UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE INGENIERÍA Y CIENCIAS AGRARIAS
ESGUELA ACADÉMICO PROFESIONAL DE INGENIERÍA AGROINCUSTRIAL

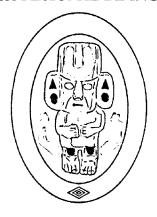
"EVALUACIÓN DEL EFECTO DEL TIEMPO Y LA TEMPERATURA EN EL PROCESO DE ELABORACIÓN DE UN FILTRANTE DE CONGONA (Peperomia inaequalifolia), PROVENIENTE DEL DISTRITO DE LÁMUD, PROVINCIA DE LUYA, REGIÓN AMAZONAS"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO AGROINDUSTRIAL

AUTORES:

Bach. Juanita del Pilar Zuta Vargas

Bach. Víctor Lennin Grández Gáslac


ASESOR:

Lic. Msc. Carlos Eduardo Millones Chanamé

CHACHAPOYAS, PERÚ 2012

UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE INGENIERÍA Y CIENCIAS AGRARIAS
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA AGROINDUSTRIAL

"EVALUACIÓN DEL EFECTO DEL TIEMPO Y LA TEMPERATURA EN EL PROCESO DE ELABORACIÓN DE UN FILTRANTE DE CONGONA (*Peperomia inaequalifolia*), PROVENIENTE DEL DISTRITO DE LÁMUD, PROVINCIA DE LUYA, REGIÓN AMAZONAS"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO AGROINDUSTRIAL

AUTORES:

Bach. Juanita del Pilar Zuta Vargas

Bach. Víctor Lennin Grández Gáslac

ASESOR

Lic. Msc. Carlos Eduardo Millones Chanamé

COASESOR:

Ing. Aura del Rocío Tafur Jiménez

CHACHAPOYAS - PERÚ 2012

DEDICATORIA

El presente informe de Tesis, va dedicado a Dios por haber guiado mi camino y haberme escuchado siempre.

A mis padres y hermanos quienes me han brindado su incondicional apoyo y cariño en el transcurso de mi formación profesional propiciando de esta manera la culminación de mis estudios y la realización de este informe, a ellos en especial por ser quienes me han demostrado que con esfuerzo, trabajo y perseverancia se puede alcanzar nuestras metas.

Finalmente dedico este trabajo a nuestros docentes de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas por ser quienes me inculcaron los conocimientos y fueron los guías de mi formación como profesional.

Autora

DEDICATORIA

A Dios, por haberme concedido la vida y la sabiduría necesaria para poder seguir adelante y permitirme culminar esta etapa tan importante en mi vida.

A mí adorada hija, quien con su tierna existencia ha logrado dar sentido a mi vida llenándola de aspiraciones y ayudándome a ver la vida con madurez y responsabilidad.

A mi esposa, quien con cariño y amor supo comprender y apoyarme en todo este proceso y por la hermosa experiencia de crear una vida juntos.

A mis padres, quienes con amor, sacrificio y constancia inculcaron en mí el amor y respeto, supieron apoyarme y guiarme hacia el sendero del éxito.

A mis hermanos por su constante y generoso apoyo. Finalmente a todos mis familiares, maestros y amigos que de una u otra forma me apoyaron durante mi formación personal.

Autor

AGRADECIMIENTOS

A Dios por habernos permitido un día más de vida y darnos la oportunidad de vivir para servir a los demás. A la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, en especial a la Facultad de Ingeniería y Ciencias Agrarias "F.I.C.A." en cuyas aulas hemos afianzado nuestro pensamiento y conocimiento profesional.

Al Lic. Msc. Carlos Eduardo Millones Chanamé, Asesor de Tesis, por su orientación en el desarrollo de la presente investigación, aporte en la revisión estadística, contribución en la redacción del documento y por guiarnos para la culminación exitosa de nuestra investigación.

A nuestra Co asesora de tesis: Ing. Aura del Rocío Tafur Jiménez por su apoyo invaluable en el proceso de ejecución de la presente tesis.

A la Mblga. Ernestina Vásquez Castro, por contribuir de manera desinteresada en el desarrollo experimental de la investigación. Y, a todos los catedráticos, profesionales, compañeros y amigos que de una u otra manera directa e indirectamente contribuyeron a la realización de la presente investigación.

Autores

AUTORIDADES DE LA UNIVERSIDAD NACIONAL TORIBIO RODRIGUEZ DE MENDOZA DE AMAZONAS

Ph. D, Dr. Hab. Vicente Marino Castañeda Chávez

Rector

Msc. Roberto José Nervi Chacón

Vicerrector Académico

Msc. Roberto José Nervi Chacón

Vicerrector Administrativo

Dr. Miguel Ángel Barrena Gurbillón

Decano de la Facultad de Ingeniería y Ciencias Agrarias

VISTO BUENO DEL ASESOR

Quien suscribe Lic. Msc. Carlos Eduardo Millones Chanamé, docente Asociado a

tiempo completo del departamento de Ciencias Básicas, asesor del trabajo de

investigación titulado "Evaluación del efecto del tiempo y la temperatura en el

proceso de elaboración de un filtrante de congona (Peperomia inaequalifolia),

proveniente del distrito de Lamud, provincia de Luya, región Amazonas", que

constituye la tesis presentada por los bachilleres Juanita del Pilar Zuta Vargas y

Victor Lennin Grández Gáslac para optar el título de Ingeniero Agroindustrial, da

el visto bueno del informe final de la mencionada tesis y firma el presente a fin que

sea sometido a la revisión por el jurado evaluador, comprometiéndose supervisar el

levantamiento de las observaciones dadas por el mismo, para su posterior

sustentación.

Chachapoyas, 25 de junio del 2012

LIC. MSC. CARLOS EQUARDO MILLONES CHANAMÉ

Asesor de Tesis

V

VISTO BUENO DEL COASESOR

Quien suscribe Ing. Aura del Rocío Tafur Jiménez, profesora contratada auxiliar a

tiempo completo del departamento de Ciencias Básicas, coasesora del trabajo de

investigación titulado "Evaluación del efecto del tiempo y la temperatura en el

proceso de elaboración de un filtrante de congona (Peperomia inaequalifolia),

proveniente del distrito de Lamud, provincia de Luya, región Amazonas", que

constituye la tesis presentada por los bachilleres Juanita del Pilar Zuta Vargas y

Victor Lennin Grández Gáslac para optar el título de Ingeniero Agroindustrial, da

el visto bueno del informe final de la mencionada tesis y firma el presente a fin que

sea sometido a la revisión por el jurado evaluador, comprometiéndose supervisar el

levantamiento de las observaciones dadas por el mismo, para su posterior

sustentación.

Chachapoyas, 25 de junio del 2012

ING. AURA DEL ROCTO TAFUR JIMÉNEZ

Coasesora de Tesis

vi

JURADO EVALUADOR

Ing. Wilson Manuel Castro Silupu

Presidente

Ms. C. Armstrong Barnard Fernandez Jeri

Secretario

Ing. Erick Aldp Auquiñivin Silva

Vocal

UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE INGAS ERIA Y CIENTADO AGRARAS

ACTA DE EVALUACIÓN DE SUSTENTACIÓN DE TESIS

En la ciudad de Chachapoyas, el día 07 de 400 del año 2012, siendo
las OS Oppras, se reunieron los integrantes del Jurado conformado por:
Presidente: Jos. WILSON MANNOGERSINO SILUPU
Secretario: In Adult 1006 Fernolis 52 JERI
Vocal: For Exica MILDS AUSSINDUSILVE.
para evaluar la Sustentación del Informe de Tesis presentado por el(la) bachiller,
don(ña) JUANATA DELPILAR ZUTAVAREAY,
titulado Erakación del afecto de Citrespo y la tempora has es
Twees Le ela Bornon Low film to de Carisna (Paparon
ince qualito (in) provinte det distribo de Laina from ce
Luya / Después de la sustentación respectiva, el Jurado acuerda la APROBACIÓN ()
DESAPROBACIÓN () por mayoría () por unanimidad () en consecuencia, el (la)
aspirante puede proseguir con el frámite subsiguiente, de acuerdo al Reglamento de Grados y
Títulos de la UNATI-A.
Siendo las de l'insmo día, el Jurado concluye el acto de sustentación
del Informe de Tesis
SECRETARIO
SECRETARIO
VOCAL
Company of the state of the sta

Form6- T

UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS

FACULTAD DE TNECTIENA / CTENCIS ABRARIAS

ACTA DE EVALUACIÓN DE SUSTENTACIÓN DE TESIS

	En la ciudad de Chachapoyas, el día 07 de 1600 del año 2012 siendo
	las 00 . Oporas, se reunieron los integrantes del Jurado conformado por:
	Presidente: Ing. Wizzow Marite Coepsila SizePu
	Secretario: Ing. Anismont Fermison TERI
	Vocal: In 1 & Thek SUDO MUSTER STEED ,
	para evaluar la Sustentación del linforme de Tesis presentado por el(la) bachiller,
	don(ña) VII CATOR LENDIN GRANDER GASTAR,
	titulado Eva hación de los de trempo y la temporation en el a
	de elebation de ont thanted extension Cheperon
i na e	egvalatolica) proporteste Let John Le tolinda promi
Luy.	// JDespues de la Sustentación respectiva, el Jurado actienda la APROBACIÓN X,
	DESAPROBACION () por mayoría (), por unanimidad (); en consecuencia, el (la)
	aspirante puede proseguir con el tramité subsiguiente, de acuerdo al Reglamento de Grados y
(86)	Títulos de la UNAT-A.
Z .	
	Siendo las Chippens der mismo dia el-Jurado concluye el acto de sustentación
	del Informe de Tesis.
	CARROLLES IN TO ME TO THE CONTRACT OF THE CONT
	SECRETARIO
	N TON WIMPAU 1251/N
	VOGAL
	The state of the s
	Andrew Control of the

Form6- T

INDICE GENERAL

V	xv
T	xvi
RODUCCIÓN	18
iltrantes y bebidas calientes	18
létodos de elaboración de filtrantes	20
Método Ortodoxo.	20
Método industrial	21
l té	25
Tipos de té	27
Presentaciones del té	28
a congona	31
Características de la congona (<i>Peperomia inaequalifolia</i>)	31
TERIAL Y MÉTODOS	39
lateriales y equipos	39
Material biológico	39
Equipos	39
Reactivos	39
Otros	40
laboración del filtrante de congona	40
Selección y limpieza de la materia prima (congona)	41
Machacado y enrollado	41
·	
Secado final	42
	T

2.2.7	Molido42
2.2.8	Cernido42
2.2.9	Empaque42
2.3 A	nálisis del filtrante de congona44
2.3.1	Evaluación del color del filtrante de congona44
2.3.2	Análisis organoléptico y/o sensorial del filtrante de congona44
2.3.3	Análisis fisicoquímico del filtrante de congona44
2.4 A	nálisis estadístico47
2.4.1	Elaboración del filtrante de congona47
2.4.2	Evaluación sensorial del filtrante obtenido de congona48
2.4.3	Evaluación de los filtrantes de congona obtenidos en comparación con un
filtran	te comercial50
III. RES	ULTADOS
3.1 O	btención del filtrante de congona51
3.2 Ev	valuación sensorial del filtrante de congona55
3.3 C	omparación de los filtrantes de congona con un filtrante comercial 57
3.4 R	ecuento de mohos, levaduras y mesófilos aerobios realizadas a los mejores
tratamie	ntos
3.5 De	eterminación del tiempo de vida útil acelerado del filtrante de congona 61
3.5.1	Determinación del color, tiempo de difusión y pH en el tiempo de vida útil
acelera	ado del filtrante de congona empleando 26°C de temperatura y 56% de
humed	ad relativa:61
3.5.2	Recuento de mohos, levaduras y mesófilos aerobios en el tiempo de vida útil
acelera	ido del filtrante de congona sometidos a 26°C de temperatura y 56% de
humed	ad relativa:65
3.5.3	Determinación del color, tiempo de difusión y pH en el tiempo de vida útil
acelera	ndo del filtrante de congona empleando 50°C de temperatura y 45% de
humad	ad relative

	5.5.4 Recuento de mohos, levaduras y mesófilos aerobios en el tiempo de vida útil acelerado del filtrante de congona sometidos 50°C de temperatura y 45% de	
	umedad relativa6	8
	5.5.5 Estimación de la vida útil acelerado del filtrante de congona a través del nodelo de Arrhenius	
IV.	DISCUSIONES	i
V.	CONCLUSIONES. 79	ł
VI.	RECOMENDACIONES81	
VII.	REFERENCIAS BIBLIOGRÁFICAS 82	
VIII	ANEYOG	

ÍNDICE DE TABLAS

Tabla 1. Épocas de cosecha del té26
Tabla 2. Tipos de recolección del té
Tabla 3. Análisis del color, tiempo de difusión, humedad y pH del filtrante de congona obtenido 52
Tabla 4. Análisis sensorial del sabor, aroma y color del filtrante de congona obtenido56
Tabla 5. Resultados del color, tiempo de difusión y pH, obtenidos del mate de coca filtrante57
Tabla 6. Análisis del color, tiempo de difusión y pH del filtrante de congona comparado con el filtrante comercial mate de coca (Herbi)
Tabla 7. Presencia de mohos, levaduras y mesófilos aerobios permisibles en el filtrante según la norma técnica peruana NTP 209.229.1992. 60
Tabla 8. Presencia de mohos y levaduras permisibles según la norma técnica NTP 209.244:1986 de la Hierba luisa en bolsas filtrantes Revisada el 201060
Tabla 9. Evaluación microbiológica (recuento de mohos, levaduras y mesófilos aerobios) en los tratamientos T2, T4 y T6 del filtrante de congona 61
Tabla 10. Análisis del color, tiempo de difusión y pH de los filtrantes de congona sometidos a temperatura de 26°C y humedad relativa de 56%, evaluados al día 01 y 30, respectivamente62
Tabla 11. Evaluación microbiológica de los tratamientos T2, T4 y T6 sometidos a 26°C y 56% de humedad relativa, para determinar la presencia de mohos, levaduras y mesófilos aerobios al 01 día y a los 30 días
Tabla 12. Análisis del color, tiempo de difusión y pH de los filtrantes de congona (T2, T4 y T6) sometidos 50°C de temperatura y 45% de humedad relativa, evaluados al día 01 y 30, respectivamente
Tabla 13. Evaluación microbiológica de los mejores tratamientos sometidos a 50°C y 45% de humedad relativa, para determinar la presencia de mohos, levaduras y mesófilos aerobios al 01 día y a los 30 días
Tabla 14. Datos para la estimación del tiempo de vida útil acelerado del filtrante de congona70
Tabla 15. Resultados obtenidos de la lectura del filtrante de Congona con el espectrofotómetro a 380nm

Tabla	16.	Resultados	obtenidos	de	la	lectura	del	filtrante	de	Congona	con	el
espectr	ofotó:	metro a 430m	m	•••••	•••••		••••••		•••••	••••••	•••••	90
Tabla	17.	Resultados	obtenidos	de	la	lectura	del	filtrante	de	Congona	con	el
espectr	ofotó	metro a 480m	m	• • • • • • • • • • • • • • • • • • • •	•••••	,			••••••		•••••	90
Tabla	18. E	valuación Cua	antitativa de	l col	or d	el filtrant	e de	congona a	una	longitud de	onda	de
380nm	. 	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	*************	•••••		•••••	91
Tabla	19. A	nálisis de la v	arianza	••••••	•••••	••••••	•••••	••••••	•••••		••••••	92
Tabla :	20. C	omparaciones	múltiples -	prue	eba d	de Tukey	- 95%)	•••••		•••••	92
Tabla :	21. E	valuación Cua	antitativa de	l col	or d	el filtrant	e de	congona a	una	longitud de	onda	de
430nm		•••••	•••••	•••••	•••••	•••••	••••••	••••••	••••••		••••••	93
Tabla 2	22. A	nálisis de la v	arianza	• • • • • • • •	•••••	************	••••••		•••••		•••••	94
Tabla 2	23. Co	omparaciones	múltiples -	prue	eba o	de Tukey	- 95%),	•••••		•••••	94
Tabla :	24. E	valuación Cua	antitativa de	l col	or d	el filtrant	e de	congona a	una	longitud de	onda	de
480nm		******************	•••••	•••••		************	•••••	***************************************	••••••	***************	•••••	95
Tabla 2	25. A	nálisis de la v	arianza	•••••	•••••		••••••	************	•••••		•••••	96
Tabla :	26. Co	omparaciones	múltiples -	prue	eba o	de Tukey	- 95%),	•••••			96
Tabla :	27. R	esumen de ev	aluaciones o	le co	lor.	••••••	•••••	•••••	•••••		••••••	97
Tabla :	28. E	valuación cua	ntitativa de	la hı	ime	dad	•••••	••••••	•••••			97
Tabla :	29. Ai	nálisis de la v	arianza				•••••		•••••			98
Tabla	30. Ev	valuación cua	ntitativa del	pH.			•••••		•••••			99
Tabla	31. A:	nálisis de la v	arianza		•••••						•••••	100
Tabla	32. E	valuación cua	ntitativa del	tien	po ·	de difusio	ón	•••••	•••••			100
Tabla :	33. A	nálisis de la v	arianza					•••••	•••••			101
Tabla	34. C	Cuadro Resun	nen del colo	or, ti	emp	oo de dif	usión	, humeda	d y 1	oH de los	filtran	ites
		congona			-					•		
Tabla :	35. R	esultados obt	enidos del a	nális	sis s	ensorial d	lel sa	bor	•••••			104
Tabla :	36. Re	esultados obte	enidos del a	nális	is se	nsorial d	el arc	ma	•••••		********	104

Tabla 37. Resultados obtenidos del análisis sensorial del color	105
Tabla 38. Evaluación sensorial del sabor	105
Tabla 39. Análisis de la varianza	106
Tabla 40. Comparaciones múltiples - prueba de Tukey al 95% de confianza	107
Tabla 41. Evaluación sensorial del aroma	107
Tabla 42. Análisis de la varianza	108
Tabla 43. Comparaciones múltiples - prueba de Tukey al 95%. de confianza	109
Tabla 44. Evaluación sensorial del color	109
Tabla 45. Análisis de la varianza	110
Tabla 46. Comparaciones múltiples - prueba de tuckey al 95% de confianza	111
Tabla 47. Resumen de la evaluación sensorial	111
Tabla 48. Evaluación cuantitativa del color en comparación con una muestra comercial, a 38	0
nm	112
Tabla 49. Análisis de la varianza	112
Tabla 50. Comparaciones múltiples - prueba de Tukey al 95% de confianza	113
Tabla 51. Evaluación cuantitativa del color en comparación con una muestra comercial, a 43	0
nm	113
Tabla 52. Análisis de la varianza	114
Tabla 53. Comparaciones multiples - prueba de Tukey al 95% de confianza	114
Tabla 54. Evaluación cuantitativa del color en comparación con una muestra comercial, a 48	0
nm	115
Tabla 55. Análisis de la varianza	115
Tabla 56. Datos iniciales para la estimación de la velocidad de crecimiento específica	116
Tabla 57. Resultados de la velocidad de crecimiento específica (μ) y la inversa de l	a
temperatura (°K)	118

ÍNDICE DE FIGURAS

Figura 1. Esquema bioquímico del pardeamiento enzimático del té	35
Figura 2. Diagrama de flujo del proceso para la obtención del filtrante a partir de hojas y tallos tiernos de congona (<i>Peperomia inaequalifolia</i>).	43
Figura 3. Comportamiento del color del filtrante de congona evaluado a las longitudes de onda de 380, 430 y 480nm.	5 3
Figura 4. Comportamiento del color del filtrante de congona evaluado a las longitudes de onda de 380, 430 y 480nm.	54
Figura 5. Comportamiento del tiempo de difusión del filtrante de congona en los tratamientos evaluados.	54
Figura 6. Evaluación sensorial del color del filtrante de congona obtenido	57
Figura 7. Evaluación del color a la longitud de onda de 430nm entre los filtrantes de congona y el filtrante comercial mate de coca.	59
Figura 8. Evaluación del color de los mejores tratamientos del filtrante de congona, a la longitud de onda de 380nm, evaluados a los 01 y 30 días, sometidos a temperatura de 26°C y humedad relativa de 56%.	62
Figura 9. Evaluación del color de los mejores tratamientos del filtrante de congona, a la longitud de onda de 430 nm, evaluados a los 01 y 30 días, sometidos a temperatura de 26°C y humedad relativa de 56%.	63
Figura 10. Evaluación del color de los mejores tratamientos del filtrante de congona, a la longitud de onda de 480 nm, evaluados a los 01 y 30 días, sometidos 26°C de temperatura y 56% de humedad relativa.	64
Figura 11. Evaluación del tiempo de difusión de los mejores tratamientos del filtrante de congona, evaluados a los 01 y 30 días, sometidos a 26°C de temperatura y 56% de humedad relativa.	64
Figura 10. Evaluación del color de los mejores tratamientos del filtrante de congona, a la longitud de onda de 380 nm, evaluados a los 01 y 30 días, sometidos 50 °C de temperatura y 45% de humedad relativa.	67

Figura 11. Evaluación del tiempo de difusión de los mejores tratamientos del filtrante	е
de congona, evaluados a los 01 y 30 días, sometidos a 50°C de temperatura y 45% de	e
humedad relativa.	68
Figura 12 Logaritmo natural de las unidades formadoras de colonias por gramo vs e	el
tiempo a la temperatura de 26°C.	117
Figura 13 Logaritmo natural de las unidades formadoras de colonias por gramo vs e	:1
tiempo a la temperatura de 50°C.	117
Figura 14. Logaritmo natural de la velocidad de crecimiento específica vs la inversa de	e
la temperatura absoluta	118

RESUMEN

La presente investigación se realizó con el propósito de brindar una técnica de industrialización de hierbas aromáticas, es por ello que se planteó evaluar el efecto del tiempo y la temperatura en el proceso de elaboración de un filtrante de Congona (Peperomia inaequalifolia), proveniente del distrito de Lámud, provincia de Luya, región Amazonas; para lo cual se recolectaron hojas y tallos tiernos de Congona; la misma a quien se sometió a un proceso de marchitamiento, machacado, enrollado, para después someterlos a un proceso de oxidación empleando tiempos de oxidación (2:00, 2:30, 3:00, 3:30 horas) y temperatura de 30°C y 40°C; posteriormente las hojas y tallos fueron secados hasta alcanzar una humedad entre 6 - 9%; para finalmente ser molidos y empacados. Para el procesamiento de los datos del color, humedad, tiempo de difusión y pH; se utilizó un experimento factorial 4Ax2B, bajo un diseño completamente al azar; y para la evaluación sensorial un DBCA con 12 panelistas semi entrenados, para evaluar los atributos color, aroma y sabor. En la comparación de los filtrantes de congona obtenidos con el filtrante comercial mate de coca (marca Herbi) se empleó un Diseño Completamente al Azar. Los resultados mostraron que al emplear una temperatura de 40°C por 120, 150 y 180 minutos permitió una adecuada oxidación de los tallos y hojas de congona, reflejada en las características de color, tiempo de difusión y pH; sin embargo la aceptabilidad del filtrante de congona obtuvo una calificación de me gusta moderadamente. En la vida de anaquel acelerado se evaluó la presencia de microorganismos mohos y levaduras, donde los tratamientos T2, T4 y T6 obtuvieron tiempos de vida útil estimados de 75, 65 y 53 días, respectivamente; lo que demostró la posibilidad de utilizar la congona en la elaboración de filtrantes con estándares de calidad.

Palabras claves: Filtrante, congona, oxidación, pardeamiento enzimático, peperomia.

ABSTRACT

This research was carried out to provide a technique for industrialization of herbs, is why was to evaluate the effect of time and temperature in the preparation of a filter Congona (Peperomia inaequalifolia), from the district of Lámud province of Luya, Amazon region, for which they were collected leaves and tender stems of Congona, the same who underwent a process of withering, crushed, rolled, and then undergo a process of oxidation using oxidation times (2:00, 2:30, 3:00, 3:30 pm) and 30 ° C and 40 ° C, and subsequently the leaves and stems were dried to a moisture content between 6 to 9%, to finally be ground and packaged. For the processing of color data, humidity, and pH transmission time, we used a factorial experiment 4Ax2B under a completely randomized design, and sensory evaluation for a RCBD with 12 trained panelists semi to assess the attributes color, aroma and flavor. In the comparison of the filter with the filter obtained congona commercial mate de coca (brand Herbi) used a completely randomized design. The results showed that by employing a temperature of 40 ° C for 120, 150 and 180 minutes allowed adequate oxidation congona stems and leaves, as reflected in the characteristics of color, transmission time and pH, but the acceptability of the filter of congona received a score of like moderately. In accelerated shelf life was evaluated for molds and yeast microorganism, where the treatments T2, T4 and T6 were estimated lifetimes of 75, 65 and 53 days, respectively, thus demonstrating the possibility of using congona in filter with the development of quality standards.

Keywords: Filter, congona, oxidation, enzymatic browning, peperomia.

I. INTRODUCCIÓN

En las zonas alto andinas y ceja de selva de la región Amazonas, crece la congona; planta medicinal oriunda del Perú, con flores en espigas y hojas enteras con las que se prepara una excelente infusión, empleada artesanalmente por los pobladores de las zonas rurales por sus virtudes digestivas; sin embargo, a la fecha no se ha dado un uso adecuado de esta planta para su procesamiento, debido a que la información existente es escasa y no permite su industrialización (Pino, 2006).

1.1 Filtrantes y bebidas calientes.-

Las bebidas calientes (té, yerba mate y hierbas medicinales) tienen diversas características en cuanto a las preferencias de los consumidores y poseen particularidades bien definidas en los hábitos de consumo que tienen asociado. Este hecho hace suponer que existe un bajo grado de sustitución entre ellos, por lo que el consumidor de cada uno de estos productos no cederá, o en un porcentaje marginal, sus preferencias en reemplazo de otro; por ejemplo, reemplazar el consumo de yerba mate o té por una infusión de hierbas (Lance, 2006).

Esta complementariedad se ha incrementado con las nuevas y mayores preferencias por parte de los consumidores de productos de origen natural, lo que en definitiva se traduce en la creación de nuevos sabores, aromas, presentaciones y muchas otras innovaciones de productos, todos ellos orientadas a satisfacer las necesidades del nuevo consumidor (Lance, 2006).

El filtrante como tal se compone básicamente de tres elementos: El sobre con el contenido de la hierba, el recipiente y el agua caliente. Es por ello que los filtrantes

de hierbas aromáticas son productos que están constituidos básicamente por las hojas y/o tallos secos, envasados en bolsas de papel filtrante para su uso inmediato; además poseen características propias como son color, olor y sabor provenientes de las hierbas con las que se elaboran; esta bebida es obtenida de las hojas secas (coca, ruda, toronjil, eucalipto, anís, té, etc.), partes de las flores (manzanilla) o de los frutos de diversas hierbas aromáticas que cumplen las condiciones de servir como alimento no dañino al consumo humano a las cuales se les vierte agua a temperatura mayor a la ambiental, pero sin llegar a hervir (Lance, 2006).

La mayoría de los filtrantes tienen sabor y aroma agradable, los que provienen de las características propias de la materia prima utilizada, así se puede hacer uso de diversidad de plantas como manzanilla, ruda, coca, etc. Además proporcionan la sensación de calmar la sed al ser tomados. A diferencia de cualquier bebida gaseosa o refrescante, los filtrantes, de acuerdo al tipo de hierba con que han sido elaborados, contienen propiedades que eficazmente apoyan todas las actividades vitales de su consumidor. Así por ejemplo el Mate de coca posee propiedades anti-oxidantes y contiene sustancias nutritivas, beneficiosos aceites que convierten a este filtrante en una bebida natural y curativa (Lance, 2006).

El filtrante no contiene conservantes ni colorantes, es 100% natural y de aroma agradable. Su sabor es el resultado de una cuidadosa selección y del procesamiento que permite mantener intactas todas sus cualidades benignas.

Como se ha indicado anteriormente, los filtrantes son una de las bebidas alimenticias más consumidas por todas las personas, para la producción de bolsas o sacos de filtrantes, se mezclan varias hojas aromáticas cortadas y secas

procedentes de numerosas regiones del mundo. Normalmente, los filtrantes de hierbas aromáticas se reciben en cajones de madera o bolsas grandes, se mezclan y se transfieren a las máquinas envasadoras, donde se empaquetan como bolsas de filtrantes individuales o envases a granel (Lance, 2006).

1.2 Métodos de elaboración de filtrantes.-

Existen dos métodos de preparación de los filtrantes:

- **1.2.1 Método Ortodoxo.-** Según Parra (2007b), los pasos del método ortodoxo se detallan a continuación:
 - Marchitamiento: Se inicia en el momento de la cosecha y tiene como finalidad reblandecer la hoja y hacerla maleable para poder enrollarla sin romperla. En años anteriores se colocaban las hojas a secar al sol o mejor simplemente a la sombra, hoy se hace circular una corriente de aire a 20-22° en unos túneles con cintas transportadoras o bien en cubas.
 - Enrollado: En años anteriores las hojas se amasaban con las palmas de las manos, hoy mediante unas máquinas enrolladoras, que rompen las células de las hojas y así se liberan los aceites esenciales de la planta.
 - Fermentación: Se colocan las hojas sobre planchas inertes para que no contaminen el proceso con una atmósfera muy húmeda (90-95%) y a una temperatura constante de 22°C. La temperatura en el interior de la masa de fermentación va subiendo hasta alcanzar un máximo y luego vuelve a

bajar. Cuando alcanza la temperatura máxima es cuando hay que detener el proceso de fermentación.

Una fermentación demasiado corta produce hojas de color marrón tirando a verdoso, confiriendo un toque verde. Una fermentación demasiado larga da a la hoja un aspecto quemado y priva a la infusión de su aroma.

• Desecación o secado: es la operación que tiene como finalidad detener la fermentación en el momento deseado, se realiza con unos ventiladores de aire caliente. En esta etapa hay que tener en cuenta dos parámetros: la temperatura de secado y la duración.

Una desecación floja produce un filtrante con alto contenido en agua y puede correr el riesgo de enmohecerse. Una desecación fuerte o larga le quita al filtrante su aroma, haciendo insolubles una gran cantidad de sustancias contenidos en la hoja.

- 1.2.2 Método industrial: Según Parra (2007b), el método de producción industrial, también llamado CTC significa triturado, despedazado y enrollado. Las mismas que constan de:
 - Recolección de las hojas: Las hojas se extienden sobre largos enrejados ventilados con aire caliente (20°C) con el fin de deshidratarlos, perdiendo entre el 40 y el 50 % del agua.
 - Marchitado: Las hojas se pasan entre dos cilindros en sentidos contrarios y diferentes velocidades obteniendo unas hojas laminadas muy finamente.
 - Zarandeo: proceso mediante el cual se remueven materias extrañas del producto como piedras o piezas metálicas. Luego del proceso de

marchitado, las hojas se someten a un zarandeo en bandejas vibratorias perforadas o bien fabricadas en malla de alambre. También están provistos de imanes para remover piezas metálicas que pudiera accidentalmente presentar el material.

- Acondicionamiento: esta práctica se realiza, para aumentar la densidad del té y para aumentar volumen, así como nivelar la calidad; grados inferiores de calidad son incorporados y reciclados a las hojas marchitas.
- Desmenuzado: Troceado hasta casi convertirla en un granulado. Las hojas son trituradas, resultando en pequeños trozos.
 - Enrollado: Las hojas se enrollan las unas contra las otras con máquinas especiales que destruyen las membranas eliminando así tanto los aceites como los jugos. Este método es de tipo continuo y la maquinaria utilizada también difiere del método tradicional. Luego del acondicionamiento, las hojas son pasadas cuatro o cinco veces por la máquina CTC, en tándem. Consiste en dos rodillos dentados que rotan en sentidos contrarios. Los mismos giran a distintas velocidades. Los rodillos presentan dientes. La precisión en el afilado de los mismos y el ajuste en las superficies de contacto son fundamentales para un correcto proceso de CTC. No es posible obtener un producto de buena calidad con este método si los dientes de los rodillos se encuentran dañados.
- Fermentación: Se desarrolla en un lugar caliente (27°C) y húmedo (95%),
 estas condiciones permitirán la oxidación de las hojas ofreciéndonos el sabor y color característico.

Secado: Las hojas se ponen a secar (aproximadamente 90°C) para detener
 la oxidación y eliminar el resto de agua existente.

Una vez concluido el proceso de fabricación las infusiones o filtrantes de hierbas aromáticas se envasan y comercializan como filtrantes puros (los grandes filtrantes, de excelente calidad, que adoptan el nombre de la plantación) o bien se mezclan con hierbas de otras plantaciones, países o áreas de producción. La razón de ello es que los filtrantes de cada plantación al igual que el vino, pueden variar de sabor y calidad de un año a otro. Algunos prefieren los filtrantes puros y disfrutar de estas sutiles variaciones, mientras que otras personas prefieren que cada vez que compren un tipo concreto de filtrante, el sabor de la infusión sea idéntico. Con la mezcla de varios filtrantes, las empresas pueden garantizar un sabor y una calidad homogéneos todos los años (Chipana, 2008).

La producción de las distintas plantaciones se envía a grandes ciudades, generalmente puertos. El importador que quiere comprar un filtrante especifico (té, anís, manzanilla, mate, etc.), recibe unas muestras de los filtrantes ofrecidos y se las pasa al experto que ha de seleccionar las compras (Chipana, 2008). Su trabajo comprende tres operaciones:

- a) Examen de la hoja: Sea cual sea el grado escogido, ésta debe presentar varias cualidades:
 - Debe ser uniforme, es decir, corresponder al grado elegido y constar de trozos de igual superficie.
 - Estar limpia, es decir, no contener ni fibra, ni polvo.

- Ser elástica. Un filtrante compuesto por hojas y/o tallos jóvenes se prestará
 a una ligera compresión y la hoja podrá plegarse sin desmigajarse ni
 romperse en la mano. Por lo contrario un filtrante compuesto por hojas y/o
 tallos viejos se romperá y soltará polvo.
- b) Examen del aroma de la hoja: éste debe ser característico del origen del filtrante, pero debe ser franco y puro, es decir, no contener ningún olor extraño al mismo.

c) La degustación:

- Color, brillo y olor de la infusión
- Densidad, fuerza y astringencia y el aroma del líquido.

El degustador dispone, para cada tipo de filtrante, de la muestra de los filtrantes secos, las hojas en infusión y la infusión en sí, lo que permite de un vistazo, juzgar todos los aspectos del mismo. La infusión debe enfriarse antes de que el experto pueda proceder a la degustación, pues un líquido demasiado caliente quemaría el paladar y se correría el peligro de falsear el sentido del gusto. Una vez alcanzada la temperatura adecuada, el degustador, para cada filtrante, olerá primero las hojas que han estado en infusión, y luego, con una cuchara plana especial, tomará cierta cantidad de infusión. Es conveniente entonces probar primero su perfume y su olor antes de introducirla en la boca, aspirando al mismo tiempo una ligera cantidad de aire. Luego hará circular el líquido en la boca y lo echa en una escupidera (Chipana, 2008).

En el Perú no se puede hablar del cultivo de las hierbas aromáticas usadas para la elaboración de filtrantes, ya que algunas hierbas crecen como maleza y/o silvestre,

tal es el caso de la hierba luisa, cola de caballo y otros que abundan en los caminos y en las cercanías a los ríos (Chipana, 2008).

1.3 El té.-

Uno de los filtrantes más conocidos y difundidos es el té, el cual es una bebida de agradable sabor, cuyo consumo contribuye a un menor riesgo de enfermedades cardíacas, ya que contiene antioxidantes benéficos denominados flavonoides, que ayudan a mantener sanas las células y los tejidos.

El té no contiene calorías, pero sí varias vitaminas y minerales, incluyendo flúor, que ayuda a proteger el esmalte de los dientes de las caries y fortalece los huesos, etc. (Parra, 2007a).

La planta del té (*Camelia sinensis*) es la especie vegetal en la cual los brotes y hojas se utilizan para elaborar el té. El árbol del té es un árbol de hoja perenne que puede alcanzar, en estado silvestre, de 10 a 15 metros, sin embargo, normalmente se recorta para que no sobrepase los dos metros cuando se cultiva para extraer sus hojas para elaborar té (Parra, 2007a).

En el té se puede observar que hay una gran preocupación por el cultivo en grandes plantaciones, aunque su tamaño puede variar mucho (entre una y mil hectáreas) según pertenezcan a pequeños propietarios privados o a importantes multinacionales. Los árboles del té tienen como origen la multiplicación generadora (semillas) o el esqueje (reproducción vegetativa). El té es un cultivo perenne. Se cosecha dos o hasta tres veces al año como se indica en la Tabla 1:

Tabla 1. Épocas de cosecha del té.

Cosecha	Época		
Primera cosecha	De mediados de marzo a mediados de abril		
Cosecha del medio	De mediados de abril a mediados de mayo		
Segunda cosecha	De mediados de mayo a mediados de julio		

Fuente: Chipana, 2008.

La recolección de las hojas del té se efectúa de arriba a abajo, puesto que las hojas más altas son aquellas que contienen más teína y taninos, existiendo varios tipos de recolección tal como se describe en la Tabla 2. Además es importante el momento del día en el que se realiza la recolección. Las hojas recolectadas por la mañana presentan un contenido en polifenol superior a aquellas que se recogen por la tarde (Chipana, 2008).

Tabla 2. Tipos de recolección del té.

Tipo de recolección	Composición	Comentarios		
Imperial	Las yemas terminales (Pekoe)+1 hoja (la que sigue y comenzando siempre por la cima del arbol)	Es un método de recolección de gran calidad, de muy poca productividad y casi totalmente desaparecido hoy en día		
Fina	La yema + dos hojas	Este tipo de recolección proporciona tés de calidad muy grande. Es muy rara hoy en día ya que demanda gran cantidad de mano de obra cualificada.		
Clásica u ordinaria	La yema + tres hojas o hasta a veces cuatro	Es el procedimiento más utilizado hoy en día. Da un té de menor calidad, hecho que puede agravarse más con el empleo de máquinas.		

Fuente: Chipana, 2008.

El origen del té como infusión se remonta al año 2700 A.C. en China, cuando el Emperador Chen-Nung, ordenó hervir toda agua de consumo humano para prevenir enfermedades y, accidentalmente, cayeron hojas de té al agua. Rápidamente, esta nueva bebida agradable y refrescante descubierta, fue extendiendo su consumo a todo su pueblo (Parra, 2007a).

En China se consumía el té desde hace muchos siglos y actualmente es el país con el mayor nivel de consumo mundial y cada vez más éste se incrementa.

1.3.1 Tipos de té.-

A partir de la misma materia prima (brotes y hojas) se obtienen diversos productos finales, según método de industrialización, variedades botánicas, tecnologías de cultivo, época y tipo de cosecha. Existen más de 300 tipos de té, pero todos provienen de la misma planta, la *Camellia sinensis*, que es procesada en cuatro tipos básicos de té: Blanco, Verde, Negro y Rojo, pero actualmente existen distintos tipos de té, dentro de los cuales tenemos:

- ➤ Té blanco.- El té blanco es, en realidad, un té verde del cual sólo se recogen los brotes que surgen al principio de la primavera, momento en el cual toda la energía y nutrientes de la planta se concentran en los brotes.
- > Té verde.- Es un té sin fermentar, en el cual las hojas recolectadas se cuecen al vapor y luego son secadas con fuego, proceso que hace que sean más suaves y presenten mayor cantidad de antioxidantes.
- Té negro.- Es el té más conocido y consumido en el mundo. Se obtiene después de un proceso de oxidación, donde las hojas recién recolectadas se extienden en habitaciones húmedas para que fermenten por varias horas, adquiriendo su característico tono verde oscuro o negro. El té negro pasa por cuatro etapas: marchitamiento, enrollado, fermentación y

secado. Esta forma de elaboración lo diferencia de otros tés como el verde, el blanco o el rojo, siendo el único tipo de té que dispone de una clasificación reconocida y utilizada mundialmente. Entre las propiedades del té negro destaca su contribución a la relajación de los vasos sanguíneos, debido a su contenido de flavonoides, ayuda a la no oxidación del colesterol bueno; posee propiedades protectoras del sistema cardiovascular y previene la formación de caries por su alto contenido de flúor.

➤ Té rojo.- Es un té intermedio entre verde y negro, también conocido por la región china donde se cultiva: Pu Erh. Es un té de fermentación incompleta; con un grado de 50-60% de fermentación se denomina Té Oolong, mientras que con 8-25 % se designa Té Pouchong (Parra, 2007a).

1.3.2 Presentaciones del té.-

Los productos elaborados a partir del té son diversos y han evolucionado hacia formas más cómodas para consumirlo, siempre en función de las preferencias del consumidor. Las principales encontradas en el mercado son:

- ➤ Té en bolsitas filtrantes.- Esta presentación, inventada en el año 1940 por Thomas Sullivan ha llegado a ser la preferida en los países de Occidente, representando cerca del 86% del mercado mundial occidental total.
- > Té en hebras.- Representa aproximadamente el 10% del total del consumo mundial occidental. Es el tipo de presentación preferido en

Oriente, y por los consumidores de paladar más exigente de todas partes del mundo.

- ➤ Té instantáneo.- Esta forma de consumo cuenta con una mínima proporción del mercado mundial, y representa el 2-4% de la producción total. Se consume principalmente en Estados Unidos como polvo soluble en el agua fría, y en menor medida en el Reino Unido en forma de polvo soluble en agua caliente.
- ➤ Té frío.- El té frío nació en Estados Unidos en 1904 durante una exposición internacional realizada en Saint Louis. Constituye un mercado de 11 mil millones de litros. No obstante, existe una gran heterogeneidad entre los países consumidores. En Estados Unidos, primer mercado para el té frío, este producto representa el 80% del consumo total de té (INTA, 2002).

Investigaciones sobre patrones de consumo señalan que la penetración de los filtrantes de hierbas aromáticas en muchos hogares del mundo supera el 90%. En este sentido, algunas particularidades de su consumo indican que no predomina un momento determinado del día para su consumo: se toma por la mañana, la media mañana, de sobremesa o antes de dormir. Los consumidores aprecian el sabor, les resulta placentero tomarlo, ponderan la calidad y lo asocian, como característica positiva, con el ritual o ceremonial que genera su preparación (Vásquez, 2006). Si la utilidad de la materia prima es para elaborar filtrantes compuestos, al producto común se le agregan hierbas aromáticas deshidratadas. Algunas de estas hierbas representan importantes actividades económicas para ciertas zonas de

nuestro país. Por su parte, la mayoría de filtrantes y los tés saborizados se elaboran a partir de las hierbas aromáticas o hierbas para infusión caso de la manzanilla, coca, etc. o de los filtrantes comunes, adicionados con aceites esenciales. Los aceites se obtienen de las plantas y se emplean como saborizantes por medio de técnicas de micro encapsulado de aromas. Los más difundidos son el limón, la citronela, la menta japonesa y la manzanilla (Chipana, 2008).

Generalmente si se desea elaborar cualquier filtrante es importante tener en cuenta la época de producción de esta especie puesto que una vez cosechada la especie se hace un secado rápido, antes de que se marchiten las hojas para que se mantenga el color verde inicial. Luego se pasa a un secado más profundo; de ahí va al triturado, para como última etapa pasar al envasado y comercialización; si se utiliza este proceso se obtiene como resultado una infusión más ligera de sabor y color. Existen variantes de presentación como la despalillada (sin palillos) donde sólo se usan las hojas, tostada, las saborizadas con cítricos y otras hierbas aromáticas (Chipana, 2008).

Además existen filtrantes de plantas alternativas, que poseen beneficios para la salud y que están ingresando con fuerza al mercado, así tenemos anís, manzanilla, hierba luisa, entre otros. En este contexto, cobran mucha importancia para este rubro, las plantas aromáticas nativas de América del sur (Vásquez, 2006).

1.4 La congona.-

La congona (*Peperomia inaequalifolia*), especie de amplia distribución en nuestro país y también en Ecuador y Colombia, donde se le conoce como Canelón, es cultivada por el hombre por sus propiedades aromáticas y su utilización en la medicina tradicional (Pino, 2006).

1.4.1 Características de la congona (Peperomia inaequalifolia).-

a) Origen:

La Congona es una planta medicinal, oriunda del Perú con flores en espigas y hojas enteras con las que se prepara un excelente cocimiento, de virtudes digestivas (Pino, 2006). Esta planta crece entre los 300 a 3000 msnm. En la sierra florece de enero a mayo, en las lomas de octubre a noviembre.

El género *Peperomia* comprende unas 1000 especies, este género es nativo de América tropical y sub – tropical, gran parte de las especies son nativas de la región amazónica. Son plantas herbáceas erectas o postradas, generalmente de cultivo ornamental. Tienen hojas alternas o verticiladas, carnosas y coloreadas variadamente, frecuentemente de pecíolo largo, elípticas, aovadas o hasta en forma de corazón. Estas hojas son de lámina dorsiventral, presentan hipodermis adaxial, las células de la epidermis pluriestratificada permanecen en filas radiales. Las flores son bisexuales, con 2 estambres, 1 estigma, sin pétalos, ni sépalos, con o sin brácteas. El fruto puede o no ser carnoso; el carpelo del fruto es dehiscente, en forma de drupa o baya. Los gineceos de las flores colindantes pueden o no formar un fruto múltiple; los frutos

tienen una semilla; con escaso tejido endospérmico, y abundante perispermo. El embrión es rudimentario al tiempo de liberar la semilla. Todas las Peperomias se multiplican por esquejes, división de matas, y por medio de hojas con un pequeño trozo de pecíolo. En su cultivo, la utilización de calor de fondo, es adecuada, las perjudican los riegos con aguas salinas, soportan condiciones de luz algo bajas, estas plantas pueden ser cultivadas en maceteros, en interiores. Etimológicamente Peperomia deriva del griego peperi, que significa pimiento, y de homoios, que significa parecido a, por su semejanza al género pepper (Pino, 2006).

b) Descripción botánica

Es una hierba erguida, suculenta, mide de 40 a 50 cm de alto, olor agradable. La infusión de sus hojas se emplea como sedantes, carminativa, antiespasmódica y digestiva. Las cualidades por las cuales se le aprecia es por ser olorosa y mascada tiene un sabor picante parecido al de la nuez moscada y deja la boca olorosa por un rato.

- Tallo: Es cilíndrico, ramoso, ramas ascendentes con nudos y entrenudos manifiestos.
- Hojas: verticiladas, cortamente pecioladas, peciolos muy finos de disposición opuesta, limbo elíptico- oblongo, bordes enteros, ápice obtuso.

c) Principios activos

Tiene alcaloides, resinas, glicósidos, taninos, aceites, grasas.

d) Propiedades de la congona

➤ Medicinal: Las hojas trituradas son cicatrizantes tópicos y se usan como dentífricos y contra la gingivitis. La infusión de las hojas es tranquilizante y se usan como analgésico para la cefálea. A las hojas asadas al fuego se les extrae el contenido por presión y se aplica en gotas contra la otitis y la conjuntivitis ocular (Palacios, 1997).

e) Clasificación taxonómica

REINO

: Plantae

DIVISIÓN

: Magnoliophyta

CLASE

: Magnoliopsida

SUBCLASE

: Hamamelidae

ORDEN

: Piperales

FAMILIA

: Piperaceae

GÉNERO

: Peperomia

ESPECIE

: Peperomia inaequalifolia

f) Composición química

No existe un estudio puntual de la composición química de la Congona, pero en el género *Piper* ha sido reportada la presencia de: metabolitos del ácido mevalónico (monoterpenos y sesquiterpenos), metabolitos del ácido acético y shikimico (flavonoides) y relacionados al ácido shikimico (lignoides, arilopropanoides, amidas, etc.). Los metabolitos más frecuentemente aislados son: amidas (cinnamoilamidas y alquilamidas); aristolactamas y otros alcaloides, flavonoides (flavona,

dihidroflavonas, dihidrochalconas, y ometilflavonoides) notándose que la o-glicosilación es rara.

En *Peperomia* sp. ha sido reportada la presencia de compuestos fenólicos, tipo flavonoides; saponinas, alcaloides en menor cantidad y diversas terpenlactonas (Guillermo, 2002).

En la elaboración de filtrantes de hierbas aromáticas, existen procesos que ayudan a mejorar o intensificar las características propias de la planta, a fin de a obtener un producto con estándares de calidad y aceptables al consumidor (Prat, 2003).

La fermentación enzimática para la elaboración de filtrantes es un conjunto de cambios químicos en los constituyentes de las hojas y/o tallos, por oxidación o pardeamiento enzimático y se logra mediante la exposición al aire, por espacio de 1 a 2 horas, bajo condiciones de temperatura (25-30 °C) y humedad controladas (90 - 100%). El tiempo de oxidación permite la concentración del color, olor y sabor final del filtrante (Prat, 2003). Dentro de los compuestos que comúnmente se oxidan tenemos a los polifenoles como son: flavonoides, catequinas, xantinas, antocianinas, taninos, etc. (Parra, 2007a).

El principal aspecto de calidad que se altera en el proceso de pardeamiento enzimático es el color, pero también repercute en otros, como la modificación del sabor (caso de la oxidación de taninos disminuye el carácter astringente) (Moreno, 2011).

Para comprender el pardeamiento enzimático partiremos de la oxidación del té, donde los cambios químicos que se generan en este proceso responden a la oxidación enzimática de las catequinas o pardeamiento enzimático, de acuerdo a la Figura 1.

Figura 1. Esquema bioquímico del pardeamiento enzimático del té (Parra, 2007b).

La enzima polifenol oxidasa se encuentra presente en los cloroplastos de las hojas del té, las mismas que tienen una marcada especificidad con las catequinas, las cuales pertenecen a los polifenoles presentes en el citoplasma celular de las hojas. En la hoja intacta la enzima no está en contacto con su sustrato (catequinas); durante el proceso de oxidación se pone en contacto la enzima con su sustrato (luego del enrollado) en presencia de oxígeno, mediante la ruptura de sus membranas; de manera que los polifenoles y la enzima, pueden difundirse en el citoplasma. El resultado de esta reacción química genera teaflavinas, tearubiginas y otras sustancias altamente polimerizadas, de colores entre amarillos, rojos y cobrizos, constituyentes del aroma y sabor del té (Parra, 2007b).

En la actualidad, el proceso más utilizado, para la obtención de un filtrante a partir de hierbas aromáticas, es el que consiste en aplastar las hojas recolectadas para ablandarlas y desecarlas parcialmente, posteriormente se pasan las hojas aplastadas bajo rodillos para romper sus paredes celulares y liberar las enzimas y jugos; luego de este proceso se fermentan las hojas por exposición al aire a unos 27°C durante 2-5 horas, este tiempo relativamente corto sería insuficiente para desarrollar los cambios de color y flavor deseados si las enzimas y jugos no fueran liberados previamente de las células en la etapa de los rodillos, y finalmente se secan las hojas fermentadas a 93°C, para inactivar las enzimas y reducir la humedad de la hoja hasta un 4% (Potter y Hotchkiss, 1999). Entre los cultivos no convencionales, la congona es una planta nativa aromática que presenta cualidades organolépticas únicas para la obtención y producción de filtrantes en nuestro país, debido a su alto contenido de compuestos fenólicos, tipo flavonoides; saponinas, alcaloides en menor cantidad y diversas terpenlactonas fácilmente aprovechables. En este contexto se sitúa la presente investigación que se inclina al aprovechamiento de la flora silvestre a través de un proceso de oxidación de la congona, como fuente para la producción de filtrantes de hierbas aromáticas (Potter y Hotchkiss, 1999).

El objetivo del proceso de oxidación enzimática es lograr la mayor concentración de los compuestos fenólicos constituyentes del aroma, color y sabor de los filtrantes para la mejora de la calidad y aceptabilidad del mismo. La producción de filtrantes de hierbas aromáticas implica una serie de procesos que se pueden tomar como punto de partida a la elaboración del té filtrante.

En el presente trabajo se estudió, a nivel de laboratorio, el proceso de oxidación enzimática de la congona (*Peperomia inaequalifolia*), proveniente del distrito de Lámud, provincia de Luya, región Amazonas. Esta planta posee propiedades aromáticas y curativas excelentes para la elaboración de un filtrante; sin embargo,

éstas no se aprovechan de forma adecuada, siendo necesario darle un valor agregado en el cual conserve mejor sus cualidades; es por ello, que la presente investigación pretende evaluar la influencia del tiempo y la temperatura en el proceso de oxidación y por ende en la calidad final del filtrante de Congona.

En la primera etapa experimental se analizó el tiempo y temperatura de oxidación enzimática de la congona para lograr la mayor concentración de color, aroma y sabor. Con este aporte se pretende desarrollar una tecnología para la obtención de filtrante a partir de hierbas aromáticas nativas, que contribuya al desarrollo socioeconómico de los pobladores de la región Amazonas; por lo antes considerado se plantearon los siguientes objetivos:

Objetivos

Objetivos generales

 Determinar el efecto del tiempo y la temperatura en el proceso de elaboración de un filtrante obtenido a partir de plantas de congona (Peperomia inaequalifolia) provenientes del distrito de Lámud, provincia de Luya, región Amazonas.

Objetivos específicos

- Evaluar el tiempo y temperatura en la elaboración de un filtrante de congona (<u>Peperomia inaequalifolia</u>).
- Realizar la evaluación sensorial del filtrante de congona, para determinar el grado de aceptabilidad y calidad de la misma.

- Determinar la calidad microbiológica (recuento en placa de mohos, levaduras, mesófilos aerobios) en el producto terminado.
- Evaluar el tiempo de vida de útil acelerado (color, pH, tiempo de difusión y análisis microbiológico) y estimación de la vida útil del filtrante de congona.

II. MATERIAL Y MÉTODOS

2.1 Materiales y equipos

2.1.1 Material biológico

Se utilizó las hojas y tallos tiernos de plantas de congona (*Peperomia inaequalifolia*), procedente del distrito de Lamud, provincia de Luya, región Amazonas, los cuales fueron trasladados a los laboratorios de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas para los ensayos respectivos.

2.1.2 Equipos

- Estufa marca Nahita Drying Oven modelo 632/13.
- ➤ Cernidor marca ZONYTEST N° 30.
- > Selladora marca IMPULSE SEALER tipo PFS-400.
- > Espectrofotómetro Jenway 6405 UV/Vis.
- ➤ Potenciómetro marca HANNA Instruments, modelo HI 8424.
- ➤ Balanza digital marca DP Digital Precision, modelo ES-300A.
- ➤ Autoclave marca ALL AMERICAN modelo N° 25X.
- Cocinas eléctricas de 220 v.

2.1.3 Reactivos

- ➤ Agar plate count marca INC BIOMEDICALS Inc.
- Agar extracto de malta marca INC BIOMEDICALS Inc.
- Hipoclorito de sodio.
- > Peptona INC BIOMEDICALS Inc.
- Agua destilada.

2.1.4 Otros

- > Baldes de plástico de 4 litros.
- Rodillo de madera.
- > Papela aluminio.
- > Frasco de vidrio.
- Papel filtrante termosellable marca PGI-BONLAM ANDINA LTDA.
- > Vasos beakers de 200 y 500 mL.
- Matraz de 500 ml.
- Placas petri.
- Pipetas de 10 mL.
- Micropipetas de 01 mL.
- > Punteros de 01 mL.
- > Morteros y pilones.
- Termómetro.

2.2 Elaboración del filtrante de congona

En la Figura 2 se muestran las etapas para la elaboración del filtrante de congona; las mismas que fueron adaptadas de Parra (2007b) y que se describen a continuación:

2.2.1 Recepción de la materia prima (congona):

La materia prima proveniente del distrito de Lámud, provincia de Luya, fueron acondicionadas en cajas y colocadas en un ambiente de baja humedad y se trasladó a los laboratorios de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, para los ensayos correspondientes.

2.2.2 Selección y limpieza de la materia prima (congona)

Las hojas y tallos tiernos recolectados fueron previamente clasificados, los cuales fueron sumergidos en agua corriente para eliminar todo tipo de impurezas y/o suciedad. Posteriormente las hojas y tallos lavados se remojaron por diez minutos en una solución de hipoclorito de sodio (lejía Clorox) al 5% para evitar el crecimiento de microorganismos, luego se enjuagó con agua corriente y se dejó al aire libre durante 24 horas para eliminar por completo el agua presente en la parte externa de las hojas y tallos de la congona.

2.2.3 Marchitado:

Las hojas y tallos tiernos se colocaron en una rejilla con mallas e introducidas en la estufa marca Nahita Drying Oven modelo 632/13 por un periodo de 24 horas para reducir la humedad de las hojas de la congona entre el 55 al 58%.

2.2.4 Machacado y enrollado:

Es un proceso mecánico, que consistió en triturar con un rodillo de madera las hojas y tallos de la congona, luego fueron extendidos en papel aluminio para el enrollado respectivo.

2.2.5 Oxidación (fermentación):

El enrollado se colocó en una estufa marca Nahita Drying Oven modelo 632/13 por un espacio de 2:00, 2:30, 3:00 y 3:30 horas, a temperaturas de 30°C y 40°C; sin la presencia de luz y corriente de aire.

2.2.6 Secado final

Posterior a la oxidación; las muestras de congona se colocaron en una estufa marca Nahita Drying Oven modelo 632/13 a 60 °C por 24 horas, hasta obtener una humedad del 12%; una vez alcanzada esta humedad, se elevó la temperatura a 93 °C por una hora para la detención del proceso de oxidación y alcanzar una humedad entre el 6-9% de la muestra.

2.2.7 Molido

Finalizado el proceso de secado se procedió a moler mecánicamente las hojas y tallos secos, utilizando un mortero y pilón, removiendo constantemente al calor de dos cocinas eléctricas, con la finalidad de evitar que el producto adquiera humedad del ambiente.

2.2.8 Cernido

Las hojas y tallos de congona molidos, se colocaron en un cernidor marca ZONYTEST N° 30 de 387 micrones, zarandeando y removiendo constantemente para de esa forma uniformizar el tamaño del molido a empacar.

2.2.9 Empaque

Se pesó 1 gramo de muestra de filtrante empleando una balanza digital marca DP Digital Precision, modelo ES-300A, la cual fue empacada en papel filtrante termosellable marca PGI-BONLAM ANDINA LTDA de 15 gramos, empleando una selladora marca IMPULSE SEALER tipo PFS-400. Los filtrantes empacados fueron colocados en envases de vidrio previamente

esterilizados, sellados herméticamente, exentos de humedad y guardados en un ambiente oscuro a una temperatura de 22°C, para evitar el deterioro del mismo.

Proceso de elaboración del filtrante

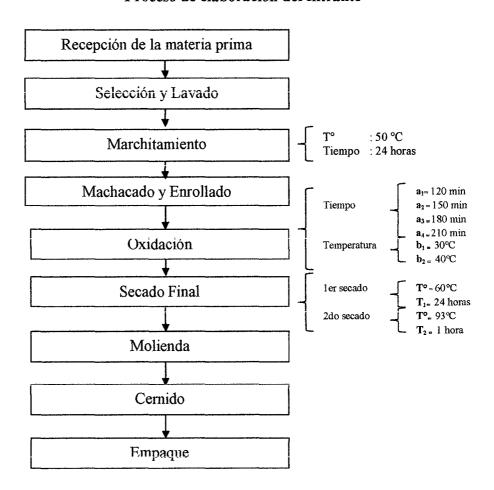


Figura 2. Diagrama de flujo del proceso para la obtención del filtrante a partir de hojas y tallos tiernos de congona (*Peperomia inaequalifolia*).

2.3 Análisis del filtrante de congona.

2.3.1 Evaluación del color del filtrante de congona.-

La evaluación del color de los filtrantes obtenidos en los tratamientos planteados se desarrolló mediante el método por espectrofotometría para la determinación del color de muestras líquidas en la que se midió la absorbancia en un espectrofotómetro Jenway 6405 UV/Vis; calibrado de 380nm a 480nm (Minolta, 1993), para ello se preparó una infusión con 1 gramo de muestra y 200mL de agua a punto de ebullición en cada uno de los tratamientos, tal como se describe en el Anexo 1.1.

2.3.2 Análisis organoléptico y/o sensorial del filtrante de congona.-

Se realizó mediante una catación, complementado con un test con escala hedónica para determinar el mejor tratamiento y la calidad en función de la aceptabilidad del mismo. En la aplicación de esta evaluación se contó con la presencia de 12 panelistas semi entrenados; los mismos que estuvieron encargados de evaluar los parámetros de color, sabor y aroma del filtrante. En el desarrollo de esta prueba se aplicó 4 encuestas las mismas que se muestra en el Anexo 3.1.

2.3.3 Análisis fisicoquímico del filtrante de congona

2.1.1.1 Pruebas indicativas de calidad

 Método Gravimétrico: Para determinar la humedad final de cada tratamiento; Método Gravimétrico (Badui, 1999) Anexo
 1.3. **Humedad** a 100-105°C: Máximo: 6,0% - 9,0% (Hierba Luisa Filtrante, 2009).

- Determinación de pH, método AOAC 981.12, (1990):
 empleando un potenciómetro marca HANNA Instruments,
 modelo HI 8424, se determinó el pH en cada filtrante de congona obtenido Anexo 1.3.
- Tiempo de difusión: se adaptó la metodología de Chipana (2008); la misma que se describe en el Anexo 1.4.

2.1.1.2 Tiempo de vida útil acelerado.

Estas pruebas se aplicaron a los mejores tratamientos con la finalidad de evaluar el tiempo de vida útil del filtrante obtenido de congona.

a) Análisis microbiológico:

- Método de recuento en placa de mohos y levaduras utilizando agar extracto de malta.
- Método de recuento en placa de mesófilos aerobios utilizando agar Plate Count.
- b) Análisis de datos para determinar el tiempo de vida útil acelerado del filtrante de congona.

Método adaptado de Einarsson (1994), donde la vida útil del filtrante obtenido de congona se determinó, sometiendo el producto final (mejores tratamientos) a una temperatura de

26°C con una humedad relativa del 56% y a temperatura de 50°C con una humedad relativa de 45%, con presencia de luz, oxígeno y utilizando un envase primario (papel filtro termosellable marca PGI-BONLAM ANDINA LTDA), durante 15 y 30 días; para después evaluar los siguientes parámetros:

- Presencia de mohos y levaduras: Análisis microbiológico (Hierba Luisa Filtrante, 2009).
- Presencia de mesófilos aerobios: Análisis microbiológico (Chipana, 2008).
- Determinación de pH, método AOAC 981.12, (1990):
 empleando un potenciómetro marca HANNA Instruments,
 modelo HI 8424, se determinó el pH en cada filtrante de congona obtenido Anexo 1.3.
- Tiempo de difusión: se adaptó la metodología de Chipana (2008); la misma que se describe en el Anexo
 1.4.
- Evaluación del color por espectrofotometría. La evaluación del color de los filtrantes obtenidos para determinar el tiempo de vida útil acelerado de los mejores tratamientos se desarrolló mediante el método por espectrofotometría para la determinación del color de muestras líquidas en la que se midió la absorbancia en un

espectrofotómetro Jenway 6405 UV/Vis; calibrado de 380nm a 480nm (Minolta, 1993), para ello se preparó una infusión con 1 gramo de muestra y 200mL de agua a punto de hervir, para cada uno de los tratamientos, tal como se describe en el Anexo 1.1.

2.4 Análisis estadístico

2.4.1 Elaboración del filtrante de congona.-

Para determinar los mejores tratamientos en el proceso de elaboración del filtrante de congona, se empleó un experimento bifactorial del tipo 4Ax2B bajo un Diseño Completamente al Azar (DCA). Los factores estuvieron constituidos por:

• Factor A: Tiempo de oxidación.

• Factor B: Temperatura de oxidación.

$$\begin{array}{c}
30 \, ^{\circ}\text{C} \\
40 \, ^{\circ}\text{C}
\end{array}$$

4 * 2 = 8 Tratamientos * 4 repeticiones.

• Variable respuesta.-

Color, humedad, tiempo de difusión y pH del filtrante obtenido de congona.

Modelo aditivo lineal.

Yijk=
$$\mu + \alpha i + \beta j + (\alpha \beta)ij + Cijk$$

Dónde:

Yijk : Color, humedad, tiempo de difusión y pH del filtrante de congona evaluado en el i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación y k – ésima repetición.

μ : Efecto de la media general.

αi :Efecto del i – ésimo tiempo de oxidación.

βj : Efecto de la j -ésima temperatura de oxidación.

(αβ)ij : Efecto de la interacción del i – ésimo tiempo de oxidación,
 j – ésima temperatura de oxidación.

Cijk : Error experimental.

• Prueba de comparaciones múltiples

Para las comparaciones múltiples se empleó la prueba de Tukey al 95% de confianza.

2.4.2 Evaluación sensorial del filtrante obtenido de congona.-

Para la evaluación sensorial se empleó un diseño de bloques completamente al azar (DBCA), con 12 panelistas semi entrenados; se evaluó las muestras de

filtrantes de congona obtenidas; con la finalidad de determinar los mejores tratamientos.

• Escala Hedónica:

Me gusta mucho = 5

Me gusta moderadamente = 4

No me gusta ni me disgusta = 3

Me disgusta moderadamente = 2

Me disgusta mucho = 1

• Modelo aditivo lineal

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

Donde:

i = del 1 al 8.

j = del 1 al 12.

Además:

Yij : Es la evaluación sensorial del filtrante de congona (color, olor y sabor) en el i-ésimo tratamiento y j-ésimo panelista.

 μ : Es el efecto de la media general.

 : Es el efecto del i-ésimo tratamiento del filtrante obtenido de congona.

 $oldsymbol{eta}_{\!\scriptscriptstyle f}$: Es el efecto del j-ésimo panelista.

 \mathcal{E}_{ij} : Es el efecto del error experimental observado en el i-ésimo tratamiento, en el j-ésimo panelista.

La hipótesis a aprobar será:

 H_0 = No existe diferencia entre los niveles de tratamiento.

 $H_a = Si$ existe diferencia significativa al 5%.

Prueba de Comparaciones Múltiples

Para las comparaciones múltiples se empleó la prueba de Tukey al 95% de confianza.

2.4.3 Evaluación de los filtrantes de congona obtenidos en comparación con un filtrante comercial.-

Para evaluar los parámetros de calidad (color, tiempo de difusión y pH) de los tratamientos en el proceso de elaboración del filtrante de congona en comparación con un filtrante comercial (mate de coca marca Herbi), se empleó un experimento factorial bajo un Diseño Completamente al Azar (DCA), con comparaciones múltiples.

• Variable Respuesta.-

Color, tiempo de difusión y pH de los filtrantes obtenidos de congona comparados con el mate de coca Herbi.

• Prueba de Comparaciones Múltiples

Para las comparaciones múltiples se empleó la prueba de Tukey al 95% de confianza.

III. RESULTADOS

3.1 Obtención del filtrante de congona

En la Tabla 3 se muestra el análisis del color, tiempo de difusión, humedad y pH del filtrante de congona. Con respecto al color se observa que empleando 210 minutos de oxidación a 30 y 40 °C se obtuvo la mayor absorbancia a 380nm en los tratamientos T7 y T8, siendo significativa la prueba; cuyo espectro se encuentra en el color verde (Anexo 1.1).

A una longitud de onda de 430nm en el espectro de color verde amarillo (Anexo 1.1) se observó una influencia marcada por la temperatura de oxidación (40°C) en los tratamientos T2, T4 y T6; mientras que en la longitud de onda a 480 nm en el espectro de color amarillo (Anexo 1.1) la mayor absorbancia se puede distinguir en el tratamiento T3 con 0,30; a pesar de que la prueba fue no significativa.

Con respecto al tiempo de difusión, se observa que en el T8 donde se empleó un mayor tiempo de oxidación (210 minutos), mayor fue el tiempo de difusión con un tiempo con 9,5 segundos (Tabla 3).

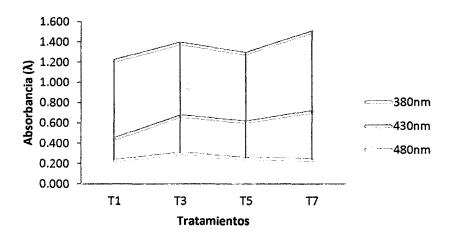
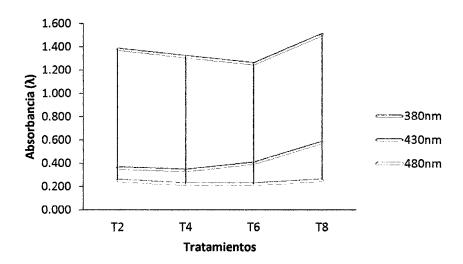
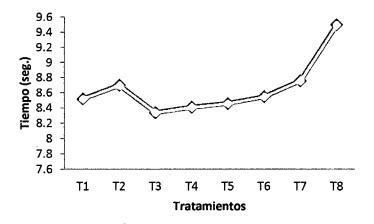

En la evaluación de la humedad de los filtrantes de congona las pruebas no fueron significativas; sin embargo, el tratamiento T2 presentó mayor porcentaje de humedad con 5,64%; finalmente al evaluar el pH, se obtuvo también pruebas no significativas en los tratamientos evaluados, registrándose el mayor valor de pH (6,57) en el tratamiento T3 (Tabla 3).

Tabla 3. Análisis del color, tiempo de difusión, humedad y pH del filtrante de congona obtenido.

Tratam.	Proces Oxidad			Color Absorbancia					Tiem Difus	-	Hume	dad	pН	
	Tiempo (min)	T (°C)	380	nm (430	nm	480 n	m	segun	dos	%			
T1	120	30	1,21	d	0,44	d	0,23	a	8,52	b	5,14	a	6,35	a
T2	120	40	1,38	b	0,36	e	0,26	a	8,7	b	5,64	a	6,45	a
Т3	150	30	1,39	b	0,67	ab	0,30	a	8,34	b	4,44	a	6,57	a
T4	150	40	1,32	bc	0,34	e	0,22	a	8,41	b	4,92	a	6,13	a
T5	180	30	1,29	cd	0,61	bc	0,25	a	8,46	b	4,95	a	6,24	a
Т6	180	40	1,26	cd	0,40	de	0,22	a	8,55	b	5,11	a	6,24	a
T 7	210	30	1,50	a	0,71	а	0,24	a	8,76	ab	3,77	a	6,44	a
T8	210	40	1,51	a	0,58	c	0,26	a	9,5	a	5,1	a	6,5	a


Fuente: Autores

En la Figura 3 se observa que los filtrantes de congona, muestran un comportamiento diferente en cada longitud de onda evaluada (absorbancia) en los tratamientos donde se empleó 30°C en el proceso de oxidación de los tallos y hojas de congona; así tenemos, que a 380nm el color absorbido tiende a aumentar del tratamiento T1 al T3, disminuyendo del tratamiento T3 al T5, y finalmente se incrementa en el tratamiento T7; cuya variación se encuentra influenciado por el tiempo de oxidación de las hojas y tallos de congona. Por otro lado, en la longitud de onda de 430nm existe un comportamiento similar del color con respecto a 380nm; finalmente en la longitud de onda de 480nm, el color absorbido se incrementa en los tratamientos T1 al T3, para disminuir en los tratamientos T5 y T7, respectivamente.


Figura 3. Comportamiento del color del filtrante de congona evaluado a las longitudes de onda de 380, 430 y 480nm.

En la Figura 4 se observa que en los filtrantes de congona obtenidos, existe un comportamiento diferente en cada longitud de onda evaluada (absorbancia) en los tratamientos donde se empleó 40°C en el proceso de oxidación del tallo y las hojas de congona; así tenemos, que a 380 nm el color absorbido tiende disminuir en los tratamientos T2, T4 y T6 y finalmente se incrementa en el tratamiento T8. Por otro lado, en la longitud de onda de 430 nm existe un aumento de las absorbancias en todos los tratamientos T2, T4, T6 y T8; mientras que en la longitud de onda de 480nm, el color se mantiene constante; esto conforme aumenta el tiempo de oxidación.

Figura 4. Comportamiento del color del filtrante de congona evaluado a las longitudes de onda de 380, 430 y 480nm.

En cuanto al tiempo de difusión no se registró significancia en los tratamientos evaluados; sin embargo, se observa un aumento del tiempo de difusión conforme se incrementa el tiempo de oxidación, donde el tratamiento T8 registró un tiempo de 9,5 segundos, tal como se muestra en la Figura 5.

Figura 5. Comportamiento del tiempo de difusión del filtrante de congona en los tratamientos evaluados.

3.2 Evaluación sensorial del filtrante de congona.

Los resultados de la evaluación sensorial (sabor, aroma y color) de los filtrantes de congona se muestran en la Tabla 4. En cuanto al sabor de los filtrantes de congona, no se obtuvo significancia en los tratamientos evaluados, sin embargo, el tratamiento T3 presentó la mayor calificación 3,54 (me gusta moderadamente); mientras que el tratamiento T8 tuvo una menor aceptación 3,10 (ni me gusta ni me disgusta).

Respecto al aroma también no se obtuvo significación en los tratamientos evaluados; sin embargo, en el tratamiento T7, se obtuvo una menor aceptación 3,67 con una calificación ni me gusta ni me disgusta, mientras que en el tratamiento T1, se obtuvo la mayor aceptación 3,9 con una calificación me gusta moderadamente (Tabla 4). Con respecto al color no se encontró significancia entre los tratamientos evaluados; siendo el tratamiento T1 quien presentó la mayor aceptabilidad (3,96) con una calificación me gusta moderadamente; mientras que la aceptabilidad más baja se encontró en el tratamiento T4 (2,80) con un calificativo ni me gusta ni me disgusta, encontrando significación estadística en este tratamiento.

Tabla 4. Análisis sensorial del sabor, aroma y color del filtrante de congona obtenido.

Tratamientos	Proceso de (Oxidación	Sabo	r	Aroma		Color	
	Tiem. Oxi. (minutos)	Temp. Oxi. (°C)	-					
T1	120	30	3,50	â	3,9	â	3,96	a
T2	120	40	3,33	a	3,77	a	3,48	a
Т3	150	30	3,54	a	3,71	a	3,81	a
T4	150	40	3,40	a	3,85	a	2,8	b
T5	180	30	3,44	a	3,85	a	3,69	a
T6	180	40	3,52	a	3,88	a	3,69	a
T7	210	30	3,33	a	3,67	a	3,73	a
Т8	210	40	3,10	a	3,81	a	3,81	a

Fuente: Autores

En la Figura 6 se observa que los resultados de color, existe un grupo conformado por los tratamientos T1, T2, T3, T5, T6, T7 y T8 con 3,96; 3,48; 3,81; 3,69; 3,69; 3,73; 3,81; respectivamente, mostrando un grado de aceptabilidad me gusta moderadamente, por otro lado presentándose una leve diferencia en el tratamiento T4 con una calificación ni me gusta ni me disgusta.

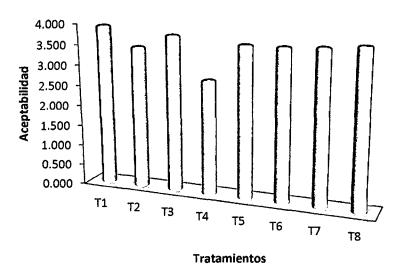


Figura 6. Evaluación sensorial del color del filtrante de congona obtenido

3.3 Comparación de los filtrantes de congona con un filtrante comercial

De las evaluaciones realizadas al filtrante de congona (color, tiempo de difusión, humedad y pH), contrastadas con la evaluación sensorial (color, aroma y olor) y al no determinarse claramente los mejores tratamientos debido a que las pruebas estadísticas fueron no significativas (Tabla 4), se comparó los resultados de los filtrantes de congona con un filtrante comercial Mate de coca marca Herbi, cuyos parámetros de color, tiempo de difusión y pH se muestran en la Tabla 5.

Tabla 5. Resultados del color, tiempo de difusión y pH, obtenidos del mate de coca filtrante.

Muestra	Color	(Absorb	ancia)	Tiempo de	pН
	380nm	430nm	480nm	difusión (seg.)	
Mate de coca	1,30	0,29	0,18	8,45	6,70

Fuente: Autores

En la Tabla 6 se muestra la evaluación del color de los filtrantes de congona comparados con el filtrante mate de coca comercial, donde se puede apreciar que en la longitud de onda de 380nm se registró diferencia del filtrante Mate de coca con los filtrantes de congona en los tratamientos T2, T3, T7 y T8, el resto de tratamientos fueron similar al filtrante comercial mate de coca. En la longitud de onda 480nm, no se obtuvo significación entre el filtrante de congona y el filtrante mate de coca. En la longitud de onda de 430nm (espectro de color amarillo verdoso) tenemos tratamientos que se acercan a los valores de absorbancia del filtrante comercial (T2, T4 y T6).

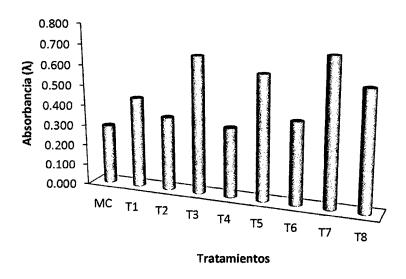

Con respecto al tiempo de difusión y pH no hubo significancia estadística en los tratamientos evaluados, registrando valores similares a los del filtrante comercial mate de coca.

Tabla 6. Análisis del color, tiempo de difusión y pH del filtrante de congona comparado con el filtrante comercial mate de coca (Herbi).

Tratamientos			Cole (Absorb				Tiempo difusić (segund	ón	pН	
•	380n	m	4301	nm	480nn	 n				
Mate de Coca	1,30	b	0,29	d	0,18	a	8,45	a	6,70	a
T1	1,21	b	0,44	c	0,23	a	8,52	a	6,35	a
T2	1,38	ab	0,36	cd	0,26	a	8,70	a	6,45	a
T3	1,39	ab	0,67	ab	0,30	a	8,34	a	6,57	a
T4	1,32	b	0,34	cd	0,22	a	8,41	a	6,13	a
T5	1,29	þ	0,61	ab	0,25	a	8,46	a	6,24	a
T6	1,26	b	0,40	cd	0,22	a	8,55	a	6,24	a
T7	1,50	a	0,71	а	0,24	a	8,76	a	6,44	a
Т8	1,51	a	0,58	b	0,26	a	9,50	a	6,50	a

Fuente: Autores

Con respecto al color, en la Figura 7 se observa que los tratamientos T2, T4 y T6 son los que se aproximan al filtrante comercial (MC: mate de coca), donde se registró un color amarillo verdoso, en la longitud de onda de 430nm.

Figura 7. Evaluación del color a la longitud de onda de 430nm entre los filtrantes de congona y el filtrante comercial mate de coca.

3.4 Recuento de mohos, levaduras y mesófilos aerobios realizadas a los mejores tratamientos.

En la Tabla 9 se muestran los valores obtenidos del recuento de mohos y levaduras de los tratamientos T2, T4 y T6, en donde se observa que existe homogeneidad de resultados en el número de microorganismos del primer recuento (5 días), donde los tratamientos evaluados presentan recuentos dentro de los rangos permisibles por la norma técnica peruana Hierba luisa filtrante (Tabla 8). Siendo el tratamiento T6 el que presenta mayor número de colonias con 10 UFC/g. En cuanto al segundo recuento realizado a los 15 días, se observa claramente que el tratamiento T4 presenta menor recuento de colonias con 4x10 UFC/g.; el cual se encuentra dentro

de los rangos permisibles por la norma técnica peruana del filtrante de Hierba Luisa (Tabla 8).

En cuanto al recuento de mesófilos aerobios, evaluados a los 15 días, el tratamiento T4 presentó un menor recuento de colonias, alcanzando valores de 10 x 10² UFC/g, la que se encuentra dentro de los rangos permisibles por la norma técnica peruana NTP 209.229.1992. del Mate de coca filtrante (Tabla 9).

En la Tabla 7 y la Tabla 8 se muestran los rangos permisibles de mohos, levaduras y mesófilos aerobios (UFC/g) en el filtrante según las normas técnicas peruanas NTP 209.229.1992 y la NTP 209.244:1986 de la Hierba luisa en bolsas filtrantes.

Tabla 7. Presencia de mohos, levaduras y mesófilos aerobios permisibles en el filtrante según la norma técnica peruana NTP 209.229.1992.

Microorganismo	Rango
Numeración de Aerobios mesófilos viables (UFC/g)	No mayor a 10^4 UFC/g
Numeración de hongos y levaduras (UFC/g)	No mayor a 10^2 UFC/g
T	3.6 . 1.63 .61

Fuente: Norma técnica peruana NTP 209.229.1992 del Mate de Coca filtrante

Tabla 8. Presencia de mohos y levaduras permisibles según la norma técnica NTP 209.244:1986 de la Hierba luisa en bolsas filtrantes Revisada el 2010.

Agente microbiano	Categoría	Clase	N	С	Límit gra	-
					m	M
Mohos	3	3	5	1	10^2	10^{3}
Enterobacteriaceas	5	3	5	2	10^2	10^3

Fuente: Hierba luisa en bolsas filtrantes, 2010

Tabla 9. Evaluación microbiológica (recuento de mohos, levaduras y mesófilos aerobios) en los tratamientos T2, T4 y T6 del filtrante de congona.

Muestra	Evaluación	Parámetros					
		Primer recuento (5 días) UFC/g	Segundo recuento (15 días) UFC/g				
T2	Recuento de mohos y levaduras	< 10	6 x 10				
	Recuento de mesófilos aerobios	< 10	78×10^2				
T4	Recuento de mohos y levaduras	< 10	4 x 10				
	Recuento de mesófilos aerobios	< 10	10×10^2				
T6	Recuento de mohos y levaduras	10	5 x 10				
	Recuento de mesófilos aerobios	< 10	$15x\ 10^2$				

Fuente: Autores

3.5 Determinación del tiempo de vida útil acelerado del filtrante de congona.

3.5.1 Determinación del color, tiempo de difusión y pH en el tiempo de vida útil acelerado del filtrante de congona empleando 26°C de temperatura y 56% de humedad relativa:

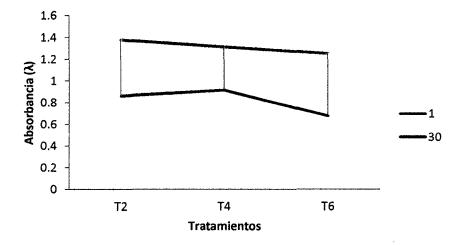
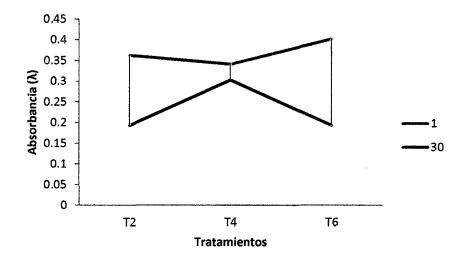
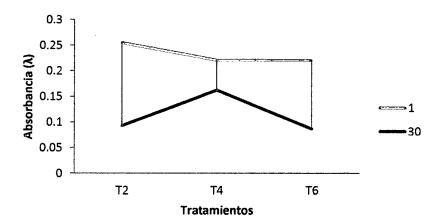

Los tratamientos T2, T4 y T6 se sometieron a temperatura de 26°C con una humedad relativa del 56% por un periodo de tiempo de 30 días, para luego realizar evaluaciones del color, tiempo de difusión y pH a los 01 días y 30 días. Donde en la Tabla 10, se observa que en todas las longitudes de onda evaluadas (380nm, 430nm y 480nm) el color presentó una variación considerable reflejado en la disminución de las absorbancias a los 30 días de evaluación; asimismo, el tiempo de difusión presentó mayor tiempo de difusión a los 30 días comparado con el filtrante evaluado a los cero días; en cuanto al pH este, incrementó sus valores a los 30 días de evaluación.

Tabla 10. Análisis del color, tiempo de difusión y pH de los filtrantes de congona sometidos a temperatura de 26°C y humedad relativa de 56%, evaluados al día 01 y 30, respectivamente.

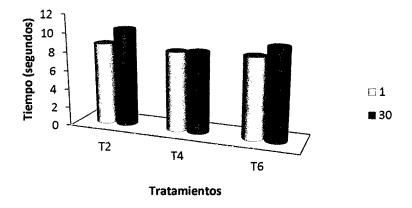
Tratamient		C	olor (ab	sorban	cia)		ipo de	pН		
os	380	380nm 430nm		480nm			ısión eg.)			
	Dí	ias	Dí	as	D	ías	D	ías	Di	ías
	01	30	01	30	01	30	01	30	01	30
T2	1,38	0,86	0,36	0,19	0,26	0,09	8,70	10,39	6,45	6,72
T4	1,32	0,92	0,34	0,30	0,22	0,16	8,41	8,54	6,13	6,54
Т6	1,26	0,68	0,40	0,19	0,22	0,09	8,55	9,62	6,24	6,40


Fuente: Autores

En la Figura 8 se observa que en el espectro de color verde, a los treinta días de evaluar los filtrantes, existe disminución considerable en el color (absorbancia); siendo el tratamiento T4 el que mantiene el color con respecto al valor inicial (1 día), a la longitud de onda de 380nm.


Figura 8. Evaluación del color de los mejores tratamientos del filtrante de congona, a la longitud de onda de 380nm, evaluados a los 01 y 30 días, sometidos a temperatura de 26°C y humedad relativa de 56%.

Al realizar la evaluación del color en el espectro verde amarillo a longitud de onda de 430nm, a los treinta días se observa una disminución en las absorbancias en los tratamientos T2 y T6, siendo el tratamiento T4 el que mantiene la característica de color inicial (1 día); tal como se muestra en la Figura 9.


Figura 9. Evaluación del color de los mejores tratamientos del filtrante de congona, a la longitud de onda de 430 nm, evaluados a los 01 y 30 días, sometidos a temperatura de 26°C y humedad relativa de 56%.

Durante el análisis del color en el espectro amarillo a longitud de onda de 430nm, el color de los filtrantes en los tratamientos T2, T4 y T6 disminuyen a los 30 días de evaluación, siendo notoria la disminución de la absorbancia en los tratamientos T2 y T6 (Figura 10).

Figura 10. Evaluación del color de los mejores tratamientos del filtrante de congona, a la longitud de onda de 480 nm, evaluados a los 01 y 30 días, sometidos 26°C de temperatura y 56% de humedad relativa.

Con respecto al tiempo de difusión el tratamiento T4 mantuvo los tiempos de difusión a los 30 días de evaluación, con un tiempo de 8,5 segundos en comparación al inicial de 8.4 segundos (Figura 11).

Figura 11. Evaluación del tiempo de difusión de los mejores tratamientos del filtrante de congona, evaluados a los 01 y 30 días, sometidos a 26°C de temperatura y 56% de humedad relativa.

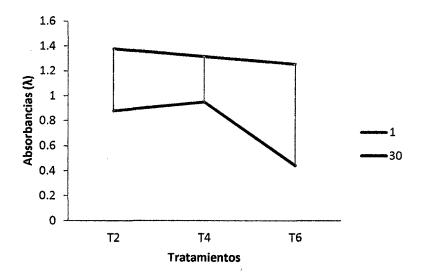
3.5.2 Recuento de mohos, levaduras y mesófilos aerobios en el tiempo de vida útil acelerado del filtrante de congona sometidos a 26°C de temperatura y 56% de humedad relativa:

Los recuentos de mohos, levaduras y mesófilos en los tratamientos evaluados (Tabla 11), estuvieron dentro de los rangos permisibles por las normas técnicas peruanas (NTP 209.229.1992 y Hierba luisa en bolsas filtrantes 209.244:1986).

Tabla 11. Evaluación microbiológica de los tratamientos T2, T4 y T6 sometidos a 26°C y 56% de humedad relativa, para determinar la presencia de mohos, levaduras y mesófilos aerobios al 01 día y a los 30 días.

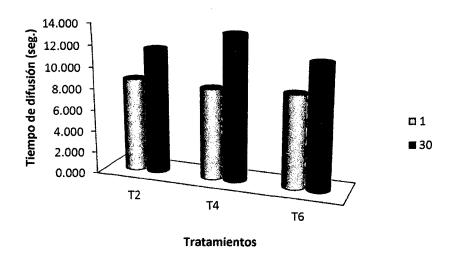
Muestra	Evaluación	Días de evaluació	n de los filtrantes
Т2	Recuento de mohos y levaduras	Primer día UFC/g < 10	Día treinta UFC/g 9 x 10
	Recuento de mesófilos aerobios	< 10	73×10^3
T 4	Recuento de mohos y levaduras	< 10	9×10^2
	Recuento de mesófilos aerobios	< 10	16×10^2
Т6	Recuento de mohos y levaduras	< 10	9×10^2
	Recuento de mesófilos aerobios	< 10	21×10^3

Fuente: Autores


3.5.3 Determinación del color, tiempo de difusión y pH en el tiempo de vida útil acelerado del filtrante de congona empleando 50°C de temperatura y 45% de humedad relativa:

En la Tabla 12 se muestra el análisis de color, tiempo de difusión y pH del tiempo de vida útil de congona empleando la temperatura de 50°C y humedad relativa de 45%, donde el color de los filtrantes de congona evaluado a los treinta días disminuye, tal es el caso que a la longitud de onda de 380nm el tratamiento T4 disminuye la absorbancia de 1,32 a 0,95; los tratamientos T2 y T6 disminuyen considerablemente sus valores de absorbancia a los 30 días de evaluación. A la longitud de onda de 430nm, el tratamiento T4 disminuye su valor de absorbancia de 0,34 a 0,21. Los tratamientos T2 y T6 disminuyen considerablemente sus valores de absorbancia en la longitud de onda de 480nm, mientras que el tratamiento T4, disminuye la absorbancia de 0,22 a 0,1. El tiempo de difusión de los tratamientos evaluados, tienden a aumentar a los 30 días de evaluación; con respecto al pH, este presenta una ligera variación en sus valores a los 30 días de evaluación.

Tabla 12. Análisis del color, tiempo de difusión y pH de los filtrantes de congona (T2, T4 y T6) sometidos 50°C de temperatura y 45% de humedad relativa, evaluados al día 01 y 30, respectivamente.


Tratamientos		Col	or (ab	sorban	cia)			ipo de	pН	
	380nm Días		430nm Días		480nm Días		– difusión (seg.) Días		Días	
	01	30	01	30	01	30	01	30	01	30
T2	1,38	0,88	0,36	0,19	0,26	0,10	8,70	11,66	6,45	6,42
T4	1,32	0,95	0,34	0,21	0,22	0,10	8,41	13,45	6,13	6,38
Тб	1,26	0,44	0,40	0,20	0,22	0,05	8,55	11,44	6,24	6,27

En la Figura 10 se observa que existe un descenso de los valores de absorbancia a 380nm en las evaluaciones de los filtrantes de congona realizados a los 30 días, siendo el tratamiento T2 y T4 los que más se aproximan a los valores iniciales (01 día).

Figura 10. Evaluación del color de los mejores tratamientos del filtrante de congona, a la longitud de onda de 380 nm, evaluados a los 01 y 30 días, sometidos 50 °C de temperatura y 45% de humedad relativa.

En la Figura 11 se muestra que los tiempos de difusión varían considerablemente en los tratamientos T2, T4 y T6, a los 30 días de evaluación, siendo el de mayor variación en el tratamiento T4.

Figura 11. Evaluación del tiempo de difusión de los mejores tratamientos del filtrante de congona, evaluados a los 01 y 30 días, sometidos a 50°C de temperatura y 45% de humedad relativa.

3.5.4 Recuento de mohos, levaduras y mesófilos aerobios en el tiempo de vida útil acelerado del filtrante de congona sometidos 50°C de temperatura y 45% de humedad relativa.

En el recuento mohos y levaduras en los tratamientos evaluados a los 30 días sometidos a 50°C y 45% de humedad relativa, se obtuvo que el tratamiento T2 se encuentra fuera de los valores permisibles por la norma técnica peruana NTP 209.229.1992; tal como se muestra en la Tabla 13. Con respecto al recuento de mesófilos aerobios en la Tabla 13, se muestra que los tratamientos T2, T4 y T6 se encuentran dentro de los rangos permisibles por la norma técnica peruana NTP 209.229.1992 (Tabla 7).

Tabla 13. Evaluación microbiológica de los mejores tratamientos sometidos a 50°C y 45% de humedad relativa, para determinar la presencia de mohos, levaduras y mesófilos aerobios al 01 día y a los 30 días.

Muestra	Evaluación	Días de evaluaci	ón de los filtrantes
		Día 1 UFC/g	Día 30 UFC/g
T2	Recuento de mohos y levaduras	< 10	7×10^2
	Recuento de mesófilos aerobios	< 10	29×10^3
T4	Recuento de mohos y levaduras	< 10	5 x 10
	Recuento de mesófilos aerobios	< 10	11×10^2
Т6	Recuento de mohos y levaduras	< 10	5 x 10
	Recuento de mesófilos aerobios	< 10	94×10^2

Fuente: Autores

3.5.5 Estimación de la vida útil acelerado del filtrante de congona a través del modelo de Arrhenius.

En la estimación del tiempo de vida útil acelerado del filtrante de congona se emplearon los recuentos de microorganismos (mohos y levaduras), considerando los rangos permisibles por la norma técnica peruana NTP 209.229.1992, de los tratamientos T2, T4 y T6 sometidos a las temperaturas de 26°C y 50°C, humedad relativa 56% y 45%, respectivamente; con presencia de luz y oxígeno, evaluados a los 5, 15 y 30 días. De los resultados obtenidos se tiene que mientras menor es el tiempo de oxidación, mayor el tiempo de vida útil, esto se puede observar en la Tabla 14, donde el tratamiento T2

presentó un tiempo de vida útil de 75 días, frente a los tratamientos T4 y T6 con 65 y 53 días, respectivamente.

Tabla 14. Datos para la estimación del tiempo de vida útil acelerado del filtrante de congona.

Tratamientos	Vida útil (días)					
	Estimado	Con Margen de seguridad				
T2	75	71 - 73				
T4	65	61 - 63				
Т6	53	49 - 51				

Fuente: Autores

IV. DISCUSIONES

Parra (2007a) explica que en la oxidación enzimática del té, la enzima polifenol oxidasa juega un rol clave; la misma está presente en los cloroplastos. Esta enzima tiene una marcada especificidad con el grupo químico funcional de las catequinas (perteneciente a los polifenoles) que se encuentra en el citoplasma celular. En la hoja intacta, la enzima polifenol oxidasa no está en contacto con su sustrato, las catequinas. El fundamento de la fermentación consiste en poner en contacto la enzima con su sustrato (luego del enrulado o enrollado) en presencia de oxígeno mediante la ruptura de las membranas, de manera que los polifenoles y la enzima polifenol oxidasa puedan difundir en el citoplasma. El resultado de esta reacción química genera teafavinas, tearubiginas y otras sustancias altamente polimerizadas, de colores entre amarillos, rojos y cobrizos, constituyentes del aroma y sabor del té; por otro lado, Guillermo (2002) menciona que en *Peperomia* sp., se ha reportado la presencia de compuestos fenólicos, lo que induce a suponer que éstos últimos serían los que se oxidan y permiten los cambios del color, sabor y aroma del filtrante de congona elaborados en la presente investigación.

Prat (2003), menciona que la fermentación enzimática para la elaboración de filtrantes, es un conjunto de cambios químicos en los constituyentes de las hojas y/o tallos, por oxidación o pardeamiento enzimático y se logra mediante la exposición al aire, bajo condiciones de temperatura (25-30 °C) y humedad controladas; lo cual se relaciona con los resultados del color evaluados a la longitud de onda de 430nm; donde se empleó la temperatura de 30°C, registrando el mejor proceso de oxidación de las hojas y tallos de congona, traducido en una mayor absorbancia en el tratamiento T7 (0,71); pero a

temperatura de 40°C en el proceso de oxidación, se obtienen filtrantes con mejores características comerciales ello se puede evidenciar al comparar el color de los filtrantes de congona con el color del filtrante mate de coca marca Herbi (Mate de coca con 0,29 y los tratamientos T2 con 0,36; T4 con 0,34 y T6 con 0.402), tal como se muestra en la Figura 7.

Chipana (2008), menciona que el color del mate de coca se encuentra en un color entre amarillo y verde, la misma que puede ser cuantificable a longitudes de onda de 380 a 480nm, tomándose como valor referencial 430nm, ya que es el punto amarillo verdoso más cercano al color final del mate de coca; longitud de onda que concuerda con los resultados mostrados en la Figura 7, en donde se observa que, el color del filtrante de congona, en la determinación de los mejores tratamientos se obtuvo que los tratamientos T2, T4 y T6, influenciados por la temperatura de 40°C en el proceso de oxidación, son los que se encuentran más cercanos al color del mate de coca filtrante, los mismos que fueron evaluados en cada una de las muestras.

Bello (2000); menciona que uno de los factores imprescindibles para que suceda el pardeamiento enzimático es la presencia de pH entre 5 – 7; a pH de 3 no existe pardeamiento enzimático; en la presente investigación se obtuvieron valores de pH entre 6,13 y 6,57 (Tabla 3) de los filtrantes de congona, encontrándose dentro del rango adecuado para que se produzca el proceso de oxidación de las hojas y tallos de congona.

Según Geankoplis (1986), menciona que los microorganismos que provocan la descomposición de los alimentos no pueden crecer y multiplicarse en ausencia de agua.

Estos microorganismos dejan de ser activos cuando el contenido de agua se reduce por debajo del 10% en peso. Sin embargo, generalmente es necesario reducir este contenido de humedad por debajo del 5% en peso, para preservar el sabor y su valor nutritivo, esto contrasta con los resultados obtenidos de la humedad final de los tratamientos evaluados, en donde el contenido de humedad se encuentra entre 3,77% y 5,64% (Tabla 3); lo que indica que al estar por debajo del 10% de humedad, la actividad microbiana es mínima, reflejándose en la presencia de mohos, levaduras y mesófilos aerobios en los tratamientos T2 y T4 (<10 UFC/g) evaluados a los 01 días; además al estar, la humedad por debajo del 5%, garantiza la conservación del sabor y su valor nutritivo.

Potter y Hotchkiss (1999) mencionan que dependiendo del producto, los alimentos se desecan normalmente hasta la humedad final entre el 1 y el 5%. Estos productos almacenados a temperatura ambiente en condiciones adecuadas son estables un año o más. De los resultados obtenidos se puede mencionar que el filtrante de congona se encuentra en el rango de humedad desecable, con una mínima de 3,77% y máxima de 5,64% en los tratamientos T7 y T2, respectivamente (Tabla 3), además mencionan que para alcanzar este rango de humedad e inactivar las enzimas, las hojas de los filtrantes oxidados deben someterse a 93°C de temperatura (humedad promedio del 4%) y garantizar la destrucción de la mayoría de bacterias (Temperaturas de destrucción entre 83°C y 93°C). Sin embargo en la estimación del tiempo de vida útil del filtrante de congona se obtuvo 75 días de vida útil en el tratamiento T2, esto debido a que el filtrante de congona fue almacenado a 26°C y 50°C, con presencia de luz y empleando un empaque primario (papel filtro termosellable).

Muñoz (1996), mencionan que todo material para envase de especias debe cumplir con tres requisitos: Máxima impermeabilidad posible a gases, luz y vapor de agua, ser resistentes frente a las posibles acciones de las especias molidas, que podrían poner en libertad algún componente del material de envase y no formar combinación con ningún componente del producto. Las hierbas son empacadas frecuentemente en sacos de polipropileno. Esto a su vez favorece la protección del producto evitando de esta manera la presencia de microorganismos que perjudiquen la vida útil, resultados que se pueden contrastar con los datos obtenidos en la evaluación microbiológica (Tabla 11 y Tabla 13), en la que todos los tratamientos presentaron un número finito de microorganismos (UFC/g) que no exceden las normas técnicas (Tabla 7 y Tabla 8). Sin embargo en la estimación del tiempo de vida útil del filtrante de congona, el tiempo máximo calculado fue de 75 días en el tratamiento T2; esto debido a que el empaque utilizado no cumplió con casi todos los requisitos antes mencionados.

En las evaluaciones microbiológicas para mohos y levaduras, en la norma técnica para el análisis y evaluación del mate (NTP 209.229.1992) y la NTP 209.244:1986 de la Hierba luisa en bolsas filtrantes (2009); los límites máximos permisibles no deben exceder el rango de 10² - 10³ de UFC/g respectivamente; resultados que concuerdan con los tratamientos T2, T4 y T6 de los filtrantes de congona obtenidos; sometidos a la temperatura de 26 °C y 56% de humedad relativa (Tabla 11) y la temperatura de 50°C y 45% de humedad relativa (Tabla 13), evaluados a los 30 días se encuentran en el rango permisible establecido por las normas antes mencionadas, además la estimación de tiempo de vida útil de filtrante de congona con respecto a la norma antes mencionadas, es de 75, 65 y 53 días para los tratamientos T2, T4 y T6,

respectivamente; esto en condiciones adecuadas y empleando un envase primario (papel filtro termosellable).

En el recuento de mesófilos aerobios, la norma técnica peruana NTP 209.229.1992 para el análisis y evaluación del mate (Chipana, 2008); menciona que el límite permisible no debe ser mayor a 10⁴ UFC/g; la misma que concuerda con el resultado obtenido en todos los tratamientos; donde presentaron menor cantidad de microorganismos mesófilos en las evaluaciones sometidas a la temperatura de 26°C - 56% de humedad relativa y 50°C - 45% de humedad relativa, a los 30 días de evaluación; tal como se muestran en la Tabla 11 y la Tabla 13, respectivamente.

Muñoz (1996) menciona, el almacenamiento de hierbas aromáticas debe hacerse en lugares limpios, frescos, sombreados y bien ventilados, con una humedad relativa del 45% y la temperatura de 22°C, preservándolas de la luz solar y del polvo y separadas de otras plantas con las que puedan intercambiar olores, esto se puede comprobar por los resultados obtenidos en la evaluación de la vida útil en donde los filtrantes de congona de los tratamientos T2, T4 y T6; que fueron sometidos a 26°C y 50°C con 56% y 45% de humedad relativa respectivamente, con presencia de luz y empleando un empaque primario obtuvieron un tiempo de vida útil estimado de 75, 65 y 53 días, respectivamente; valores que están por debajo de lo que menciona Belitz (1997), quien dice que en condiciones favorables el té dura en promedio entre 6 meses y 1 año.

Barboza (2000), menciona que la mayoría de los mohos crecen bien a las temperaturas de habitación; además su temperatura óptima oscila entre 25 a 30°C, siendo pocos los que crecen bien por encima de 35°C a 37°C; estos resultados concuerdan con los datos

obtenidos en la evaluación microbiológica (recuento de mohos y levaduras) para determinar el tiempo de vida útil acelerado; ya que al realizar las evaluaciones a los 30 días, los filtrantes de congona de los tratamientos T4 y T6 sometidos a la temperatura de 50°C (temperatura con menor probabilidad para el crecimiento de mohos), presentaron menor cantidad de microorganismos (UFC/g) en comparación con los filtrantes de congona sometidos a la temperatura de 26°C (temperatura óptima para favorecer el crecimiento de mohos) de los mismos tratamientos T4 y T6 tal como se muestra en las Tablas 11 y 13, respectivamente.

Barboza (2000), nos dice que las bacterias con una temperatura óptima entre 20-45°C son mesofílicas; esto se puede contrastar con los resultados obtenidos en el análisis para la determinación del tiempo de vida útil acelerado (recuento de mesófilos aerobios) aplicado a las muestras de filtrantes de congona sometidos a 26°C, en donde se presentaron mayor cantidad de colonias UFC/g en los tratamientos T2, T4 y T6, con respecto a los tratamientos sometidos a la temperatura de 50°C, evaluados a los 30 días; tal como se muestran en las Tablas 11 y 13, respectivamente.

Parra (2007a), menciona que la exposición a la luz disminuye y altera las características organolépticas de los filtrantes, disminuyendo su calidad; esto se puede notar en los resultados obtenidos en la evaluación del color a la longitud de onda de 430 nm de los tratamientos (T2, T4 y T6) sometidos a 50 °C y 45% de humedad relativa, en la evaluación a los 30 días de la vida útil de los filtrantes de congona; tal como se muestra en la Figura 10.

Casp y Abril (2003), explican que dentro de la escala moderada en la que se manejan los alimentos, de 10 a 38°C, para cada aumento de 10°C se duplica aproximadamente la velocidad de las reacciones químicas, incluyendo las velocidades tanto de las reacciones enzimáticas, como de las no enzimáticas. Además las modificaciones químicas producidas en los alimentos por los mohos se traducen en alteraciones del valor nutritivo o de sus características organolépticas (color, sabor, textura, etc.). Asimismo, Belitz (1997) menciona que durante el almacenamiento, el té debe estar al abrigo de la luz, calor (temperatura <30°C) y humedad (contenido en agua 3 – 5%); estos factores permiten que el té dure entre 6 meses y 1 año; en caso contrario, el color y otras características se debilitan. Esto contrasta con los resultados obtenidos en la evaluación de vida útil acelerado del filtrante de congona (Tablas 10 y 12), donde se observó una variación del color (disminución de las absorbancias) en las longitudes de onda de 380, 430 y 480nm, evaluadas a los 01 y 30 días; además al debilitarse el color (30 días), se necesita mayor tiempo de difusión para alcanzar el color inicial (01 días), tal como se muestra en las Tablas 10 y 12.

Las levaduras provocan cambios indeseables en los alimentos, estos cambios pueden manifestarse de dos formas, una puramente estética, debido a la presencia física de levaduras (turbidez o formación de una película en la superficie de los líquidos) y otra, más profunda, resultado del metabolismo de las levaduras que puede provocar aumento del pH (Casp y Abril, 2003). Este comportamiento explica el aumento del pH de los filtrantes de congona (Tratamientos T2, T4 y T6), sometidos a 26°C y 50°C respectivamente; evaluados a los 30 días (Tablas 10 y 12).

Madigan et al., (2004), menciona que la actividad de agua (Aw) mínima en que las bacterias crecen, varía ampliamente; pero los valores óptimos para la mayoría de las especies son mayores de 0,99; las levaduras comunes se desarrollan entre 0,87 - 0,90 y los mohos comunes entre 0.80 - 0.87. Asimismo, Beuchat (1981) menciona que las especias con 10% de humedad presentan una Aw de 0,5; lo que nos lleva a aseverar que el filtrante de congona obtenido (evaluado a los 01 días), no permitió el crecimiento de mohos y levaduras comunes o su crecimiento fue muy limitado tal como se muestra en la Tabla 9; sin embargo Cañizares et al., (2010) menciona que con respecto al crecimiento de mohos y hongos; en un medio perfectamente seco, no hay posibilidad de que proliferen, pero los alimentos deshidratados son muy higroscópicos y captan agua rápidamente. Para evitarlo se usan embalajes impermeables y se almacenan en seco. Esto se confirma con la presencia de mohos y levaduras en mayor cantidad (UFC/g) en los filtrantes de congona de los tratamientos T2, T4 y T6, evaluados a los 30 días (Tablas 11 y 13), debido a que se mantuvieron con el envase primario (papel filtrante termosellable), el mismo que fue susceptible de coger la humedad necesaria para facilitar el crecimiento de estos microorganismos.

V. CONCLUSIONES.

- La temperatura adecuada de oxidación para la elaboración del filtrante de Congona es de 40°C, presentando un mejor color con respecto al mate de coca filtrante comercial.
- A mayor tiempo de oxidación, existe mayor concentración del color, asimismo mejoró las características organolépticas del filtrante de congona, presentando los tratamientos T7 y T8 los más altos niveles de absorbancia (1,5 y 1,51 respectivamente).
- De la evaluación sensorial, se puede concluir que el filtrante de congona tiene una aceptabilidad relativamente alta con una calificación de me gusta moderadamente.
- Los mejores tratamientos se determinaron que son T2, T4 y T6, los que estuvieron influenciados básicamente por la temperatura de 40°C.
- El color final del filtrante es verde amarillo o amarillo verdoso y se puede evaluar mejor en la longitud de onda de 430nm, para los tratamientos T2, T4 y T6.
- La humedad final de los filtrantes de congona comparados con el filtrante mate de coca comercial, se encontró entre 4,92 % y 5,64%, en los tratamientos T4 y T2, respectivamente.
- El pH de los filtrantes de congona comparados con el filtrante mate de coca comercial, se encontró en los rangos de 6,13 y 6,45 en los tratamientos T4 y T2, respectivamente.
- El tiempo de difusión de los filtrantes de congona comparados con el filtrante mate de coca comercial, se encontró en los rangos de 8,41 y 8,7 segundos en los tratamientos T4 y T2, respectivamente.

- La presencia de mohos y levaduras de los filtrantes de congona comparados con el filtrante mate de coca comercial, no fueron significativas en los tratamientos T2, T4 y T6; ya que se encontraron por debajo de los rangos permisibles por las normas técnicas peruanas del mate de coca filtrante y Hierba luisa filtrante.
- A la temperatura de 26°C y 56% de humedad relativa se conservó mejor las características organolépticas del filtrante de congona.
- De las evaluaciones microbiológicas se concluye que el tratamiento T4, es el que presenta menor contenido microorganismos UFC/gr.
- El tiempo de vida útil estimado de los filtrantes de congona, de los tratamientos T2,
 T4 y T6 son de 75, 65 y 53 días, respectivamente.
- El filtrante de Congona no contiene conservantes ni colorantes, es 100% natural y
 de un aroma agradable. Su delicioso sabor es el resultado de cuidadosa selección y
 del procesamiento que permite mantener intactas todas sus cualidades.

VI. RECOMENDACIONES.

- Se recomienda realizar una caracterización físico química (compuestos fenólicos, flavonoides, taninos, antocianinas entre otros) de la congona (Peperomia inaequalifolia).
- Se recomienda realizar un estudio de la industrialización y optimización en la producción de filtrantes de congona.
- Para investigaciones futuras se recomienda realizar una cinética de secado para determinar el comportamiento del agua en todo el proceso de elaboración de filtrantes de congona.
- Realizar un estudio de mercado y la cadena de valor para la producción y comercialización del filtrante de congona.
- Realizar un estudio de los principios activos y efectos en la salud del filtrante de congona.

VII. REFERENCIAS BIBLIOGRÁFICAS.

- Alvarado, J. 1996. Principios de Ingeniería Aplicados a Alimentos. Editorial Radio comunicaciones. Quito - Ecuador.
- Badui, S. 1999. Química de los alimentos. 4º edición. Editorial Pearson Education.
 México.
- Barboza, J. C. 2000. Deshidratación de alimentos. Editorial Acribia S. A. Zaragoza
 España.
- Belitz, H. D. 1997. Química de los alimentos. Segunda edición. Editorial Acribia
 S.A. Zaragoza España.
- Bello, J. 2000. Ciencia Bromatológica: Principios Generales de los alimentos.
 Ediciones Díaz de Santos. Madrid España.
- Beuchat, L. R. 1981. Water Activity of Some Foods and Suceptibility to Spoilage by Microorganisms. E.E. U.U.
- Cañizares A., Bonafine O. y Laverde D. 2007. Deshidratación de productos vegetales. Centro de Investigaciones Agrícolas del Estado Monagas. Venezuela.
- Casp, A y Abril, J. 2003. Tecnología de los alimentos: Procesos de conservación de los alimentos. Segunda edición. Editorial Síntesis. Madrid – España.
- Chipana, E. J. 2008. Análisis y evaluación del Mate. Universidad Nacional Jorge
 Basadre Grohmann Facultad de Ciencias. Perú.
- Einarsson, H. 1994. Evaluation of a predictive model for the shelf life of cod (Gadus morhua) fillets stored in two different atmospheres at varying temperatures.
 Int. J. Food Microbiol., 24, 93-102.

- Geankoplis, CH. 1995. Procesos de Transporte y Operaciones Unitarias. 2da Edición.
 Editorial Continental. México.
- Guillermo, R. F. 2002. Comprobación del efecto cicatrizante de Peperomia scutellaefolia R. et P. Aspectos etnofarmacológicos, Botánicos y estudio químico.
 Tesis para optar el Título profesional de Químico Farmacéutico. UNMSM. Lima – Perú.
- Hierba Luisa Filtrante. 2009. Productos Pulverizados, Filtrantes y Polvos: Ficha de requisitos técnicos de acceso al mercado de EE.UU. Proyecto BID-ADEX -RTA. Lima - Perú.
- INTA, 2002. Té: Procesos de Elaboración. Disponible en: http://www.inta.gov.ar/cerroazul/investiga/yerba_mate/te_proc.htm. Accesado: 10/08/2011.
- Lance, A. 2006. Industria de las Bebidas, Sectores basados en recursos biológicos, enciclopedia de salud y seguridad en el trabajo. Honduras.
- Madigan M.T, Martingo J. M. y Jack Parker. 2004. Biología de los Microorganismos. Décima Edición. Editorial Brock Prentice Hall. E.E. U.U.
- Minolta, H. 2001. Principios básicos de medida y percepción de color. Editorial
 Mets. México.
- Moreno, M. 2011. Agentes y mecanismos de deterioro de los alimentos. Editorial Bogotá. Colombia.
- Muñoz, F. 1996. Plantas Medicinales y Aromáticas; estudio, cultivo y procesado. 2da
 Reimpresión. Editorial Mundi Prensa S.A. Madrid España.

- Palacios, V. 1997. Plantas Medicinales Nativas del Perú. Editorial CONCYTEC.
 Lima-Perú.
- Parra, P. A. 2007 a. Análisis de la Cadena Alimentaria/ te (Camelia sinensis)/
 Dirección de Industria Alimentaria. Buenos Aires Argentina.
- Parra, P. A. 2007 b. Área Infusiones. Proceso de elaboración de Filtrantes: Té negro, Té verde. Dirección de Industria Alimentaria. Buenos Aires – Argentina.
- Pino, G. 2006. Las especies del género peperomia de la provincia de Cajamarca.
 Revista Magistri et Doctores, Escuela de Post Grado de la UNMSM. Lima Perú.
- Potter, N. y Hotchkiss, J. 1999. Ciencia de los alimentos. Editorial Acribia S.A;
 Zaragoza España.
- Prat, S. D. 2003. Té: Procesos de Elaboración. Instituto Nacional de Tecnología Agropecuaria. Argentina.
- Vásquez, M. 2006. Guía de elaboración de té o infusiones de hierbas aromáticas o medicinales en bolsitas. Centro Internacional de Agricultura Tropical— CIAT;
 Programa Binacional de Desarrollo Fronterizo Honduras - El Salvador – PBDF,
 Tegucigalpa –Honduras.
- AOAC 981.12. 1990. Métodos Oficiales de Análisis: Potenciometría, edición 16.
- AOAC 997.02.2005. Métodos Oficiales de Análisis: Recuento de mohos y levaduras mediante método tradicional de cultivo.
- AOAC 990.12.2005. Métodos Oficiales de Análisis: Recuento de microorganismos aerobios mesófilos mediante método tradicional de cultivo.

VIII. ANEXOS

Anexo 1. Descripción de los métodos utilizados para la evaluación del filtrante de congona.

Anexo 1.1. Determinación del color de las muestras de los filtrantes de congona

La evaluación del color de los filtrantes obtenidos en los tratamientos planteados se desarrolló mediante el método por espectrofotometría para la determinación del color de muestras liquidas en la que se midió la absorbancia (λ) en un espectrofotómetro Jenway 6405 UV/Vis; calibrado a 380nm - 480nm (Minolta; 1993). Todas las disoluciones que presentan color, absorben radiación electromagnética perteneciente al espectro visible, el cual puede dividirse en varias zonas según se muestra en la tabla siguiente:

Longitudes de onda para evaluación espectrofotométrica.

Longitud de Onda, & (nm)	Color	Color Complementario
380 - 435	Violeta	Verde- amarillo
435 – 480	Azul	Amarillo
480 – 490	Azul – verdoso	Anaranjado
490 - 500	Verde – azulado	Rojo
500 – 560	Verde	Purpura
560 – 580	Verde- amarillo	Violeta
580 - 595	Amarillo	Azul
595 – 650	Anaranjado	Azul- verdoso
650 - 780	Rojo	Verde - azulado

Fuente: Minolta, 1993.

En dicha tabla, la columna del "color" indica la porción del espectro que es absorbida, mientras que la correspondiente al "color complementario" indica la porción de radiación electromagnética que no absorbe la muestra y que por tanto es

transmitida a través de ella y puede ser captada por el ojo humano (color de la disolución) (Minolta, 1993).

Descripción del método por espectrofotometría para la determinación del color de muestras líquidas; el mismo que consiste en:

- Encender el espectrofotómetro y esperar el tiempo necesario para que el equipo cargue; aproximadamente 15 minutos.
- Preparar las muestras, filtrándolas para reducir el contenido de materia en suspensión.
- Calibrar el equipo; programando la longitud de onda inicial y final antes de introducir las muestras. Las longitudes de onda programadas para realizar las lecturas fueron de 380nm – 480nm
- Antes de la primera medición se debe realizar el calibrado del equipo, colocando en una cubeta de espectrofotometría agua destilada, denominado comúnmente "blanco", en la ranura de lectura y elegir la opción de calibración con blanco.
- Realizar la lectura de la absorbancia para cada una de las muestras.

Anexo 1.2. Método Gravimétrico: Para determinar la humedad final de cada tratamiento; este método consiste en: (Hierba Luisa Filtrante, 2009).

- Preparar la muestra, reduciendo el tamaño para facilitar el secado.
- Pesar el papel aluminio (W₁).
- Colocar la muestra en el papel aluminio y pesar (W₂).
- Colocar en la estufa marca Nahita Drying Oven modelo 632/13 a 105°C.
- Controlar el peso cada 30 minutos hasta obtener peso constante (W₃).
- Calcular el porcentaje de humedad según la fórmula

% Humedad =
$$100 * \frac{W2 - W3}{W2 - W1}$$

Dónde:

 W_1 = peso del papel aluminio (g)

W₂ = peso del papel aluminio más la muestra (g)

 W_3 = peso de la muestra seca (g)

Anexo 1.3. Determinación del pH, método AOAC 981.12.- Con este método se logró determinar el pH o acidez de cada muestra evaluada; el cual consiste en:

- Realizar la calibración del pH-metro HANNA instruments, modelo HI 8424 microcomputer pH meter.
- Preparar la muestra y colocarla en un vaso de precipitación.
- Lavar el electrodo del pH- metro con agua destilada.
- Colocar el electrodo dentro de la muestra.
- Dejar que se estabilice el valor del pH en la pantalla y hacer la lectura por cada una de las muestras.

Anexo 1.4. Tiempo de difusión: El tiempo que un filtrante está en contacto con el agua es muy importante y varía dependiendo del tipo de filtrante. Debemos prestar especial atención a este apartado ya que si el filtrante está demasiado tiempo pierde sabor y aroma. El filtrante debe preparase con agua hirviendo, no caliente, ya que requiere de una alta temperatura para extraer la esencia de las hojas.

Temperaturas y tiempos de infusión recomendados.

T° del agua	Clase de té	Tiempo de difusión (min)
85°	Verde	2
95°	Negro	3-4
85°	Blanco	3
95°	Rojo (pu-ehr)	3-4
90°	Oolong	3
85°	Verde aromatizado	2
95°	Negro aromatizado	2-3
95°	Rooibos	4-5
95°	Frutas	8-10

Fuente: (http://www.tesdelmundo.com).

Esta metodología fue adaptada de Chipana, 2008; y consistió en lo siguiente:

- Hervir agua.
- Introducir la bolsita filtrante en un beaker de 200mL.
- Preparar el cronometro.
- Adicionar el agua hirviendo, al beaker hasta llenarlo totalmente.
- Hacer la lectura del tiempo hasta que el filtrante logro difundirse homogéneamente en el agua.
- Repetir todos los pasos con los demás tratamientos.

Anexo 1.5. Determinación del tiempo de vida de anaquel acelerado o vida útil acelerada.

La metodología fue adaptada de EINARSSON, 1994; y consistió en someter las muestras a temperaturas de 26 ° C y una humedad relativa de 56% y a 50°C a 45% de humedad relativa, para ello se siguieron los siguientes pasos:

- Seleccionar las muestras y realizar las correspondientes pruebas iniciales.
- Pesar las muestras.
- Acondicionar los ambientes donde se efectuará el proceso de evaluación de acuerdo a los parámetros establecidos.
- Realizar las evaluaciones según cronograma.
- Sacar las muestras, realizar evaluaciones finales y desechar.

Las evaluaciones realizadas a cada una de las muestras fueron:

- Método de recuento en placa de mohos y levaduras (Hierba Luisa Filtrante, 2009).
- Método de recuento en placa de mesófilos aerobios.
- Evaluación de la humedad.
- Determinación de pH, método AOAC 981.12.
- Evaluación del color por espectrofotometría.

Anexo 2. Del procesamiento de los datos obtenidos de las diferentes evaluaciones realizadas al filtrante de congona.

Anexo 2.1. Evaluación cuantitativa del color.

Tabla 15. Resultados obtenidos de la lectura del filtrante de Congona con el espectrofotómetro a 380nm.

Repeticiones	T1	T2	T3	T4	T5	T6	T7	Т8
L1	1.130	1.240	1.350	1.265	1.237	1.180	1.490	1.490
L2	1.167	1.393	1.373	1.293	1.263	1.258	1.490	1.507
L3	1.210	1.390	1.400	1.313	1.287	1.277	1.500	1.510
L4	1.347	1.493	1.415	1.390	1.353	1.310	1.520	1.520

Tabla 16. Resultados obtenidos de la lectura del filtrante de Congona con el espectrofotómetro a 430nm

Repeticiones	T1	T2	Т3	T4	T5	Т6	T7	T8
L1	0.373	0.307	0.600	0.277	0.610	0.320	0.700	0.560
L2	0.390	0.400	0.677	0.293	0.620	0.370	0.710	0.580
L3	0.490	0.403	0.700	0.393	0.600	0.423	0.710	0.580
L4	0.517	0.337	0.700	0.400	0.600	0.493	0.730	0.600

Tabla 17. Resultados obtenidos de la lectura del filtrante de Congona con el espectrofotómetro a 480nm

Repeticiones	T1	T2	Т3	T4	T5	Т6	T7	T8
<u>L1</u>	0.200	0.213	0.270	0.190	0.170	0.183	0.203	0.203
L2	0.218	0.220	0.295	0.207	0.207	0.193	0.215	0.237
L3	0.223	0.223	0.315	0.240	0.310	0.213	0.233	0.290
L4	0.280	0.365	0.330	0.247	0.313	0.290	0.293	0.293

Anexo 2.1.1. Evaluación cuantitativa del color del filtrante a una longitud de onda de 380nm.

Tabla 18. Evaluación Cuantitativa del color del filtrante de congona a una longitud de onda de 380nm.

Repeticiones	T1	T2	Т3	T4	T5	Т6	T 7	Т8	\sum Y
L 1	1.130	1.240	1.350	1.265	1.237	1.180	1.490	1.490	10.382
L2	1.167	1.393	1.373	1.293	1.263	1.258	1.490	1.507	10.745
L3	1.210	1.390	1.400	1.313	1.287	1.277	1.500	1.510	10.887
L4	1.347	1.493	1.415	1.390	1.353	1.310	1.520	1.520	11,348
$\sum \mathbf{X}$	4.854	5.517	5.538	5.262	5.140	5.025	6.000	6.027	43.361
\sum X	43.361				р	1,2,3,4	Tiem.	4	
∑ X2	59.172				q	1,2	T°	2	
x	1.355				r	4	Repet.	4	
TC	58.756								
SC total	0.415								
SC tratam	0.327								
SC A	0.261								
SC B	0.003								
SC (AxB)	0.063								
SC Bloques	0,060								
SC error	0.028								

Modelo aditivo lineal.

 $Yijk = \mu + \alpha i + \beta j + (\alpha \beta)ij + Cijk$

Dónde:

Yijk : Color del filtrante de congona evaluado en el i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación y k – ésima repetición.

μ : Efecto de la media general.

αi :Efecto del i – ésimo tiempo de oxidación.

βj : Efecto de la j –ésima temperatura de oxidación.

(αβ)ij: Efecto de la interacción del i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación.

Cijk: Error experimental.

Tabla 19. Análisis de la varianza

F de V	GL	SC	CM	Fcal	Ftab	Signif.
Bloques	3	0.060	0.020	9.843	3.340	*
Tratamientos	7	0.327	0.047	23.038	2.760	*
\mathbf{A}	3	0.261	0.087	42.868	3.340	*
В	1	0.003	0.003	1.368	4.600	N.S
AxB	3	0.063	0.021	10.432	3.340	*
Error	14	0.028	0.002			
Total	31					

Conclusión: A un nivel de significancia del 95%, se puede aseverar que al menos uno de los tratamientos está influenciando en la variación del color; siendo el factor tiempo el que mayor efecto tiene en el proceso de oxidación.

Coeficiente de variación:

CV = 3.323%

Tabla 20. Comparaciones múltiples - prueba de Tukey- 95%.

Tratamientos	T 1	T2	Т3	T4	T5	Т6	T7	T8
×	1.213	1.379	1.385	1.315	1.285	1.256	1.500	1.507
AES(T)= GL er	ror/n° Tr	atamiento	os			CME	0.0	01
AES(T)=	4.55					GLE	2	i
						ALS(I	0.0	84
Tratamientos	T7	T8	Т3	T2	T4	T5	Т	6 T1
. x	1.500	1.507	1.385	1.379	1.315	1.285	1.2	56 1.21
	a	a	b	b	bc	cd	C	d D

Anexo 2.1.2. Evaluación cuantitativa del color del filtrante a una longitud de onda de 430nm.

Tabla 21. Evaluación Cuantitativa del color del filtrante de congona a una longitud de onda de 430nm.

Repeticiones	T1	T2	T3	T4	T5	Т6	T 7	Т8	$\sum \mathbf{Y}$
L1	0.373	0.307	0.600	0.277	0.610	0.320	0.700	0.560	3.747
L2	0.390	0.400	0.677	0.293	0.620	0.370	0.710	0.580	4.040
L3	0.490	0.403	0.700	0.393	0.600	0.423	0.710	0.580	4.300
1.4	0.517	0.337	0.700	0.400	0.600	0.493	0.730	0.600	4.377
$\sum X$	1.770	1.447	2.677	1.363	2.430	1.607	2.850	2.320	16.463
\sum X	16.463				р	1,2,3,4	Tiem.	4	
∑ X2	9.120				q	1,2	Т°	2	
x ̇	0.514				r	4	Repet.	4	
TC	8.470								
SC total	0.650								
SC tratam	0.590								
SC A	0.241								
SC B	0.279								
SC (AxB)	0.069								
SC Bloques	0.030								
SC error	0.029								

Modelo aditivo lineal.

Yijk= $\mu + \alpha i + \beta j + (\alpha \beta)ij + \epsilon ijk$

Dónde:

Yijk : Color del filtrante de congona evaluado en el i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación y k – ésima repetición.

μ : Efecto de la media general.

αi :Efecto del i – ésimo tiempo de oxidación.

βj : Efecto de la j -ésima temperatura de oxidación.

(αβ)ij : Efecto de la interacción del i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación.

Cijk: Error experimental.

Tabla 22. Análisis de la varianza

F de V	GL	SC	CM	Fcal	Ftab	Signif.
Bloques	3	0.030	0.010	4.887	3.340	*
Tratamientos	7	0.590	0.084	40.520	2.760	*
A	3	0.241	0.080	38.696	3.340	*
В	1	0.279	0.279	134.311	4.600	*
AxB	3	0.069	0.023	11.080	3.340	*
Error	14	0.029	0.002			
Total	31					

Conclusión: A un nivel de significancia del 95%, se puede aseverar que al menos uno de los tratamientos está influenciando en la variación del color; teniendo que tanto el factor tiempo como la temperatura tienen efecto en el proceso de oxidación.

Coeficiente de variación:

Tabla 23. Comparaciones múltiples - prueba de Tukey- 95%.

Tratamiento	T1	T2	Т3	T4	T5	Т6	T7	T8	_
×	0.443	0.362	0.669	0.341	0.608	0.402	0.713	0.580)
AES(T) = GL	error/n ^c	Tratam	ientos			CMI	E C	0.002	
AES(T) =	4.55					GLE	,	21	
						ALS	(T)	0.089	
Tratamiento	T7	Т3	T5	Т8	T 1	T	4	T6	T2
×	0.713	0.669	0.608	0.580	0.443	0.34	41 (0.402	0.362
	a	ab	bc	c	d	e		de	e

Anexo 2.1.3. Evaluación cuantitativa del color del filtrante a una longitud de onda de 480nm.

Tabla 24. Evaluación Cuantitativa del color del filtrante de congona a una longitud de onda de 480nm.

Repeticiones	T1	T2	T3	T4	T5	T6	T 7	Т8	$\sum \mathbf{Y}$
L1	0.200	0.213	0.270	0.190	0.170	0.183	0.203	0.203	1.633
L2	0.218	0.220	0.295	0.207	0.207	0.193	0.215	0.237	1.792
L3	0.223	0.223	0.315	0.240	0.310	0.213	0.233	0.290	2.048
L4	0.280	0.365	0.330	0.247	0.313	0.290	0.293	0.293	2.412
∑ X	0.922	1.022	1.210	0.883	1.000	0.880	0.945	1.023	7.885
\sum X	7.885				p	1,2,3,4	Tiem.	4	
∑ X2	2.020				q	1,2	T°	2	
x	0.246				r	4	Repet.	4	
TC	1.943								
SC total	0.077								
SC tratamiento	0.020								
SC A	0.003								
SC B	0.005								
SC (AxB)	0.012								
SC Bloques	0.043								
SC error	0.014								

Modelo aditivo lineal.

Yijk= $\mu + \alpha i + \beta j + (\alpha \beta)ij + \epsilon ijk$

Dónde:

Yijk: Color del filtrante de congona evaluado en el i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación y k – ésima repetición.

μ : Efecto de la media general.

ai : Efecto del i – ésimo tiempo de oxidación.

βj : Efecto de la j -ésima temperatura de oxidación.

(αβ)ij : Efecto de la interacción del i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación.

Cijk: Error experimental.

Tabla 25. Análisis de la varianza

F de V	GL	SC	CM	Fcal	Ftab	Signif.
Bloques	3	0.043	0.014	14.484	3.340	*
Tratamientos	7	0.020	0.003	2.890	2.760	*
\mathbf{A}	3	0.003	0.001	1.004	3.340	NS
В	1	0.005	0.005	5.144	4.600	*
AxB	3	0.012	0.004	4.025	3.340	*
Error	14	0.014	0.001			
Total	31					

Conclusión: A un nivel de significancia del 95%, se puede concluir que al menos uno de los tratamientos está influenciando en la variación del color; siendo el factor temperatura el que mayor efecto tiene en el proceso de oxidación.

Coeficiente de variación:

$$CV = 12.810\%$$

Tabla 26. Comparaciones múltiples - prueba de Tukey- 95%.

Tratamiento	T1	T2	T3	T4	T5	T6	T7	T8
×	0.230	0.255	0.303	0.221	0.250	0.220	0.236	0.256
AES(T)= GL	error/n ^c	^o Tratan	iientos			CME	0.00	
AES(T)=	4.55		•			GLE	21	
						ALS(7	0.05	59
Tratamiento	T3	Т8	T2	T5	T7	T1	T 4	Т6
x ̇́	0.303	0.256	0.255		0.236	0.230	0.22	0.220
	а	b	b	0 b	b	b	1 b	b
	a		· · ·		<u> </u>	U.	U	<u> </u>

Después de realizado todas las evaluaciones se obtuvo el siguiente cuadro resumen:

Tabla 27. Resumen de evaluaciones de color.

	Proceso o	le Oxidación		Col	or(absorl	oancia)	
	Tiempo	Temperatura	380 n	m	430 n	m	480 nr	n
Tratamientos	(Minutos)	(°C)	Abs. (λ)	Abs. (λ)	Abs. (A	()
T1	120 min	30°	1.213	d	0.443	d	0.230	a
T2	120 min	40°	1.379	b	0.362	e	0.255	a
T3	150 min	30°	1.385	b	0.669	ab	0.303	a
T 4	150 min	40°	1,315	bc	0.341	ē	0,221	a
T5	180 min	30°	1.285	cd	0.608	bc	0.250	a
Т6	180 min	40°	1.256	cd	0.402	de	0.220	a
T7	210 min	30°	1.500	a	0.713	a	0.236	a
T 8	210 min	40°	1.507	a	0.580	c	0.256	a

Anexo 2.2. Evaluación cuantitativa de la humedad.

Tabla 28. Evaluación cuantitativa de la humedad.

Repeticiones	T 1	T2	Т3	T4	T5	Т6	T7	Т8	\sum Y
L1	1.786	5.405	5.357	3.636	1.754	4.386	3.636	2.632	28.59
L2	3.540	2.703	1.786	6.195	2.679	5.455	3.670	4.425	30.45
L3	8.850	8.257	5.357	5.405	8.108	4.464	1.667	7.080	49.19
L4	6.364	6.195	5.263	4.425	7.273	6.140	6.087	6.250	47.99
$\sum X$	20.54	22.56	17.76	19.66	19.81	20.45	15.06	20.39	156.23
$\sum \mathbf{X}$	156.23				р	1,2,3,4	Tiem.	4	
∑ X2	884.00				q	1,2	T°	2	
x	4.88				r	4	Repet.	4	
TC	762.72								
SC total	121.28								
SC tratamiento	8.74								
SC A	4.19								
SC B	3.05					,			
SC (AxB)	1.50								
SC Bloques	45.76								
SC error	66.78								

Modelo aditivo lineal.

Yijk=
$$\mu + \alpha i + \beta j + (\alpha \beta)ij + Cijk$$

Dónde:

Yijk

: Porcentaje de Humedad del filtrante de congona evaluado en el i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación y k – ésima repetición.

μ

: Efecto de la media general.

αi

:Efecto del i – ésimo tiempo de oxidación.

βj

: Efecto de la j -ésima temperatura de oxidación.

(αβ)ij

: Efecto de la interacción del i - ésimo tiempo de oxidación, j - ésima

temperatura de oxidación.

Eijk

: Error experimental.

Tabla 29. Análisis de la varianza.

F de V	GL	SC	CM	Fcal	Ftab	Signif.
Bloques	3	45.764	15.255	3.198	3.34	N.S
Tratam.	7	8.742	1.249	0.262	2.76	N.S
\mathbf{A}	3	4.191	1.397	0.293	3.34	N.S
В	1	3.053	3.053	0.640	4.6	N.S
AxB	3	1.498	0.499	0.105	3.34	N.S
Error	14	66.775	4.770			
Total	31					

Conclusión: A un nivel de significancia del 95%, se puede concluir que ninguno de los tratamientos está influenciando en la variación de la humedad en el proceso de oxidación.

Coeficiente de variación:

$$CV = 44.734\%$$

Anexo 2.3. Evaluación cuantitativa del pH.

Tabla 30. Evaluación cuantitativa del pH.

Repeticiones	T1	T2	Т3	T4	T5	Т6	T7	Т8	$\sum \mathbf{X}$
L1	6.63	6.24	6.5	6.17	6.26	6.53	6.96	6.92	52.210
L2	6.99	7.38	7.45	7.19	7.21	6.57	6.82	7.24	56.850
L3	5.91	5.96	6.17	5.47	5.74	5.72	6.06	5.94	46.970
L4	5.86	6.2	6.15	5.7	5.74	6.14	5.91	5.91	47.610
$\sum \mathbf{X}$	25.390	25.780	26.270	24.530	24.950	24.960	25.750	26.010	203,640
$\sum \mathbf{X}$	203.640				p	1,2,3,4	Tiem.	4	
∑ X2	1305.680				q	1,2	T°	2	
x	6.364				r	4	Repet.	4	
TC	1295.914								
SC total	9.766								
SC tratam	0.631								
SC A	0.225								
SC B	0.036								
SC (AxB)	0.369								
SC Bloques	7.923								
SC error	1.212								

Modelo aditivo lineal.

Yijk= $\mu + \alpha i + \beta j + (\alpha \beta)ij + \epsilon ijk$

Dónde:

Yijk : pH del filtrante de congona evaluado en el i – ésimo tiempo de oxidación, j

- ésima temperatura de oxidación y k - ésima repetición.

μ : Efecto de la media general.

ai :Efecto del i – ésimo tiempo de oxidación.

βj : Efecto de la j -ésima temperatura de oxidación.

(αβ)ij : Efecto de la interacción del i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación.

Eijk: Error experimental.

Tabla 31. Análisis de la varianza.

F de V	GL	SC	CM	Fcal	Ftab	Signif.
Bloques	3	7.923	2.641	30.519	3.34	*
Tratamiento	7	0.631	0.090	1.042	2.76	N.S
\mathbf{A}	3	0.225	0.075	0.868	3.34	N.S
В	1	0.036	0.036	0.421	4.6	N.S
AxB	3	0.369	0.123	1.423	3.34	N.S
Error	14	1.212	0.087			
Total	31					

Conclusión: A un nivel de significancia del 95%, se puede concluir que ninguno de los tratamientos está influenciando en la variación de la humedad en el proceso de oxidación.

Coeficiente de variación:

CV 4.623%

Anexo 2.4. Evaluación cuantitativa del tiempo de difusión.

Tabla 32. Evaluación cuantitativa del tiempo de difusión.

Repeticiones	T1	T2	Т3	T4	T5	Т6	T 7	T8	$\sum X$
L1	8.16	8.81	8.39	8.18	8.42	7.99	8.25	8.91	67.110
L2	8.2	8.5	8.35	8.15	8.1	8.4	7.5	9	66.200
L3	9.4	9.6	8.6	9.1	9	9	9.6	9.5	73.800
L4	8.3	7.9	8	8.2	8.3	8.8	9.7	10.6	69,800
$\sum X$	34.060	34.810	33.340	33.630	33.820	34.190	35.050	38.010	276.910
$\sum X$	276.910				p	1,2,3,4	Tiem.	4	
∑ X2	2409.768				q	1,2	T°	2	
x	8.653				r	4	Repet.	4	
TC	2396.223								
SC total	13.545								
SC tratamiento	3.867								
SC A	2.674								
SC B	0.597								

SC (AxB)	0.596	
SC Bloques	4.361	
SC error	5.317	

Modelo aditivo lineal.

Yijk= $\mu + \alpha i + \beta j + (\alpha \beta)ij + \epsilon ijk$

Dónde:

Yijk : Tiempo de difusión del filtrante de congona evaluado en el i – ésimo tiempo
 de oxidación, j – ésima temperatura de oxidación y k – ésima repetición.

μ : Efecto de la media general.

ai : Efecto del i – ésimo tiempo de oxidación.

βj : Efecto de la j -ésima temperatura de oxidación.

(αβ)ij : Efecto de la interacción del i – ésimo tiempo de oxidación, j – ésima temperatura de oxidación.

Eijk: Error experimental.

Tabla 33. Análisis de la varianza

F de V	GL	SC	CM	Fcal	Ftab	Signif.
Bloques	3	4.361	1.454	3.827	3.34	*
Tratamiento	7	3.867	0.552	1.455	2.76	N.S
A	3	2.674	0.891	2.347	3.34	N.S
В	1	0.597	0.597	1.571	4.6	N.S
AxB	3	0.596	0.199	0.523	3.34	N.S
Error	14	5.317	0.380			
Total	31					

Conclusión: A un nivel de significancia del 95%, se puede concluir que ninguno de los tratamientos está influenciando en la variación del tiempo de difusión en el proceso de oxidación.

Coeficiente de variación:

CV = 7.122%

Después de realizado todas las evaluaciones se obtuvo el siguiente cuadro resumen:

Tabla 34. Cuadro Resumen del color, tiempo de difusión, humedad y pH de los filtrantes obtenidos de congona.

Tratam.	Proceso Oxidac			Color			Tiempo Difusión		Humedad		pН			
	Tiempo	T°	380 1	ım	430 r	ım	480 n	m	segun	dos	%			
T1	120 min	30°	1.213	d	0.443	d	0.230	a	8.52	b	5.14	a	6.35	a
T2	120 min	40°	1.379	b	0.362	e	0.255	a	8.7	b	5.64	a	6.45	a
T3	150 min	30°	1.385	b	0.669	ab	0.303	a	8.34	b	4.44	a	6.57	a
T4	150 min	40°	1.315	bc	0.341	e	0.221	a	8.41	b	4.92	a	6.13	a
T5	180 min	30°	1.285	cd	0.608	bc	0.250	a	8.46	b	4.95	a	6.24	a
T6	180 min	40°	1.256	cd	0.402	de	0.220	a	8.55	b	5.11	a	6.24	a
T7	210 min	30°	1.500	a	0.713	a	0.236	a	8.76	ab	3.77	a	6.44	a
Т8	210 min	40°	1.507	а	0.580	c	0.256	a	9.5	a	5.1	а	6.5	а

Anexo 3. Evaluación sensorial del filtrante de congona.

Anexo 3.1. Formato test de escala hedónica para evaluar el sabor, color y aroma del filtrante de congona obtenido

Nombre:
Fecha:
Producto: Filtrante de Congona.

Por favor pruebe a cada uno de las muestras y califique usted el sabor, aroma y el color de acuerdo a la siguiente escala:

Me gusta mucho	= 5
Me gusta moderadamente	= 4
No me gusta ni me disgusta	= 3
Me disgusta moderadamente	= 2
Me disgusta mucho	= 1

Muestras	Sabor	Aroma	Color
LO			
L11			
L12			
L13			
L14			
L15			
L16			
L17			
L18			

Comentarios:	•••••	 ••••••
	••••••	 •••••
	•••••	

Anexo 3.2. Evaluación cualitativa del filtrante de congona.

Tabla 35. Resultados obtenidos del análisis sensorial del sabor.

Panelistas	T1	T2	Т3	T4	T5	Т6	T7	Т8
1	3.25	3.25	3.75	3.75	3.5	3.5	3.25	3.5
2	3.25	3.25	3.25	3	2.75	2.75	2.75	3
3	3.25	3	3.25	3.5	3.25	3.25	3.25	3.5
4	3.5	3.5	2.25	3.5	3.5	4	3	4
5	2.75	3.5	3.75	3	3.5	2.75	3.25	3.5
6	3.25	3.25	3	2.5	2.5	3.25	3	3.5
7	3.75	3.75	4.5	4.25	3.75	3.25	3.5	3.5
8	3.25	3.25	3.75	3	3.75	4	3	3.75
9	3.5	3	3.5	3.5	3.25	3.25	3.5	3.25
10	4.25	3.5	5	3.75	4.25	4.5	4.5	4.75
11	3.25	3	2.75	3.25	3.5	4	3.25	3
12	4.75	3.75	3.75	3.75	3.75	3.75	3.75	4

Tabla 36. Resultados obtenidos del análisis sensorial del aroma

Panelistas	T1	T2	Т3	T4	T5	Т6	T7	Т8
1	4.25	4.25	3.75	4	3.75	4	4.25	4.25
2	3.5	3.5	3.25	3.25	3.5	3	3	3.5
3	3.5	3.75	3.75	4	3.5	3.75	3.5	4.25
4	4	3.75	3.75	3.75	4	4	4	3.5
5	3.75	3.75	3.5	3.5	3.75	4	3.75	3.75
6	3.75	3.75	3.75	3.5	3.25	4	3.25	3.75
7	3.75	3.75	3.75	4	4	3.5	4.5	4
8	4.5	3.5	3.5	3.75	4.25	4	3.75	3.75
9	3.25	3	3	3.25	3.25	3	2.75	3.25
10	4.5	4.75	5	5	4.75	5	4.25	4.5
11	3.75	3.5	3.5	3.75	4	4	3.5	3.25
12	4.25	4	4	4.5	4.25	4.25	3.5	4

Tabla 37. Resultados obtenidos del análisis sensorial del color

Panelistas	T1	T2	Т3	T4	T5	Т6	T7	Т8
1	4.5	4.25	4.25	2.8	3.75	4	4.25	4.75
2	4	4	3.25	2.2	3.25	2.5	3	3.75
3	4	3.25	3	2.6	3.5	4	3.75	4.25
4	3.25	3.75	4.25	3.2	3	3.75	3.75	4.25
5	4	3	3.5.	2.8	3.5	3.5	3.5	3.5
6	4.25	3.25	3.5	2.4	3.5	4	3.75	4.25
7	4.25	3.5	4	3.4	3.75	4	4.5	3.25
8	3.75	3	4	2.6	4	3.25	3.25	2.75
9	4	3.25	3.5	2.8	3.5	3.75	3.75	3.75
10	3.75	3.75	4.75	3.4	4.5	4	4	4.25
11	3.5	3.75	3.75	3	4	3.5	3.75	3.25
12	4.25	3	4	2.4	4	4	3.5	3.75

Anexo 3.3. Evaluación sensorial del sabor.

Tabla 38. Evaluación sensorial del sabor.

Panelistas	T1	T2	Т3	T4	T5	Т6	Т7	Т8	∑ y 1
1	3.25	3.25	3.75	3.75	3.5	3.5	3.25	3.5	27.75
2	3.25	3.25	3.25	3	2.75	2.75	2.75	3	24
3	3.25	3	3.25	3.5	3.25	3.25	3.25	3.5	26.25
4	3.5	3.5	2.25	3.5	3.5	4	3	4	27.25
5	2.75	3.5	3.75	3	3.5	2.75	3.25	3.5	26
6	3.25	3.25	3	2.5	2.5	3.25	3	3.5	24.25
7	3.75	3.75	4.5	4.25	3.75	3.25	3.5	3.5	30.25
8	3.25	3.25	3.75	3	3.75	4	3	3.75	27.75
9	3.5	3	3.5	3.5	3.25	3.25	3.5	3.25	26.75
10	4.25	3.5	5	3.75	4.25	4.5	4.5	4.75	34.5
11	3.25	3	2.75	3.25	3.5	4	3.25	3	26
12	4.75	3.75	3.75	3.75	3.75	3.75	3.75	4	31.25
∑ X 1	42	40	42.5	40.75	41.25	42.25	40	43.25	332
\sum cuadrados	150.13	134.13	156.50	140.81	144.19	151.94	135.63	158.44	1171.75
promedio	3.50	3.33	3.54	3.40	3.44	3.52	3.33	3.60	27.667
(∑X1)cuadrado	1764.0	1600.0	1806.3	1660.6	1701.6	1785.1	1600.0	1870.6	13788
Media general	3.458								
Te	1148.17				Tratam.	8			
SC Total	23.583				Bloques	12			
SC Bloque	12.490								

SC	0.833	
Tratamiento		
SC Error	10.260	

Modelo aditivo lineal

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

Donde:

i = del 1 al 8.

j = del 1 al 12.

Además:

Yij : Es la evaluación sensorial del sabor del filtrante de congona en el i-ésimo tratamiento y j-ésimo panelista.

 μ : Es el efecto de la media general.

 \mathcal{T}_i : Es el efecto del i-ésimo tratamiento del filtrante obtenido de congona.

 β_j : Es el efecto del j-ésimo panelista.

 \mathcal{E}_{ij} : Es el efecto del error experimental observado en el i-ésimo tratamiento, en el j-ésimo panelista.

Tabla 39. Análisis de la varianza

	GL	SC	CM	Fcal	Ftab	Significancia
Tratamiento	7	0.833	0.119	0.893	2.13	NS
Bloque	11	12.490	1.135	8.521	1.92	*
Error	77	10.260	0.133			
Total	95					

Conclusión: A un nivel de significancia del 95%, se puede concluir que no existen diferencias significativas entre los tratamientos; pero al menos un panelista ha podido percibir alguna diferencia en el sabor.

Coeficiente de variación:

$$CV = 10.555\%$$

Tabla 40. Comparaciones múltiples - prueba de Tukey al 95% de confianza.

Tratamientos	T1	T2	Т3	T4	T5	Т6	T7	T8
Ż.	3.500	3.333	3.542	3.396	3.438	3.521	3.33	3.604
AES(T)= GL	error/nº [Tratamie	entos		CME	0.133		
AES(T)=	4.42				GLE	77		
					ALS(T	0.806	•	
Tratam	T8	Т3	T 6	T 1	T5	T4	T7	T2
×	3.604	3.542	3.521	3.500	3.438	3.396	3.333	3.333
	a	a	а	a	a	a	а	a

Anexo 3.4. Evaluación sensorial del aroma.

Tabla 41. Evaluación sensorial del aroma.

PANELISTAS	T1	T2	Т3	T4	T5	T6	T 7	Т8	∑ y 1
1	4.25	4.25	3.75	4	3.75	4	4.25	4.25	32.5
2	3.5	3.5	3.25	3.25	3.5	3	3	3.5	26.5
3	3.5	3.75	3.75	4	3.5	3.75	3.5	4.25	30
4	4	3.75	3.75	3.75	4	4	4	3.5	30.75
5	3.75	3.75	3.5	3.5	3.75	4	3.75	3.75	29.75
6	3.75	3.75	3.75	3.5	3.25	4	3.25	3.75	29
7	3.75	3.75	3.75	4	4	3.5	4.5	4	31.25
8	4.5	3.5	3.5	3.75	4.25	4	3.75	3.75	31
9	3.25	3	3	3.25	3.25	3	2.75	3.25	24.75
10	4.5	4.75	5	5	4.75	5	4.25	4.5	37.75
11	3.75	3.5	3.5	3.75	4	4	3.5	3.25	29.25
12	4.25	4	4	4.5	4.25	4.25	3.5	4	32.75
∑ X 1	46.75	45.25	44.5	46.25	46.25	46.5	44	45.75	365.25
\sum cuadrados	183.94	172.69	167.63	181.06	180.44	183.38	164.38	176.19	1409.69

Promedio	3.90	3.77	3.71	3.85	3.85	3.88	3.67	3.81	30.44
(∑X1)cuadrado	2185.56	2047.56	1980.25	2139.06	2139.06	2162.25	1936.00	2093.06	16682.8
Media general	3.80								
Tc	1389.66				Trat.	8			
SC Total	20.03				Bloq.	12			
SC Bloque	14.52								
SC	0.57								
Tratamiento SC Error	4,94								

Modelo aditivo lineal

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

Donde:

 Yij : Es la evaluación sensorial del aroma del filtrante de congona en el iésimo tratamiento y j-ésimo panelista.

 μ : Es el efecto de la media general.

 τ_i : Es el efecto del i-ésimo tratamiento del filtrante obtenido de congona.

 $oldsymbol{eta}_{j}$: Es el efecto del j-ésimo panelista.

 \mathcal{E}_{ij} : Es el efecto del error experimental observado en el i-ésimo tratamiento, en el j-ésimo panelista.

Tabla 42. Análisis de la varianza

	GL	SC	CM	Fcal	Ftab	Significancia
Tratamiento	7	0.57	0.08	1.28	2.13	NS
Bloque	11	14.52	1.32	20.59	1.92	*
Error	77	4.94	0.06			
Total	95	_				

Conclusión: A un nivel de significancia del 95%, se puede concluir que no existen diferencias significativas entre los tratamientos; pero al menos un panelista ha podido percibir alguna diferencia en el aroma.

Coeficiente de variación:

CV = 6.654%

Tabla 43. Comparaciones múltiples - prueba de Tukey al 95%. de confianza

Tratamientos	T1	T2	Т3	T4	Т5	Т6	T7	Т8
×	3.896	3.771	3.708	3.854	3.854	3.875	3.67	3.813
AES(T)= GL	error/n°	Tratamic	entos		CME	0.064		
AES(T)=	4.42				GLE	77		
					ALS(T)	0.559		
Tratam	T 1	Т6	T4	T5	Т8	T2	Т3	T7
×	3.896	3.875	3.854	3.854	3.813	3.771	3.708	3.667
	a	a	a	a	a	а	a	a

Anexo 3.5. Evaluación sensorial del color.

Tabla 44. Evaluación sensorial del color

Panelistas	T 1	T2	Т3	T4	T5	Т6	T7	Т8	∑ y 1
1	4.5	4.25	4.25	2.8	3.75	4	4.25	4.75	32.55
2	4	4	3.25	2.2	3.25	2.5	3	3.75	25.95
3	4	3.25	3	2.6	3.5	4	3.75	4.25	28.35
4	3.25	3.75	4.25	3.2	3	3.75	3.75	4.25	29.2
5	4	3	3.5	2.8	3.5	3.5	3.5	3.5	27.3
6	4.25	3.25	3.5	2.4	3.5	4	3.75	4.25	28.9
7	4.25	3.5	4	3.4	3.75	4	4.5	3.25	30.65
8	3.75	3	4	2.6	4	3.25	3.25	2.75	26.6
9	4	3.25	3.5	2.8	3.5	3.75	3.75	3.75	28.3
10	3.75	3.75	4.75	3.4	4.5	4	4	4.25	32.4
11	3 5	3.75	3.75	3	4	3.5	3.75	3.25	28.5
12	4.25	3	4	2.4	4	4	3.5	3.75	28.9
∑ X1	47.50	41.75	45.75	33.60	44.25	44.25	44.75	45.75	347.60
∑ cuadrados	189.38	147.19	177.06	95.76	164.94	165.44	168.69	177.94	1286.39

Promedio	3.96	3.48	3.81	2.80	3.69	3.69	3.73	3.81	28.97
(∑X1)cuadrado	2256.3	1743.1	2093.1	1128.9	1958.1	1958.1	2002.6	2093.1	15233.1
Media general	3.62								
Тс	1258.60				Trat.	8			
SC Total	27.78				Bloq.	12			
SC Bloque	5.76								
SC	10.82								
Tratamiento									
SC Error	11.21								

Modelo aditivo lineal

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

Donde:

Yij : Es la evaluación sensorial del color del filtrante de congona en el i-ésimo tratamiento y j-ésimo panelista.

 μ : Es el efecto de la media general.

 au_i : Es el efecto del i-ésimo tratamiento del filtrante obtenido de congona.

 $oldsymbol{eta}_{j}$: Es el efecto del j-ésimo panelista.

 \mathcal{E}_{ij} : Es el efecto del error experimental observado en el i-ésimo tratamiento, en el j-ésimo panelista.

Tabla 45. Análisis de la varianza.

	GL	SC	CM	Fcal	Ftab	Significancia
Tratamiento	7	10.82	1.55	10.62	2.13	*
Bloque	11	5.76	0.52	3.60	1.92	*
Error	77	11.21	0.15			
Total	95					

Conclusión: A un nivel de significancia del 95%, se puede concluir que si existen diferencias significativas entre los tratamientos; esto debido a que alguno de ellos ha sido preferida por un panelista.

Coeficiente de variación:

CV = 10.536%

Tabla 46. Comparaciones múltiples - prueba de tuckey al 95% de confianza.

Tratamientos	T1	T2	Т3	T4	T5	Т6	T7	Т8
×	3.958	3.479	3.813	2.800	3.688	3.688	3.73	3.813
AES(T)= GL e	error/n°	Tratam	ientos		CME	0.146		
AES(T)=	4.42				GLE	77		
					ALS(T)	0.843		
Tratamientos	T 1	Т3	T8	T7	T5	Т6	T2	T4
×	3.958	3.813	3.813	3.729	3.688	3.688	3.479	2.800
	а	a	a	a	a	а	ab	b

De las evaluaciones realizadas se obtuvo la siguiente tabla resumen:

Tabla 47. Resumen de la evaluación sensorial.

Tratamientos	Proceso de	Oxidación	SABO	R	ARON	ΙΑ	COLO	R
	Tiem. Oxi.	T°. Oxi.	-					
T1	120 min	30°	3.500	a	3.896	a	3.958	a
T2	120 min	40°	3,330	a	3.771	a	3.479	a
Т3	150 min	30°	3.540	a	3.708	a	3.813	a
T4	150 min	40°	3.400	a	3.854	a	2.800	b
T5	180 min	30°	3.440	a	3.854	a	3.688	a
T6	180 min	40°	3.520	a	3.875	a	3.688	a
T7	210 min	30°	3.330	a	3.667	a	3.729	a
T8	210 min	40°	3.100	3	3.813	a	3.813	2

Anexo 4. Determinación de los mejores tratamientos.

Para la determinación de los mejores tratamientos, se utilizó un diseño completamente al azar comparando los parámetros de los tratamientos con las de un filtrante comercial (Mate de coca filtrante); así tenemos:

Anexo 4.1. Determinación de los mejores tratamientos en función del color.

Anexo 4.1.1. Utilizando la longitud de onda de 380 nm.

Tabla 48. Evaluación cuantitativa del color en comparación con una muestra comercial, a 380 nm.

Bloques	MC	T1	T2	Т3	T4	T5	Т6	T7	Т8	<u>ΣΥ1</u>
1	1.31	1.13	1.24	1.35	1.27	1.24	1.18	1.49	1.49	11.69
2	1.3	1.17	1.39	1.37	1.29	1.26	1.26	1.49	1.51	12.04
3	1.3	1.21	1.39	1.40	1.31	1.29	1.28	1.50	1.51	12.19
4	1.31	1.35	1.49	1.42	1.39	1.35	1.31	1.52	1.52	12.66
∑ X 1	5.22	4.85	5.52	5.54	5.26	5.14	5.02	6.00	6.03	48.58
\sum cuadrados	65.97									
Suma total	48.58							Trat.	9	
Media general	1.35							Rep.	4	
Тс	65.55									
SC Total	0.42									
SC Tratamiento	0.34									
SC Error	0.09									

Tabla 49. Análisis de la varianza

-	GL	SC	CM	Fcal	Ftab	Signif.
Tratamiento	8	0.336	0.042	12.851	2.31	*
Error	27	0.088	0.003			
TOTAL	35	0.42				

Conclusión: A un nivel de significancia del 95%, se puede concluir que sí existen diferencias significativas entre los tratamientos.

Coeficiente de variación:

CV = 4.239%

Tabla 50. Comparaciones múltiples - prueba de Tukey al 95% de confianza

Tratam	MC	T1	T2	T.	3 T	`4	T5	T 6	T7	Т8
×	1.304	1.213	1.37	9 1.3	85 1.3	15	1.285	1.256	1.500	1.507
AES(T)= (GL erroi	r/nº Tra	tamient	os			CM	E	0.003	
AES(T)=	4.765						GL	E	27	
` ,							ALS	S(T)	0.136	
Tratam	T8	T7	Т3	T2	T 4	MC	T	` 5	T6	T 1
х	1.507	1.500	1.385	1.379	1.315	1.304	1.2	285	1.256	1.213
			NS	NS	NS	NS	N	IS	NS	NS

Conclusión: A un nivel de significancia del 95%, se puede concluir que los tratamientos T3, T2, T4, T5, T6 y T1, son los que se encuentran más cercanos al filtrante comercial.

Anexo 4.1.2. Determinación de los mejores tratamientos en función del color a 430 nm.

Tabla 51. Evaluación cuantitativa del color en comparación con una muestra comercial, a 430 nm.

Bloques	MC	T1	T2	T3	T4	T5	T6	T7	T8	∑ Y 1
1	0.29	0.37	0.31	0.60	0.28	0.61	0.32	0.71	0.56	4.04
2	0.29	0.39	0.40	0.68	0.29	0.62	0.37	0.73	0.58	4.35
3	0.29	0.49	0.40	0.70	0.39	0.60	0.42	0.70	0.58	4.58
4	0.3	0.52	0.34	0.70	0.40	0.60	0.49	0.71	0.60	4.66
∑ X 1	1.17	1.77	1.45	2.68	1.36	2.43	1.61	2.85	2.32	17.63
∑ cuadrados	9.46									
Suma total	17.63							Trat.	9	
Media general	0.49							Rep.	4	
Тс	8.63									

SC Total	0.83	
SC Tratamiento	0.77	
SC Error	0.06	

Tabla 52. Análisis de la varianza.

	GL	SC	CM	Fcal	Ftab	Signif.
Tratamiento	8	0.767	0.096	43.319	2.31	*
Error	27	0.060	0.002			
TOTAL	35	0.83				

Conclusión: A un nivel de significancia del 95%, se puede concluir que sí existen diferencias significativas entre los tratamientos.

Coeficiente de variación:

$$CV = 9.603\%$$

Tabla 53. Comparaciones multiples - prueba de Tukey al 95% de confianza.

Tratam	MC	T1	T2	Т3	Т4	T:	T6	T7	Т8
×	0.292	0.443	0.362	2 0.66	9 0.34	1 0.60	08 0.402	0.713	0.580
AES(T)= 0	GL erro	r/n° Tra	atamien	tos			CME	0.002	
AES(T)=	4.76						GLE	27	
					1		ALS(T)	0.112	
Tratam	T7	T3	T5	T8	T1	T 6	T2	T4	MC
×	0.71	0.669	0.608	0.580	0.443	0.402	0.362	0.341	0.292
	3					NS	NS	NS	NS

Conclusión: A un nivel de significancia del 95%, se puede concluir que el tratamiento T6, T2 y T4, son los que se encuentran más cercanos al filtrante comercial.

Anexo 4.1.3. Determinación de los mejores tratamientos en función del color a 480 nm.

Tabla 54. Evaluación cuantitativa del color en comparación con una muestra comercial, a 480 nm.

BLOQUES	MC	T1	T2	Т3	T4	T5	Т6	T7	Т8	∑ Y1
1	0.18	0.20	0.21	0.27	0.19	0.17	0.18	0.20	0.20	1.81
2	0.18	0.22	0.22	0.30	0.21	0.21	0.19	0.22	0.24	1.97
3	0.19	0.22	0.22	0.32	0.24	0.31	0.21	0.23	0.29	2.24
4	0.18	0.28	0.37	0.33	0.25	0.31	0.29	0.29	0.29	2.59
$\sum X1$	0.73	0.92	1.02	1.21	0.88	1.00	0.88	0.95	1.02	8.61
\sum cuadrados	2.15									
Suma total	8.61							Trat.	9	
Media general	0.24							Rep.	4	
Tc	2.06									
SC Total	0.09									
SC	0.04									
Tratamiento										
SC Error	0.06									

Tabla 55. Análisis de la varianza.

	GL	SC	CM	Fcal	Ftab	Signif.
Tratamiento	8	0.035	0.004	2.074	2.31	NS
Error	27	0.057	0.002			
TOTAL	35	0.09				

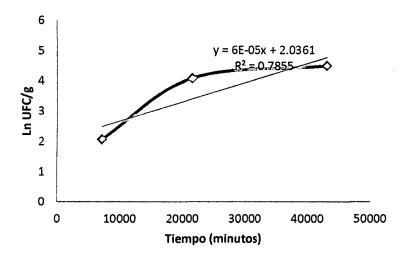
Conclusión: A un nivel de significancia del 95%, se puede concluir que no existen diferencias significativas entre los tratamientos.

Coeficiente de variación:

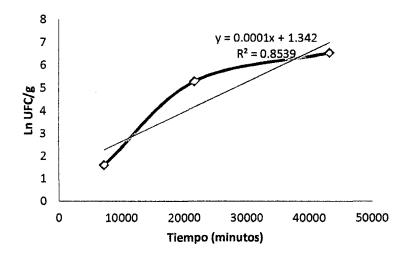
Conclusión: De las evaluaciones realizadas se obtuvo que los mejores tratamientos fueran T4, T2 y T6, ya que no presentaron significancia con el

filtrante comercial y además se repiten en las tres longitudes de ondas evaluadas.

Anexo 5. Estimación de la vida útil acelerado de los filtrantes de congona


Para el cálculo de la vida útil se empleó el modelo predictivo con aproximación de Arrhenius.

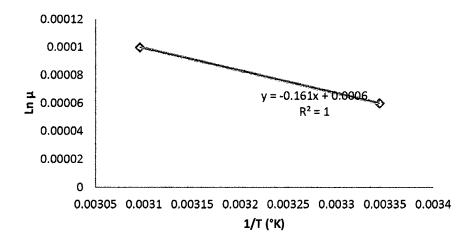
Anexo 5.1. Estimación de la vida útil acelerado del tratamiento T2, utilizando el recuento de mohos y levaduras (UFC/g).


Tabla 56. Datos iniciales para la estimación de la velocidad de crecimiento específica.

	· · · · · · · · · · · · · · · · · · ·	T2		
Mol	hos y levadu	ıras	26°C	50°C
Tiempo	Тетре	raturas	Ln UFC/g	Ln UFC/g
(min)	26	50		
	UFC/g	UFC/g		
7200	8	5	2.07944154	1.60943791
21600	60	200	4.09434456	5.29831737
43200	90	700	4.49980967	6.55108034

El primer paso una vez obtenida la población en unidades logarítmicas (ln UFC/g) es calcular la velocidad de crecimiento específica (μ) para cada temperatura. Esta puede obtenerse de diversas maneras, una es graficando en las ordenadas el Ln UFC/g en fase exponencial y en las abscisas el tiempo (min), y a partir de esta gráfica obtener la ecuación de la recta en cuyo caso la pendiente es igual a la velocidad de crecimiento específica (UFC/g*min).

Figura 12 Logaritmo natural de las unidades formadoras de colonias por gramo vs el tiempo a la temperatura de 26°C.


Figura 13 Logaritmo natural de las unidades formadoras de colonias por gramo vs el tiempo a la temperatura de 50°C.

De las figuras 12 y 13 se obtienen los siguientes resultados:

Tabla 57. Resultados de la velocidad de crecimiento específica (μ) y la inversa de la temperatura (°K).

Parámetros	299 °K	323°K
μ (Ln UFC/g*min)	0.00006	0.00010
1/T (°K)	0.00334	0.00310

Con los resultados de μ para cada temperatura procedemos a calcular las constantes del modelo de Arrhenius: energía de activación (Ea) y el Factor pre-exponencial A. Para este caso graficaremos en las ordenadas el Lnμ a cada temperatura y en las abscisas el inverso de cada temperatura absoluta (1/T).

Figura 14. Logaritmo natural de la velocidad de crecimiento específica vs la inversa de la temperatura absoluta.

De la figura 14 se obtienen los siguientes resultados:

Donde:

Ea : Energía de activación.

R : Constante universal de los gases ideales.

LnA: Factor pre – exponencial.

Una vez obtenidos los parámetros se procedió a calcular μ a 22°C (295°K) reemplazando en la ecuación de Arrhenius.

$$\operatorname{Ln}\mu = \operatorname{Ln}A - (Ea/R*T)$$

$$Ln\mu = 0.0006 - (1.34/8.31*295)$$

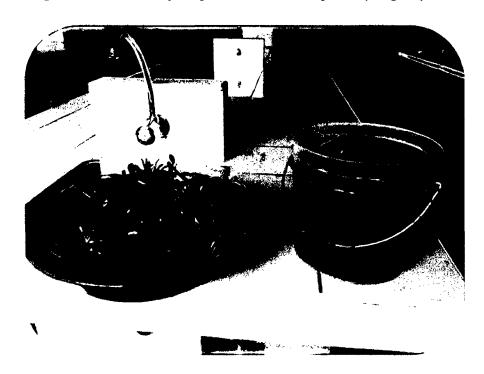
$$Ln\mu = 0.00006 Ln UFC/g*min.$$

Luego, la norma técnica peruana establece que la presencia de mohos y levaduras debe estar en un rango no mayor a 10^3 UFC/g (Ln 1000 = 6,91), esto se contrasta con lo obtenido de la siguiente manera:

X min
$$\longrightarrow$$
 6,91Ln UFC/g

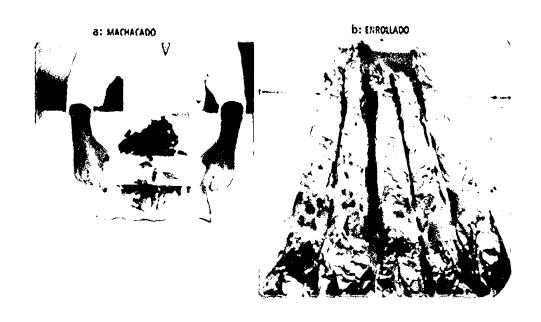
X = 107534,98 min.

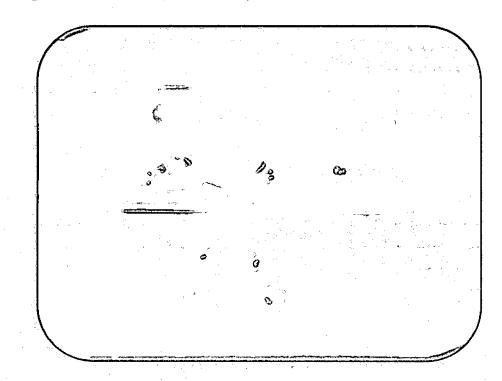
$$X = 74,68 \text{ días}.$$

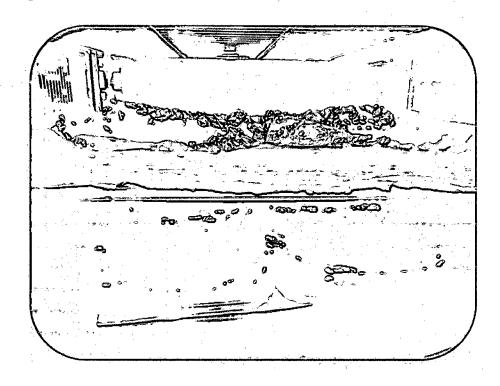

De la misma forma se trabajó para los tratamientos T4 y T6. Obteniéndose un cuadro resumen que se muestra en la Tabla 14.

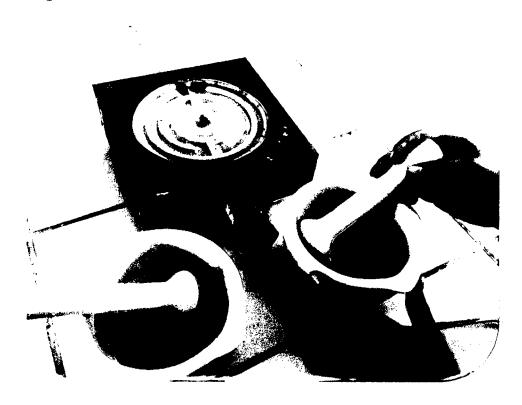
Anexo 6. Fotos durante el proceso de elaboración del filtrante obtenido de congona.

Fotografía 1. Recepción de la materia prima (congona):


Fotografía 2. Selección y limpieza de la materia prima (congona)


Fotografía 3. Marchitado:


Fotografía 4. Machacado y Enrollado:


Fotografía 5. Oxidación (fermentación):

Fotografía 6. Secado final:

Fotografía 7. Molido:

Fotografía 10. Evaluación sensorial:

Fotografía 11. Evaluación microbiológica:

