple No cumple	
disuelto Conductivid ad eléctrica SDT SST Alcalinidad Fosfatos Nitratos Dureza	Us/cm2 Mg/l Ml/L Mg/l mgl Mg/l	≥5 2500 1000 80 5 16 500	4.03 2509.9 721.5 1.29 441.04 0.85 60.74 639.17	No cumple Cumple Cumple Cumple Cumple No cumple	Osmosis inversa
disuelto Conductivid ad eléctrica SDT SST Alcalinidad Fosfatos Nitratos Dureza Cloruros	Us/cm2 Mg/l Ml/L Mg/l mgl Mg/l Mg/l Mg/l	≥5 2500 1000 80 5 16	4.03 2509.9 721.5 1.29 441.04 0.85 60.74 639.17 100.14	No cumple Cumple Cumple Cumple Cumple No cumple	 Osmosis
disuelto Conductivid ad eléctrica SDT SST Alcalinidad Fosfatos Nitratos Dureza Cloruros Amonio	Us/cm2 Mg/l Ml/L Mg/l mgl Mg/l Mg/l	≥5 2500 1000 80 5 16 500 500	4.03 2509.9 721.5 1.29 441.04 0.85 60.74 639.17 100.14 20.75	No cumple Cumple Cumple Cumple Cumple No cumple No cumple Cumple	Osmosis inversa
disuelto Conductivid ad eléctrica SDT SST Alcalinidad Fosfatos Nitratos Dureza Cloruros Amonio DBO5	Us/cm2 Mg/l Ml/L Mg/l mgl Mg/l Mg/l Mg/l	≥5 2500 1000 80 5 16 500	4.03 2509.9 721.5 1.29 441.04 0.85 60.74 639.17 100.14	No cumple Cumple Cumple Cumple Cumple No cumple	Osmosis inversa
disuelto Conductivid ad eléctrica SDT SST Alcalinidad Fosfatos Nitratos Dureza Cloruros Amonio DBO5 B6	Us/cm2 Mg/l Ml/L Mg/l mgl Mg/l Mg/l Mg/l Mg/l	≥5 2500 1000 80 5 16 500 500 100	4.03 2509.9 721.5 1.29 441.04 0.85 60.74 639.17 100.14 20.75 91.48	No cumple Cumple Cumple Cumple No cumple No cumple Cumple Cumple Cumple	Osmosis inversa
disuelto Conductivid ad eléctrica SDT SST Alcalinidad Fosfatos Nitratos Dureza Cloruros Amonio DBO5	Us/cm2 Mg/l Ml/L Mg/l mgl Mg/l Mg/l	≥5 2500 1000 80 5 16 500 500	4.03 2509.9 721.5 1.29 441.04 0.85 60.74 639.17 100.14 20.75	No cumple Cumple Cumple Cumple Cumple No cumple No cumple Cumple	Osmosis inversa

Oxígeno disuelto	Mg/l	≥5	3.92	No cumple	Aireación
Conductivid ad eléctrica	Us/cm2	2500	1526.75	Cumple	
SDT	Mg/l	1000	566.25	Cumple	
SST	Ml/L	80	1.2	Cumple	
Alcalinidad			339.72	-	
Fosfatos	Mg/l	5	0.38	Cumple	
Nitratos	mgl	16	88.95	No cumple	Osmosis inversa
Dureza	Mg/l	500	524.81	No cumple	
Cloruros	Mg/l	500	58.52	Cumple	
Amonio			13.48	•	
DBO5	Mg/l	100	112.43	No cumple	Filtración
B7	J			-	
pН	Adimensional	6.5-8.5	7.55	Cumple	
Temperatura	$^{\circ}\mathrm{C}$	<35	15.7	Cumple	
Oxígeno disuelto	Mg/l	≥5	3.76	No cumple	Aireación
Conductivid ad eléctrica	Us/cm2	2500	1808.73	Cumple	
SDT	Mg/l	1000	740.75	Cumple	
SST	M1/L	80	1.28	Cumple	
Alcalinidad			474.07		
Fosfatos	Mg/l	5	6.29		³ Eliminación
				No cumple	biológica del fósforo
Nitratos	mgl	16	54.11	No cumple	Osmosis inversa
Dureza	Mg/l	500	759.42	No cumple	
Cloruros	Mg/l	500	94.24	Cumple	
Amonio			14.43	-	
DBO5	Mg/l	100	101.63	No cumple	Filtración

^{*} Según la normativa DECRETO SUPREMO N° 004-2017-MINAM Aprueban Estándares de Calidad Ambiental (ECA) para Agua y establecen Disposiciones Complementarias

1 Faria et al. (2021); 2 Morales et al. (2021); 3 Escaler y Mujerego (2001).

Anexo 03. Resultados de laboratorio

,							
			NIVERSIDAD ORIBIO RO MENDOZA I	NACIONAL DRÍGUEZ DE SE AMAZONAS		Código: CCFT-0036	Versión: #1
Labirag		100		INFORME DE ENSAYO		Pági	na: 01
	INFORME DE ENSAY	O.Nº	:	LAB20-AA-075	LAB2G-AA-076	LAS20-AA-077	LAB20-AA-078
				1. DATOS C	ENERALES		
RAZÚN SOCIAL O NOMBRE DIRECCIÓN RUC / DNI REFERENCIA					PROLONGACION 769	TH ALVA VALQUI CHINCHALTA №210 932708 HAPOVAS	
PROCEDENCIA				CHACHAPOYAS	CHACHAPOYAS	CHACHAPOYAS	CHACHAPOVAS
PRESENTACIÓN				0.1	ENVASE DE PLÁSTICO TRASLUCIDO DE 11	L , 01 FRASCO DE PLÁSTICO OSCURO DE 500	ML
MUESTREADO POR					FANI GRAYSIT	TH ALVA VALQUI	
FECHA DE COLECTA				16/11/2020	16/11/2020	16/11/2020	16/11/2020
HORA DE COLECTA FECHA DE RECEPCIÓN				08:00:00 n.m. 16/11/2020	08:30:00 a.m. 16/11/2020	09:08:00 a.m. 16/11/2020	69:36:60 a.m. 16/11/2620
HORA DE RECEPCIÓN				12:00:00 p.m.	12:00:00 p.m.	12:60:00 p.m.	12:00:00 p.m.
FECHA DE INICIO DE ENSA				16/11/2020	16/11/2028	16/11/2020	16/11/2020
HORA DE INCIO DE ENSAY FECHA DE EMISION DEL P				03:00:00 a.m.	03:90:00 a.m.	93;09;90 a.m. 91/2021	03:00:00 a.m.
HORA DE EMISIÓN DE INF	ORME DE ENSAYO				08:24	:09 a.m.	
CÓDIGO DE MUESTRA CLI TIPO DE AGUA	IENTE			AGUA RESIDUAL TRATADA	M2 AGUA RESIDUAL TRATADA	M3 AGUA RESIDUAL TRATADA	MA AGUA RESIDUAL TRATADA
LUGAR DE DESARROLLO I	DE LOS ANALISIS			FQ	FO FO	UNIVERSIDAD NACIONAL	AGEA RESIDUAL TRATADA
AUTORIZADO POR:		FUNCION	ES:		FIRMA: T	ORIBIO RODRIGUEZ DE MENDOZA	DE AMAZONAS
Jestis Rascon Barrios						LABISAG	
Jesus Rascon Barnos		Responsable	lel Laboratori	0			
						L COLLEGIA BLAN	
				2. RESULTADOS DE ANÁ	LISIS FISICOQUÍMICOS.	BLGO JESUS RASCON	BARRIO
					OS Y DE AGREGACIÓN	RESPONSABLE	
PARÁMETROS	MÉTODO	U.D.	L.D.	LAB20-AA-075	LAB28-AA-076	LAB20-AA-077	LAB20-AA-078
pH	Método 4500-III ; APILA, AWWA, WEF.	pH	<0,001	9.69	9.69	7.76	7.48
T 4 (în situ)	Método 2550B; APITA, AWWA, WEF.	°C	<0,1	16.00	16.70	16.20	16.50
OXÍGENO DISUELTO	Método 21300-B; APHA, AWWA, WEF. Método 4500-D G: APITA, AWWA, WEF.	UNT	<0.13 <0.01	#	#	#	#
CONDUCTIVIDAD		mg/l.		3.07	3.07	2.01	3.35
ELECTRICA SOLIDOS DISUELTOS	Método 2510 B; APHA, AWWA, WEF.	μš/cm²	<0,25	17.7	19.1	12.3	9.6
TOTALES		mg/L		917.0	1155.0	637.0	479.0
SOLIDOS TOTALES	Método 3540 B; APIIA, AWWA, WEF.	mg/l.	<0,1	2.07	2.91	2.70	0.92
				PARÁMETROS INORGÁ	NICOS NO METALICOS		
PARÁMETROS	MÉTODO	U.D.	L.D.	LAB20-AA-075	LAB20-AA-076	LAB20-AA-077	1.AB20-AA-078
ALCALINIDAD	Método 2320B; APITA, AWWA, WEF.	ppm CaCO ₃	<0,5	190.72	190.72	190.72	214.56
CLORUROS	Metade 4500-C1-B; APIIA, AWWA, WEF.	рреп СГ	<0,355	31,52	32.47	48.71	145,16
DUREZA	Milodo 2340C; APIIA, AWWA, WEF.	ppm CaCO ₃	<0,5	81.84	109.44	128.96	209.56
NITRATOS NITRITOS	Método 8039; HACIL Método 8507; HACIL	ppm NO ₃	<0.1	159.600	156.700	202.700	114.300
SULFATOS	Método 375.4; EPA.	ppm NO ₂ ppm SO ₄	<1.0	#	#	# #	# #
FOSFATOS	Michael 8/90; HACTL	ppm PO ₄	<0,04	0.704	2.106	2.321	<0,04
AMONIO	Método 4500 NID C. APHA, AWWA, WEF.	ppm VH ₄	<0.02	4,318	6.992	17,300	5.679
				A RESELECTION OF ANALYS	IS BE ALCOHOLOUG AND A		
				PARÁMETROS MA	TERIA ORGÁNICA		
PARAMETROS	MÉTODO	U.D.	L.D.	LAB20-AA-075	LAB20-AA-076	LAB20-AA-077	LAB28-AA-078
D.B.O. 5	Método 8043: HACH: Dilución	mg/L de O ₂	<0,01	263.60	225.80	196.10	102.70
D.Q.Q.	Método 8000: HACH: Digestión de Rescor	mg/L de O ₂	<0.7	##	##	#	#
				4. RESULTADOS DE ANÁI	ASIS MICROBIOLÓGICO		
				GRUPO CO	LIFORMES		
PARÂMETROS	MÉTODO	U.D.	L. D.	LAB20-AA-075	LAB20-AA-076	LAB28-AA-877	LARZ0-AA-078
DILUCIÓN	Número Máx Probable	10 ⁿ		10-3	10-3	10-3	10-3
COLIFORMES TOTALES	Técnica Estandarizada de Fermentación en Tubo Multiple(NMP) de Coliformes Totales	NM1/100mL	NMP	#	#	#	#
COLIFORMES FECALES	Métado 9021-C: APHA, AWWA, WEF: Procedimiento de NMP para Coliformes Facales	NMP/100mL	NMP	#	#	#	#
F. COLI	Método 9225-B; APITA, AWWA, WEF: Diferenciación de Bacterius Colifornes	NMP/100mL	NMI	#	#	#	#
		Control of the	40000000	GRUPO ESTR	EPTOCOCOS		
PARÁMETROS	метово	U.D.	L. D.	LAB20-AA-075	LAB20-AA-076	LAB28-AA-077	EAR38-AA-878
DILUCIÓN	Número Más Prehable	10"	-	10-3	10-3	10-3	10-3
ESTREPTOCOCOS	Método 9230-B; APÍTA, AWWA, WEF:	NMP/I/mmL	NMP	#	#	#	#
ENTEROCOCOS	Técnica de Tubo Multiple Método 9230-B; APILA, AWWA, WEF: Técnica de Tubo Multiple	NMP/100mL	NMP	#	#	#	#
	Control Dr. 1987 (State 1987)			SALMO	NELLA		
PARÂMETROS	MÉTODO	U.D.	L.D.	LAB20-AA-075	LAB20-AA-076	LAB20-AA-077	LAB20-AA-078
SALMONELLA	Método 9260-B; APHA, AWWA, WEF: Propodimientos Generales Conditarivos de	PRESENCIA AUSENCIA	P/A	#	#	#	#
	Aislantinoto e Identificación de Salmonella	AUNENCIA					
PARÁMETROS	MÉTODO	U.D.	L. D.	V. CHO. LAB20-A 4-075	LAB20-AA-076	LAB20-AA-077	LARZ9-AA-978
V. CHOLERAE	Mitma 4280-H; APHA, AWWA, WEF: Vibria		P/A	##	##	#	#
V. CHOLERAE	chnicate	AUSENCIA	P/A	#	Ħ	#	#

the defection dat topstods. U.B.—Utshall de Medida, i.—Permantes possistation MBS-frem de Antiana Materionalogion. U.P.—Area de Antiana Intercongresson. ERA—Area de Espectation una Lor revalidation prescriation des un validos dissimentars per las amaterias caracteristation. Questa prolificia la reproducción testa in para esta de site informir sin la autorazación aperta del LABINATI.

Lor resultados no gracion ser master como una certificiación de conformidad non norman de producto como certificional del falcamo del cardiad de la emidad que lo product

Call, Higne Urco N°345-350-56 - Calle Universación N°346 - Criscipaçon a "Amateriona" - Amateriona. Pordi

Eschegagiant moderne, l'albeigagiant hand-sers, calla que l'albeigagiant hand-sers, cal la pre-

V. CHOLERAE

AZÚN SOCIAL O NOMBRE BECCIÓN UE / INI BECICIÓN UE / INI BECCIÓN UE / INI BECCIÓN UE / INI BECERAL A POVAS CHACHAPOVAS CHACHAP	
CADATOS GENERALES	
PARIS PARSTER PARSTER PARIS PARSTER PARS	LAB20-AA-082
RESETT ACIÓN RE	
Family F	ACHAPOVAS
RESTREADO POR FAN GRAYSHTH ALVA VALQUI FOR A COLECTA 16 11/2020 16 11/202	
ECH DE COLECTA (DR A DE COLECTA (ECH A DE RECEDYIÓN (ECH A DE RECEDY	
MS	16/11/2020 1::30:00 a.m. 16/11/2020 2::00:00 p.m. 16/11/2020 3::00:00 a.m.
DUTAR DE DESARROLLO DE LOS ANALISIS FO UNIVERSIDAD NACIONAL	Ma
Responsible del Laboratorio Responsible del Laboratorio Responsible del Laboratorio Responsible del Laboratorio RESPONSAFILE	SIDUAL TRATADA
PARÁMETROS MÉTODO U.D. L.D. LABED-AA-099 LABED-AA-098	,,,,,
PARÁMETROS MÉTODO U.D. L.D. LAB20-AA-089 LAB20-AA-081	• • • • • • • • • • • • • • • • • • • •
PARÁMETROS MÉTODO U.D. L.D. LAB20-AA-097 LAB20-AA-089 LAB20-AA-081 1 pH Mécodo 4500-HI (APILA, AVWA, WEE pU <0,001	Ç.
pH Metoda 1500-00T1 (APILA, AWAA, WEE pl.) σ(0) 7.54 7.38 7.50 T T (in sim) Metoda 1550(3) APILA, AWWA, WEE σ(2) σ(2) 15,80 16,20 16,00 TTRBIDEZ Metoda 1510(3) APILA, AWWA, WEE UNT σ(1) μ μ μ μ OXICEN O BISUELT O Metoda 5500-0 G; APILA, AWWA, WEE org 1 σ(0) 4.88 2.18 2.86 CONDICTIVIDAD LECTRICA Métoda 2510 B, APILA, AWWA, WEE org 1 σ(0,2) 4.6 7.3 5.2 SOLIDOS INSUELTOS TOTALES Métoda 2540 B; APILA, AWWA, WEE org 1 σ(3) 352.0 254.0 SOLIDOS TOTALES Métoda 2540 B; APILA, AWWA, WEE org 1 σ(3) 0.59 0.80 1.14	826-AA-682
TURBIDE 7.	7.42
CONDUCTIVIDAD ELECTRICA Mácode 2510 B.APHA, AWWA, WEF. µS/cm² <0.25 4.6 7.3 5.2 SOLIDOS SUBSULTOS TOTALES mg L 224.0 352.0 254.0 SOLIDOS TOTALES Mácode 2540 B.APHA, AWWA, WEF. ng L 4.4 0.59 0.80 1.14	15.80
ELECTRICA Microbol 254 (DB, APHA, AWWA, WEF. ps5cm² 40.5 4.6 7.5 5.2 SOLIDOS DISCRITOR mg/L 224.0 352.0 254.0 SOLIDOS TOTALES Microbol 254 (DB, APHA, AWWA, WEF. ng/L 40.5 0.59 0.89 1.14	4.67
TOTALES Ing. 1 244.0 552.0 254.0 SOLIDOS TOTALES Método 1540 Dt, APILA, AWWA, WEF. ng.1 40.1 0.59 0.80 1.14	7.7
	370.0
PARÁMETROS NORGÁNICOS NO METALICOS	1.49
	B20-AA-082
PARAMETROS MÉTODO U.D. L.D. LAB20-AA-079 LAB20-AA-080 LAB20-AA-081 LA ALCALINIDAD Métado 133/98; APILA, AWWA, WEF. ppca CaCO₂ <0,5	214.56
CLORUROS Microde 4509-C1-Β; APHA, AWWA, W.E. pp.m.CT < Φ,335 48.71 76.40 52.53	85.00
DUREZA Mitado 2340C; APITA, AWWA, WET. ppn0 CaCO ₃ <0.5 244.28 192.20 158.72	209.56
NTRATOS Método 8039; TACTL pont NO; 40.1 63.040 96.280 243.400	69.050
NITRITOS Mécodo 8507; 113-CT. ppm NO ₂ <0,501 # # # # SULPATOS Mécodo 375.4; EPA. ppm SO ₄ <1,0	#
SULFALVS (Windows 2004, 1904,	0.465
AMONIO Método 4500 NIIS C; APILA, AWWA, WEF. ppm NH, <0,02 6.068 6.140 4.124	4.950
PARAMETROS MATERIA ORGANICA	
PARÂMETROS MÉTODO U.D. L. D. LAB20-AA-079 AB20-AA-080 LAB20-AA-081 LA	H20-AA-083
D.B.O. 5 Meirodo 3000: HACH: Dijewión de Reacox mg/L de O₁ <0.01 175.80 193.70 193.70 19.Q.O. Meirodo 3000: HACH: Dijewión de Reacox mg/L de O₂ <0.07 # # #	207.30
4. RESULTADOS DE ANALISIS MICROBIOLÓGICO	
GRUPO COLIFORMES	
A TANK AT AN AND THE STATE OF T	820-AA-082
DH.UCIÓN Número Mác Probable 10° - 10-3 10-3 COLIFORMES TOTALES Tácus El assaulzácialo de Formestración en Tabe Multioris/NINI (la Coliformes Totales NMIV/09mL NMIV # #	#
COLIFORMES FECALES Proceediminato de NNP prote Coliformes Perales NMP/109mal. NMP # # #	#
F. COLI Metada V225-B; APITA. A WW A, WEF: https://www.files.com/accord/formac/ bifurence/colf-formac/ Colf-formac/ Colf-f	#
GRUPO ESTREPTOCOCOS	
	B20-AA-081 10-3
POTTATION OF A PARTIE AND A PAR	#
ENTEROCOCOS	#
SALMONELLA	W20-XA-092
Melodo 9260-B, APBA, AWWA, WEF. SALMONELLA Procedimientos Generales Continuiros de ATREMENTA # # #	# #
Ashanisaka e Romifusiona da salmonda V. CHOLERAE	
PARÁMETROS MÉTODO U.D. L.D. LAB2U-AA-080 LAB20-AA-080 LAB20-AA-081 LAB	#76-4 A-887

WETODO U.D. L.D. LAB2U-AA-U79 LAB2U-AA-U8U LAB2U-AA-U8U

Méralus 920-14, APRA, AWWA, WED Vibrius PRINSENCEA
Adolestea

L.D.- Limite minimus de detección del tortodos. U.D. Unitad de Medida. A Protinction os solicitados MB Árma de Antición Microbiológico. PU- Árma de Antición Friscoquemos. EEA- Árma de Expectorifosmentos de Enrisón Adonesico

Los resultados no puedeos ser usados como umo currente de usate informes sin la untarización electra del LABINAG.

Collectione de usate informes sin la untarización electra del LABINAG.

Collectione de usate informes sin la untarización decida del la entidad que lo produce.

Collectione del control MANO ACTIVITATION Conference de calidad de la entidad que lo produce.

Calle Higos Ureo N°342-350-356 - Calle Universitarin N°304 - Chachapoyas - Amazunas - Perú labisag@untron.edu.pe / labisag@inates-ees.edu.pe

Técnica de Tubo Multiplo Método 9230-B; APIIA, AWWA, WEF:

MÉTODO Métado 9260-B, APHA, AWWA, WEF

MÉTODO

WWA, WET: Vibrio PR

Técnica de Tobo Mult

ENTEROCOCOS

PARAMETROS

SALMONELLA

PARÁMETROS

V. CHOLERAE

NMP

P/A

L.D.

P/A

L. D.

NMP/H0mL

U.D.

PRESENCIA AUSENCIA

U.D.

Cédigo: CCFT-0036

Versión:

#

#

LAR20-AA-892

Página: 01 INFORME DE ENSAYO Nº I. DATOS GENERALES LAB20-AA-089 LAB20-AA-091 LAB20-AA-092 FANI GRAYSITTH ALVA VALQUI PROLONGACION CHINCHALTA N°210 76932708 RAZUN SOCIAL O NOMBRE DIRECCIÓN RUC / DNI REFERENCIA CHACHAPOVAS PROCEDENCIA CHACHAPOYAS CHACHAPOYAS CHACHAPOVAS CHACHAPOVAS PRESENTACIÓN #I ENVASE DE PLÁSTICO TRASLUCIDO DE IL. #I FRASCO DE PLÁSTICO OSCURO DE 590 MI. MUESTREADO POR FANI GRAYSITTH ALVA VALOUI 16/12/2020 02:00:00 p.m. 16/12/2020 05:00:00 p.m. 17/12/2020 10:30:00 p.m. 16/12/2020 62:06:00 p.m. 16/12/2020 65:06:00 p.m. 17/12/2020 16/12/2020 02:00:86 p.m. 16/12/2020 05:00:06 p.m. 17/12/2020 16:30:00 a.m. FECHA DE COLECTA 16/12/2020 02:00:00 p.m. 16/12/2020 05:00:00 p.m. 17/12/2020 10:30:00 a.m. FECHA DE RECEPCIÓN HORA DE RECEPCIÓN FECHA DE INICIO DE ENSAYOS HORA DE INCIO DE ENSAYOS FECHA DE EMISIÓN DEL INFORME DE ENSAYO HORA DE EMISIÓN DE INFORME DE ENSAYO CÓDIGO DE MUESTRA CLIENTE 19/01/2021 M1 M2 Ma UNIVERSIDAD MACIONAL
BRIGUEZ DE MENDOZA DE AMAZONAS TIPO DE AGUA AGUA RESIDUAL TRATADA AGUA RESIDUAL TRATADA LUGAR DE DESARROLLO DE LOS ANALISIS FO TORIE FO AUTORIZADO POR FUNCIONES FIRMA: LABISAG estis Ruscôn Barrios Responsable del Laboratorio <u>CV</u> BLGO JESUS RASCON BARRIOS 2. RESULTADOS DE ANÁLISIS FISICOQUÍMICOS. RESPONSABLE PARÁMETROS FÍSICOS Y DE AGREGACIÓN PARÁMETROS MÉTODO U.D. L.D. LAB20-AA-091 pH Wétodo 4500-III ; APIIA, AWWA, WER pll <0,901 7.37 7,29 7.82 7.58 Método 2559B: APIIA, AWWA, WEF T (in situ) 17.40 18.50 17.60 18.00 UNT TURBIDEZ Método 21300-B; APHA, AWWA, WEF. -0.13 OXIGENO DISUELTO
CONDUCTIVIDAD
ELECTRICA
SOLIDOS DISUELTOS
TOTALES Método 4500-O G; APITA, AWWA, WEF 0.72 mg/l 4.68 0.9 5.27 Método 2510 B; APHA, AWWA, WEF. 17.7 18.0 2830.0 21.9 mg/L # # # SOLIDOS TOTALES Método 2540 B; APIJA, AWWA, WEF. <0,1 mg/L 1.41 2.25 1.78 NORGÁNICOS NO METALICOS LAB20-4A 238-40 A R 20-A 4-09 PARÁMETROS MÉTODO U.D. L. D. LAB20-AA-090 LAB20-AA-091 ALCALINIDAD Método 2320B; APIJA, AWWA, WEI ppm CaCO 357.60 596.00 476.80 CLORUROS Métado 4500-C1-B: APIIA, AWWA, WEF, <0,355 142.50 рри СГ DUREZA Método 2340C; APIJA, AWWA, WEI ppm CaCO <0,5 347.20 248.00 347.20 446,40 NITRATOS Método 8039; ILACTL 210,100 54.550 172.700 47.830 NITRITOS Método 8507; HACTL ppm NO <0,001 Mámda 375,4; EPA SULFATOS ppm SO₄ <1.0 # # # ррт-РО₄ FOSFATOS Método X190; HACTE 40.04 5,463 2.171 3.830 1.390 AMONIO ato 4500 NIES C; APILA, AWWA, WEF 12.050 7.575 7 575 27 210 PARAMETROS MATERIA ORGANICA MÉTODO LAB20-AA-091 Método 8043; HACH: Dilución 149.80 68.30 118.70 110.50 D.Q.O. Método 8000: HACH: Digestión de Res # # 4. RESULTADOS DE ANÁLISIS MICROBIOLÓGICO **GRUPO COLIFORMES** LAB20-AA-090 PARÁMETROS MÉTODO U.D. LAB20-AA-091 DILUCIÓN Número Más Probabl 10-3 10-3 10-3 10-3 l'écnica Estandarizada de Fermentación lubo Multiple(NMP) de Culifornius Tuto COLIFORMES TOTALES NMP/109mL NMP # # # # Método 9221-C; APHA, AWWA, WEF; scedimiento de NMP para Coliformes Feo COLIFORMES FECALES NMP/100mL NMP # # # # Método 9225-B; APITA, AWWA, WEE F. COLI NMP/100mL NMI # # # GRUPO ESTREPTOCOCOS **PARÁMETROS** MÉTODO U.D. L.D. LAR20-A 4-090 LAB20-AA-898 LAB28-AA-091 DILUCIÓN Núm;m Mús Prrhuble 9230-B; APILA, AWWA, WEF 10° 10-3 10-3 10-3 10-3 ESTREPTOCOCOS

imo de detección del metodo. U.D.—Unidad de Medida. 🖅 Parimetro no solicitado. MB-Area de Anátisis Microbiológico. FQ-Área de Anátisis Fisicoquanico. EEA-Área de I

SALMONELLA

V. CHOLERAE

LAB28-AA-090

#

LAB29-AA-090

LAB20-AA-091

#

LAB20-4A-091

LAB20-AA-089

LAB20-AA-089

Los revoltados pretentados son validos únicimente para las muentos cuasyndas. Quesia politicia la reproducción total e pacia de este efforme si la sunterización efecta de LABISAT. Adas como uma cutilicación de conferiodada con normas de producto o corros certificado del sistema de cal·lad de la entidad que lo produce

Los resultados no puedar ser us

Calle Higus Urco N°342-350-356 - Calle Universitaria N°304 - Chachapoyas - Amazonas - Pení labisagi@untmuodu.pu/labisagi@indos-cos.cdn.pu

PARÁMETROS V. CHOLERAE

Cédigo: CCFT-0036

Versión:

Labirag				INFORME DE ENSAYO	Página: 01		
	INFORME DE ENSAYO	0 Nº	:	LA820-AA-093	LAB20-AA-094	LAB20-AA-095	LAB20-AA-096
AZÚN SOCIAL O NOMBRE				1. DATOS	GENERALES FANI GRAYSITTI	H ALVA VALQUI	
DIRECCIÓN					PROLUNGACION C 7693	HINCHALTA N°210	
UC / DNI EFERENCIA					CHACH/		
ROCEDENCIA				CHACHAPOYAS	CHACHAPOYAS	CHACHAPOYAS	CHACHAPOYAS
RESENTACIÓN				a.	ENVASE DE PLÁSTICO TRASLUCIDO DE IL.	ALERASCO DE PLÁSTICO OSCURO DI	F 500 MI.
GJESTREADO POR				**	FANI GRAYSITTI		5.500 111.0
ECHA DE COLECTA				16/12/2020	16/12/2020	16/12/2020	16/12/2020
ORA DE COLECTA				02:00:00 p.m.	62:00:00 p.m.	02:00:00 p.m.	62:80:60 p.n.
ECHA DE RECEPCIÓN ORA DE RECEPCIÓN				16/12/2020	16/12/2020 65:00:00 p.m.	16/12/2020 05:00:00 p.m.	16/12/2020 05:00:00 p.m.
ECHA DE INICIO DE ENSA	YOS			95:00:00 p.m. 17/12/2020	17/12/2020	17/12/2020	17/12/2020
ORA DE INCIO DE ENSAY				18:30:00 a.m.	19:30:90 a.m.	18:39:00 a.m.	i 0:30:00 a.m.
ECHA DE EMISIÓN DEL IN ORA DE EMISIÓN DE INFO	ORME DE ENSAYO				19/01 08: 26:3	/2021 32 a.m.	
ÓDIGO DE MUESTRA CLI			18	N5	Má	M7	Ms
PO DE AGUA	NO LOSS ANIATISTS			AGUA RESIDUAL TRATADA	AGUA RESIDUAL TRATADA	TORIBIO PODE TORIBIO	AD NACIONAL RESIDUAL TRATAD
GAR DE DESARROLLO E UTORIZADO POR:	JE LUS ANALISIS	FUNCION	ES:	FQ	FIRMA:	ONIBIO MODRIGUES DE	AD NACIONAL RESIDUAL TRATAD FO MENDOZA DE AMAZONAS IISAG
January I VIII						LAB	DAC
estis Rascon Barrios		Responsable d	el Laboratorio			- 10	
							••••
						BLGO JESUS RA	SCONDAGE
		1	100 ST 100 S	2 RESULTADOS DE AN	LISIS FISICOQUÍMICOS.	RESPO	SCON BARKIC
					OS Y DE AGREGACIÓN	KESPOI	ASABLE
PARÁMETROS	MÉTODO	U.D.	L.D.	LAB20-AA-093	LAB20-AA-694	LAB20-AA-095	FAR28-AA-096
pH	Método (500-III); APIIA, AWWA, WEF.	pf1	<0,001	7.52	7.47	7.54	7.59
T 1 (in situ)	Método 2550B; APIIA, AWWA, WEF.	°C	<0,1	17.40	17.40	17.80	17.60
TURBIDEZ	Método 21300-B; APHA, AWWA, WEF. Método 4500-D fi: APIIA, AWWA, WEF.	UNT	<0.13	#	4.33	5.68	4.48
OXÍGENO DISUELTO CONDUCTIVIDAD		mg/l.		6.02			
ELECTRICA SOLIDOS DISUELTOS	Método 2510 B; APHA, AWWA, WEF.	µS/cm²	<0,25	16.3	2440.0	17.1	18.8
TOTALES		mg/L		#.	#	#	#
SOLIDOS TOTALES	Método 3540 B; APIIA, AWWA, WEF.	nig/L	<0,1	1.36	1.83	1.41	1.50
PARÂMETROS	MÉTODO	U.D.	L. D.	PARAMETROS INORGA LAB20-AA-093	ANICOS NO METALICOS LAB20-AA-894	LAB20-AA-095	VAPTO A 1962
ALCALINDAD	Metodo 2320B; APITA, AWWA, WEF.	ррия СаСОз	<0,5	476.80	715.20	476.80	476.80
CLORUROS	Métado 4500-C't-B; APIIA, AWWA, WEF.	рриз СГ	<0,355	199.50	285.00	161.50	237.50
DUREZA	Método 2340C; APIIA, AWWA, WEF.	ppm CaCO ₃	<0,5	595.20	496.00	434.00	334.80
NITRATOS	Método 8039; HACTL	ppm NO ₃	<0.1	31.570	48.890	53.490	51.720
NITRITOS	Método 8507; HACIL	ppm NO ₂	<0,001	#	#	#	#
SULFATOS	Método 375.4; EPA.	ppm SO _a	<1.0	#	#	# 4 202	4 400
FOSFATOS	Método 8190; ILACIT. Método 4500 NES C. APILA, AWWA, WEF.	ppm PO ₄	<0,04	0.460	0.446 36.450	0.302 19.530	0.499
AMONIO	Metodo 4500 NH3 C; APIIA, AWWA, WEF.	ppm NH (<0,02	15.690	30.450	19.530	22.000
				PARAMETROS M.	ATERIA ORGANICA		
PARÂMETROS	MÉTODO	U.D.	L.D.	LAB20-AA-093	LAB20-AA-094	LAB20-AA-095	LAB20-AA-096
D.B.O. 5	Método S043; HACH: Dilución	mg/L de O ₂	<0,01	65.50	96.70	82.80	72.30
D.Q.O.	Método 2000: HACH: Digestión de Resctor	mg/L de O ₃	<0.7	#	#	#	#
				STANDARD SENSE SECTION SERVICES SERVICE	LISIS MICROBIOLÓGICO		
					DLIFORMES		
PARÁMETROS DILUCIÓN	MÉTODO Número Mas Probable	U.D.	L. D.	LAB20-AA-093 10-3	LAB20-AA-094 10-3	LAB28-AA-095 10-3	LAN20-AA-098 10-3
COLIFORMES TOTALES	Técnica Estandarizada de Permentación en	NMP/100mL	NMP	#	#	#	#
	Tubo Multiple(NMP) de Colifornies Tutales						
COLIFORMES FECALES	Método 9221-C: APHA, NWWA, WEF: Procedimiento de NMP para Coliformes Fecales	NMP/100mL	NMP	#	#	#	#
F. COLI	Método 9225-B; APITA, AWWA, WEF: Diferenciación de Bucterius Colifornes	NMP/189mL	NMI	#	#	#	#
					REPTOCOCOS		
PARAMETROS	MÉTODO	U.D.	L. D.	LAB29-A A-093	LAB20-AA-094	LAB20-AA-095	1 AB20-AA-896
DILUCIÓN	Número Más Pynhable Método 9230-B; APÍLA, AWWA, WEF:	10"	-	10-3	10-3	10-3	10-3
ESTREPTOCOCOS	Técnica de Tubo Multinlo Métado 9230-B; APITA, AWVA, WEF:	NMP/i 90mL	NMP	#	#	#	#
ENTFROCOCOS	Métado 9230-B; APITA, AWWA, WEF: Técnica de Tobo Multinlu	NMP/retimE	NMP	#	WPI & A	#	#
PARÁMETROS	MÉTODO	U.D.	L. D.	LAB20-AA-093	DNELLA LAB20-AA-094	LAB20-AA-095	LAB20-AA-096
SALMONELLA	Metodo 9260-B; APHA, AWWA, WEF: Postellinientos Generales Cualitativas de	PRESENCIA	P'A	#	#	#	#
WHITE CO. LEADING TO SERVICE AND SERVICE A	Aistamiento e Identificación de Salmonella	AUSENCIA					
(1000-000-000-000-000-000-000-000-000-00				V. CHO	DLERAE	Y 47970 4 4 807	

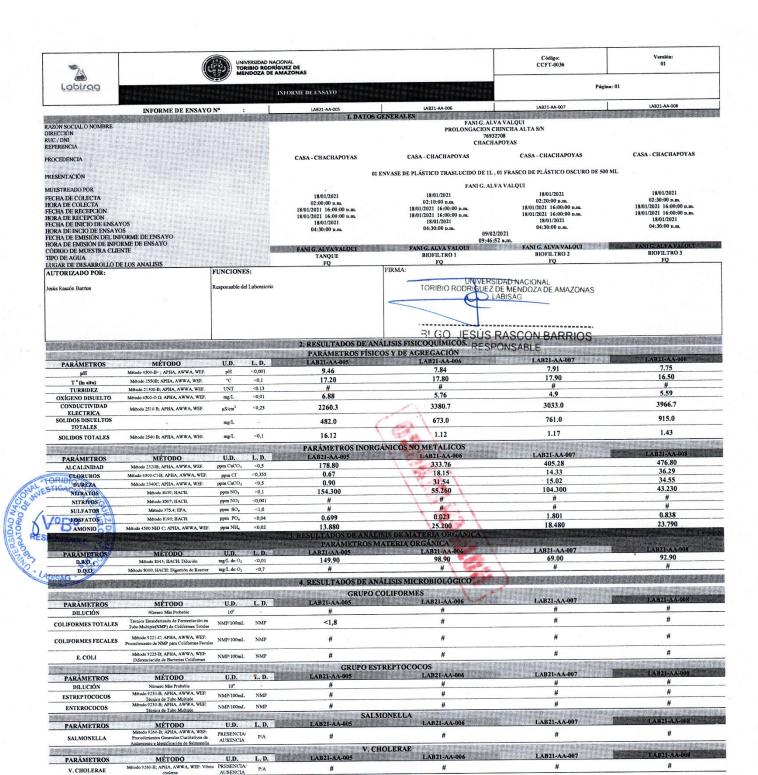
V. CHOLERAE

MÉTODO
U.D. L.D. LAB20-AA-093 LAB20-AA-094 LAB20-AA-095

Minute 320-84, APPIA, AWWA-WED: Verice PRINSLACLY, AUSENCIA PIA ## ## ## ##

L.D. Limite minimus vir denergind det toselok U.D. Unified de Meldia. *Prenimento no scitriolos MP-Aras de Antidas Microbiologico. 100-Aras de Antidas Fisicoquenico. EEA- force de Espectroficoanterio de Enfesion Acid

L.D. Limite minimus vir denergind det toselok U.D. Unified de Meldia. *Prenimento no scitriolos MP-Aras de Antidas Microbiologico. 100-Aras de Antidas Fisicoquenico. EEA- force de Espectroficoanterio de Enfesion Acid


Lar resultados producción bota i que circl de enferme sin la subtranción cheft de la LABINAT;

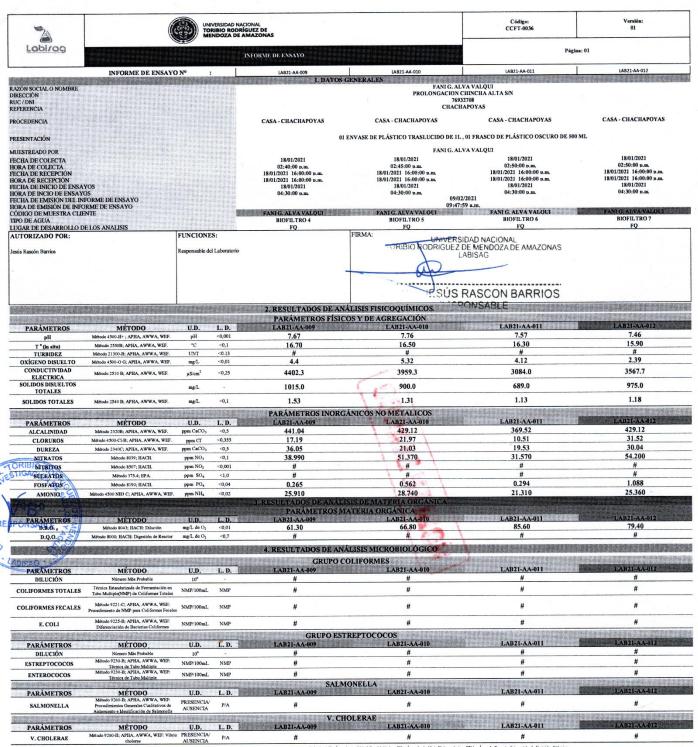
Quelas produbida la reproducción bota i que circl de enferme sin la subtranción con certificad de de factione de calcidad de la entidad que lo produce

Cell : Haw at how NCTAD-180-186 - Calle Universitation NY304 - Chachapopa se - Americoa-se - Porú.

V. CHOLERAE
LAB20-AA-894

Calle Higus Urco N°342-350-356 - Calle Universitaria N°304 - Chachapuyas - Amazonas - Peni, labinag@matem.cala.pe / labinag@malco-cost.cdu.pe

lógico. FQ= Área de A del método. U.D.- Unidad de Medida. #- Parám

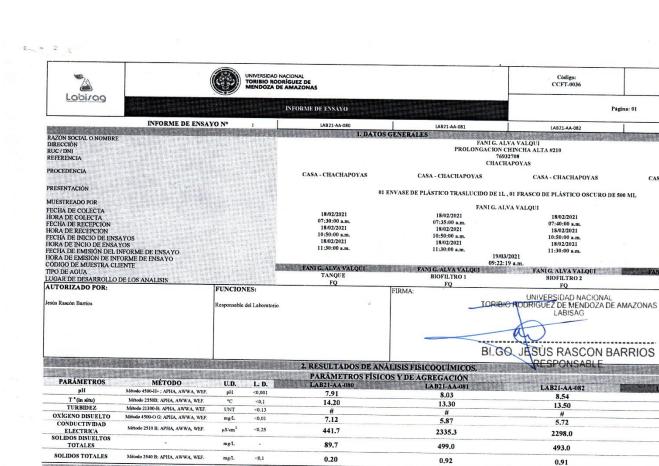

Los resultados presentados son validos únicamente para las muestras ensayadas.

Los resultados presentados son validos únicamente para las muestras ensayadas.

Labibida la reproducción total o parcial de este informe sin la autorización escrita del LABISAG.

una certificación de conformidad con normas de producto o como certificado del sistema de cal

Calle Higos Ureo N°342-350-356 - Calle Universitaria N°304 - Chachapoyas - Amazonas - Perú labisag@untrm.edu.pc / labisag@indes-ces.edu.pe


L. D.= Limit do UD=Un co. FQ= Área de Aná

Los resultados presentados son validos únicamente para las muestras ensayadas.

uibida la reproducción total o parcial de este informe sin la autorización escrita del LABISAO.

na certificación de conformidad con normas de producto o como certificado del sistema de cal

Calle Higos Urco N°342-350-356 - Calle Universitaria N°304 - Chachapoyas - Amazonas - Perú labisag@untrm.edu.pc / labisag@indes-ces.edu.pe

AUSENCIA

				PARÁMETROS INORGA	INICOS NO METALICOS	Carlotte Committee Committ	
PARÁMETROS	MÉTODO	U.D.	L. D.	LAB21-AA-080	LAB21-AA-081	LAB21-AA-082	Division and the Control of the Cont
WECALINIDAD	Método 2320B; APHA, AWWA, WEF.	ppm CaCO ₃	<0,5	35.76	178.80	238.40	LAB21-AA-083
CLORUROS	Método 4500-CI-B; APHA, AWWA, WEF.	ppm Cl	<0,355	10.51	9.55	10.51	298.00
DUREZA CO	Método 2340C; APHA, AWWA, WEF.	ppm CaCO ₃	<0,5	2988.98	180.24	645.86	15.28
NITRATOS U	Método 8039; HACH	ppm NO ₃	<0,1	26.970	109,400		1261.68
NTRITOS	Método 8507; HACH	ppm NO ₂	<0.001	#	#	94.160	69.050
V SULFATOS	Método 375.4; EPA.	ppm SO ₄	<1,0	#		#	#
RESPENSATOS -	Método 8190; HACH.	ppm PO ₄	<0,04	<0.04	0,368	#	#
AMONIO	Metodo 4500 NH3 C; APHA, AWWA, WEF.	ppm NII4	<0.02	0.624		0.662	0.265
					5.290	5.485	7.964
And the same of the same		0.7733704.0	F1 KTA GES	3. RESULTADOS DE ANÁLIS	IS DE MATERIA ORGANICA	and the second second second second second	THE STATE OF THE PARTY OF THE P
PARAMETROS	MÉTODO	U.D.	I.D.	LAB21-AA-080	TERIA ORGÁNICA	The second second second second	A STATE OF THE STA
D.B.O.	Método 8043; HACH: Dilución	mg/L de O ₂	<0.01	116.10	LAB21-AA-081	LAB21-AA-082	LAB21-AA-083
D.Q.O.	Método 8000; HACH: Digestión de Reactor	mg/L de O2	<0,7	#	56.80	69.00	90.00
USS CONTRACTOR AND ADDRESS					#	#	#
S. 16 1 . 3 . 4 . 5 . 6 . 1 . 1 . 1			1116	4. RESULTADOS DE ANÁ	LISIS MICROBIOLÓGICO		
State of the second	The Color of States	A 127	985 LA 1869	GRUPO CO			CONTRACTOR AND THE SECOND SECOND
PARÁMETROS	MÉTODO	U.D.	L. D.	LAB21-AA-080			
DILUCIÓN	Número Más Probable	10 ⁿ	-	#	LAB21-AA-081	LAB21-AA-082	LAB21-AA-083
COLIFORMES TOTALES	Técnica Estandarizada de Fermentación en Tubo Multiple(NMP) de Coliformes Totales	NMP/100mL	NMP	#	#	#	
COLIFORMES FECALES	Método 9221-C; APHA, AWWA, WEF: Procedimiento de NMP para Coliformes Fecales	NMP/100mL	NMP	#	#	#	#
E. COLI	Método 9225-B; APHA, AWWA, WEF: Diferenciación de Bacterias Coliformes	NMP/100mL	NMP	#	#	#	4
	The state of the s	10000	1000	GRUPO ESTR	FPTOCOCOS		
PARÁMETROS	MÉTODO	U.D.	L. D.	LAB21-AA-080	LAB21-AA-081	LAB21-AA-082	
DILUCIÓN	Número Más Probable	10 ⁿ	-	#	#	LAB21-AA-082	LAB21-AA-083
ESTREPTOCOCOS	Método 9230-B; APHA, AWWA, WEF: Técnica de Tubo Multiple	NMP/100mL	NMP	#		#	##
ENTEROCOCOS	Método 9230-B; APHA, AWWA, WEF:	NMP/100mL	NMP		#	#	#
Section and the second	Técnica de Tubo Multiple	NMP/100mL	NMP	#	#	#	#
PARÁMETROS	MÉTODO		Establish State	SALMO	NELLA	Selection of the select	
	MÉTODO Método 9260-B; APHA, AWWA, WEF:	U.D.	L. D.	LAB21-AA-080	LAB21-AA-081	LAB21-AA-082	LAB21-AA-083
SALMONELLA	Procedimientos Generales Cualitativos de Aislamiento e Identificación de Salmonella	PRESENCIA/ AUSENCIA	P/A	#	#	#	#
PARÁMETROS	MÉTODO	U.D.	L. D.	V. CHO			The same of the sa
V. CHOLERAE	Método 9260-H; APHA, AWWA, WEF:	PRESENCIA/		LAB21-AA-080	LAB21-AA-081	LAB21-AA-082	LAB21-AA-083
·. CHOLEKAE	Vibrio cholerae	ALICENICIA	P/A	#	#	**	

PARÁMETROS INORGÁNICOS NO METALICOS LAB21-AA-080 LAB21-AA-081

Página: 01

LAB21-AA-083

CASA - CHACHAPOYAS

18/02/2021

18/02/2021 07:45:00 a.m. 18/02/2021 10:50:00 a.m. 18/02/2021 11:30:00 a.m.

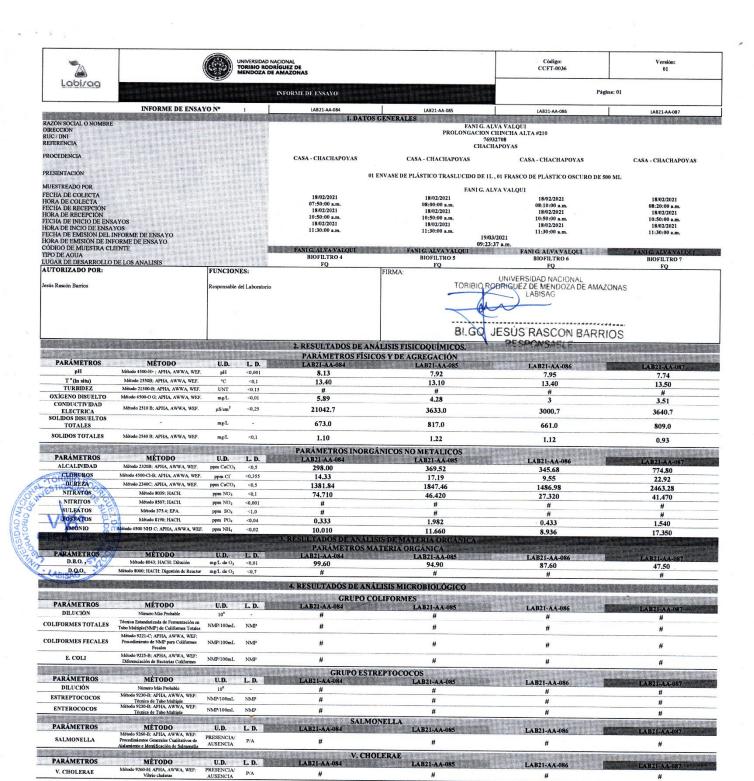
NI G. ALVA VALQU BIOFILTRO 3

FQ

8.15 13.40

6.06

2991.3


662.0

1.05

ida. #= Parâmetro no solicitado. MB=Área de Análisis Microbiológico. FQ= Área de Análisis Fisic

au de Néman. » - parametro los associatios, alto-rivas se catamias activacionogose. T.C.- rive se catamias funcionamicos, as Los reultados presentados son validos únicamente para las muestras ensayadas. Queda prohibida la reproducción total o parcial de este informe sin la autorización escrita del LABISAG, dos como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de

Calle Higos Ureo N°342-350-356 - Calle Universitaria N°304 - Chachapoyas - Amazonas - Perú labisag@untrm.odu.pe / labisag@indes-ces.edu.pe

L. D.= Limite minimo de detección del método. U.D.= Unidad de Medida. #= Parámetro no solicitado. MB=Área de Análisis Microbiológico. FQ=Área de Análisis Físico

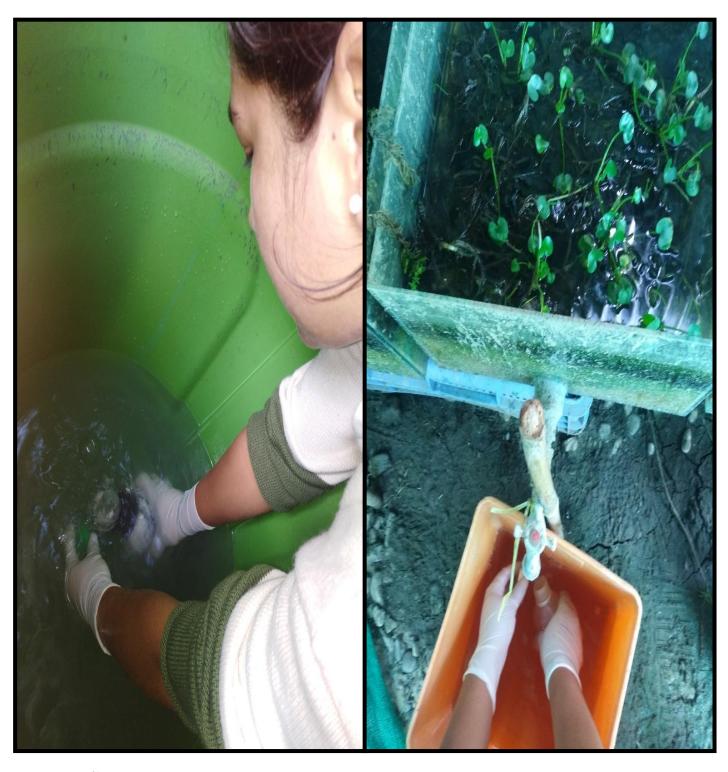
dada. Fe Parlamento no sociatido. MEP-Area os cuastas Aucrossadopico. F.C. - Area os Antistas Fisicoquameco.

Los resultados presentados son validos únicamente para las muestras ensayadas.

Robiblida la reproducción total o parcial de este informe sin la autorización escrita del LABISAG.

o una certificación de conformidad con normas de producto o como certificado del sistema de calidad

Calle Higos Urco N°342-350-356 - Calle Universitaria N°304 - Chachapoyas - Amazonas - Perú labisag@untrm.edu.pe / labisag@indes-ces.edu.pe


Fotografía 1: Instalación de componentes del sistema de tratamiento

Fotografía 2: Recolección de macrófitas LENTEJA DE AGUA (Lemna minor l.), ELODEA (Elodea canadensis m.) Y BERROS (Nasturtium officinale wt aiton)

Fotografía 3: instalación de macrófitas para el sistema de tratamiento

Fotografía 4: Recolección de muestras al ingreso y salida del sistema de tratamiento